JPS6365081A - Surface coating method - Google Patents
Surface coating methodInfo
- Publication number
- JPS6365081A JPS6365081A JP21040586A JP21040586A JPS6365081A JP S6365081 A JPS6365081 A JP S6365081A JP 21040586 A JP21040586 A JP 21040586A JP 21040586 A JP21040586 A JP 21040586A JP S6365081 A JPS6365081 A JP S6365081A
- Authority
- JP
- Japan
- Prior art keywords
- film
- vapor deposition
- base material
- reaction
- coating method
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Physical Vapour Deposition (AREA)
- Chemical Vapour Deposition (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は金属材料、セラミクス材料等の表面ンこ高硬度
被覆を形成する表面波&方法に関するものである。DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a surface wave and method for forming a highly hard coating on the surface of metal materials, ceramic materials, etc.
立方晶窒化ホウ素(C−BN)はダイヤモンドトこ次ぐ
硬度を有し、また、高熱伝導性、高絶縁性、及び化学的
安定性等の優れた特性を有するために最近、切削工具や
半導体材料への利用が増加している。上記C−BNの特
性はダイヤモンドと比較するとC−BNは鉄鋼材料やN
i 、 Co基耐熱超合金との化学反応による焼き付け
を超さず、高温でも酸化しりごくいため切削工具への利
用価値が大きい。Cubic boron nitride (C-BN) has a hardness second only to that of diamond, and has excellent properties such as high thermal conductivity, high insulation properties, and chemical stability, so it has recently been used in cutting tools and semiconductor materials. usage is increasing. The above characteristics of C-BN are compared to diamond, and C-BN is used for steel materials and N
i, It is highly useful for cutting tools because it does not suffer from baking due to chemical reactions with Co-based heat-resistant superalloys and is oxidized even at high temperatures.
この場合には工具の基材表面に0−BNを薄膜として被
覆出来れば工具の寿命を従来よりも格段トこ延ばすこと
が出来る。In this case, if the surface of the base material of the tool can be coated with 0-BN as a thin film, the life of the tool can be significantly extended compared to the conventional method.
従来、0−BNを製造するには六方晶窒化ホウ素(h−
BN’)を高温高圧のC−BNN生成領域−おいて改質
する方法が一般に用いられている。しかしながら上記方
法では0−BNの粉末し力為得られない。そこでC−B
Nの薄膜を製造するには蒸着法、特トこ化学蒸着法(C
VD法)の適用が考えられる。CVD法とは、BN薄膜
を製造する場合にはB源となる物質とN源となる物質と
をガス状にしてその中に反応温度に加熱された基材を置
き気相中で反応させることにより、BNを基材表面に蒸
着する方法であり、密着性の良好な均一な厚みの薄膜が
得られるものであるが、形成されるBNは通常硬度の低
いh−BNもしくは、非晶質BNである。Traditionally, hexagonal boron nitride (h-
A method of modifying BN') in a C-BNN production region at high temperature and high pressure is generally used. However, the above method does not yield 0-BN powder. So C-B
Vapor deposition methods, especially chemical vapor deposition methods (C
VD method) may be applied. When producing a BN thin film, the CVD method involves making a substance that serves as a B source and a substance that serves as an N source as gases, placing a base material heated to a reaction temperature in the gas, and allowing them to react in the gas phase. This is a method in which BN is vapor-deposited on the surface of a substrate, and a thin film with good adhesion and uniform thickness can be obtained, but the BN formed is usually h-BN with low hardness or amorphous BN. It is.
本発明は上記問題点を解決する手段として下記の三つの
方法を提供するものである。The present invention provides the following three methods as means for solving the above problems.
第1の方法は、基材表面をC−BNP:よって研磨して
、その上に−BNl!llを蒸着により形成する方法で
あり、第2の方法は基材表面に銅を被覆し、その上1c
BN膜を蒸着により形成する方法であり第8の方法は、
基材表面にまずリン窒化ホウ素(B(PN))膜を蒸着
により形成し、その上−こBNMを蒸着により形成する
方法である。The first method is to polish the surface of the base material with C-BNP, and apply -BNl! The second method is to coat the surface of the base material with copper, and then deposit 1c on top of it.
The eighth method is a method of forming a BN film by vapor deposition.
In this method, a boron phosphorus nitride (B(PN)) film is first formed on the surface of the substrate by vapor deposition, and then BNM is formed on top of the film by vapor deposition.
本発明の第3の方法においては更に望ましくはB (P
N)膜の下地として、基材表面にりン化ホウ素(BP)
膜を形成し、次いでB(PN)膜を形成する。また更R
−望ましくは上記三つの方法を組み合わせて、まず基材
表面にCuを被覆し、次いでC−BNによって研磨し、
その上にB(PN)とBN模を蒸51#により形成する
。In the third method of the present invention, more preferably B (P
N) Boron phosphide (BP) on the base material surface as a base for the film.
A film is formed, and then a B(PN) film is formed. Matasara R
- Preferably, the above three methods are combined, first coating the substrate surface with Cu, then polishing with C-BN,
On top of that, B(PN) and a BN pattern are formed by steaming 51#.
本発明に用いられる基材としては炭素工具鋼。The base material used in the present invention is carbon tool steel.
合金工具鋼、高速度工具鋼、超硬合金等の金属、アルミ
ナ、ジルコニア、チタニア、窒化ケイ素。Metals such as alloy tool steel, high speed tool steel, cemented carbide, alumina, zirconia, titania, silicon nitride.
炭化ケイ素等のセラミクス等が含まれる。This includes ceramics such as silicon carbide.
本発明−こおいて、上記BP膜、B(PN)膜。The present invention--herein, the above-mentioned BP film and B(PN) film.
BN膜の蒸着には物理蒸着あるいは化学蒸着が適用され
る。化学蒸着の場合に用いられるガスとしては次のよう
なものがある。Physical vapor deposition or chemical vapor deposition is applied to deposit the BN film. Gases used in chemical vapor deposition include:
B源: nczs、 B2H6
B源: PCl3. P馬
N源:N2.酊ち
上記ガスの担体としては、Ar IN2. H,等還元
剤としてはN2がある。B source: nczs, B2H6 B source: PCl3. P horse N source: N2. As a carrier for the above-mentioned gas, Ar IN2. As a reducing agent such as H, there is N2.
化学蒸着の場合會こは、基材を上記ガス中に置き5〜2
0 ’IN)rr程度の減圧下において、プラズマを発
生させ、300〜800°Cに加熱して上記ガスを反応
せしめる。In the case of chemical vapor deposition, the substrate is placed in the above gas and 5 to 2
Under reduced pressure of about 0'IN)rr, plasma is generated and heated to 300 to 800°C to cause the above gas to react.
上記ガスの反応の様式の例を下記1こ示す。An example of the reaction mode of the above gas is shown below.
1、 BCl3.PCjl、 、NH3,N2を用いた
場合a、 BCJ、+PCe3十8H2−BP+6HC
1b、 BCI +PCl+(1−X)NU、+1H2
−B (P:tN t −z’ )+3 (1+x )
HCJiC,BOJ、+NI(8−BN+8FI(:A
’2、 BOA’8.PCl、 、N2.N2を用いた
場合a、 BC?PCI、+3)r2−BP+6HCl
b、 BOJ173+xPC/、+−4−(l−X)N
2−!7(1+x)N2−B (Px N t x )
+8 (1+x ”)HCIIo、 BO13+ ”−
N2+4H2−BN+8H(J8、 BCl3.PH,
、N2.L[2を用いた場合a、 fl(J’3+PH
8−BP+8HC1b、 BOj?3+XPH3++(
1−z)N2+8(1−x”)N2→B(PxNl−エ
’)+ 5Hcl
C,BCl34−+N2+ 4−N2−BN+8HC1
4、B2H6,PHI3.N2を用いる場合a、 +B
2H6+PH8−BI’+aH2b、 TB2H6+X
PH8+ 2 (I X)N2=B(PXN、−、)+
7(1±X’)H。1. BCl3. When using PCjl, , NH3, N2 a, BCJ, +PCe3 8H2-BP+6HC
1b, BCI +PCl+(1-X)NU, +1H2
-B (P:tN t -z')+3 (1+x)
HCJiC, BOJ, +NI(8-BN+8FI(:A
'2, BOA'8. PCl, , N2. When using N2 a, BC? PCI, +3)r2-BP+6HCl
b, BOJ173+xPC/, +-4-(l-X)N
2-! 7(1+x)N2-B (Px Ntx)
+8 (1+x ”)HCIIo, BO13+ ”-
N2+4H2-BN+8H (J8, BCl3.PH,
, N2. When using L[2, a, fl(J'3+PH
8-BP+8HC1b, BOj? 3+XPH3++(
1-z) N2+8(1-x") N2→B(PxNl-E')+ 5Hcl C, BCl34-+N2+ 4-N2-BN+8HC1
4, B2H6, PHI3. When using N2 a, +B
2H6+PH8-BI'+aH2b, TB2H6+X
PH8+ 2 (I X)N2=B(PXN,-,)+
7(1±X')H.
0、 +B2■6+ +N2→BN++H2上記反応1
、2 、8 、4)こおいて、aはBP17)生成反
応、bはB(PN)の生成反応、CはBNの生成反応で
ある。第2の方法)こおいて、Cu表面へのBN膜の蒸
着および第1の方法1こおいて、C−BN研磨後のBN
膜の蒸着ンこは上記反応式の1゜2.4におけるCを用
いる。また第8の方法−こおいて、BP−I3(1’N
> BNという玉、W膜を形成する場合には、各反応
式1 、2 、8 、41(おいて初期にはaの左辺に
示されるガス組成とし、次いでbの左辺に示されるガス
組成とし、最後ICCの左辺に示されるガス組成とする
。0, +B2■6+ +N2→BN++H2 Above reaction 1
, 2, 8, 4) where a is a BP17) production reaction, b is a B(PN) production reaction, and C is a BN production reaction. 2nd method) Here, BN film deposition on the Cu surface and 1st method 1: BN film after C-BN polishing
For film deposition, C at 1°2.4 in the above reaction formula is used. In addition, in the eighth method, BP-I3 (1'N
> When forming a BN ball and a W film, each reaction formula 1, 2, 8, 41 (initially the gas composition shown on the left side of a, then the gas composition shown on the left side of b) , and finally the gas composition shown on the left side of ICC.
上記化学蒸着において形成されるBP膜、B(PN’)
膜、BN膜の厚さは、反応温度および原料ガスのモル比
によって、影響される。前記減圧下の化学蒸着の場合の
反応温度と膜厚との関係を第1図に示す。この場合は1
−Cの反応を20分間行った。第1図をみると反応温度
が増える程、膜厚は加速度的に増大する。またN2/B
o13と膜厚との関係を第2図?こ示す。この場合は2
−Cの反応を20分間行った。第2図をみるとN2/B
CIgが10〜20の範囲でもっとも大きな膜厚をみる
。BP film formed in the above chemical vapor deposition, B(PN')
The thickness of the film, the BN film, is influenced by the reaction temperature and the molar ratio of the raw material gases. FIG. 1 shows the relationship between reaction temperature and film thickness in the case of chemical vapor deposition under reduced pressure. In this case 1
-C reaction was carried out for 20 minutes. As shown in FIG. 1, as the reaction temperature increases, the film thickness increases at an accelerated rate. Also N2/B
Figure 2 shows the relationship between o13 and film thickness? This is shown. In this case 2
-C reaction was carried out for 20 minutes. Looking at Figure 2, N2/B
The largest film thickness is observed when CIg is in the range of 10 to 20.
本発明の第3の方法における膜は必ずしもBP−B (
I’N)−BNの三N膜に限定されるものではなく、U
(PN)−BNの二層膜が形成されてもよく、また化学
蒸着以外にBP源、B(PN)源、BN源を真空下に加
熱して基材面に蒸着を行う物理蒸着が適用されてもよい
。The membrane in the third method of the present invention is not necessarily BP-B (
I'N)-BN, but not limited to the 3N film of U
A two-layer film of (PN)-BN may be formed, and in addition to chemical vapor deposition, physical vapor deposition is applicable, in which a BP source, a B(PN) source, and a BN source are heated in a vacuum and vapor deposited on the substrate surface. may be done.
基材表面な0−BNで研磨することは、基材表面に0−
BNの結晶核を増加させて、C−BN膜の生成を促すこ
とに効果があり、CuはC−BNと格子定数がほぼ一致
し、なおかつ立方晶構造であるので、BNを直接Cuに
析出させれば誘導析出作用によりBN膜は下地と同じ結
晶構造、即ち立方晶構造となる。Polishing the base material surface with 0-BN means polishing the base material surface with 0-BN.
It is effective in increasing the number of BN crystal nuclei and promoting the formation of a C-BN film.Cu has a lattice constant that almost matches that of C-BN and has a cubic crystal structure, so BN can be deposited directly on Cu. If allowed to do so, the BN film will have the same crystal structure as the underlying layer, that is, a cubic structure, due to the induced precipitation effect.
また基材面に蒸着したBP、B(PN)膜も立方晶構造
となり該B(PN’)膜上CBN膜を蒸着により形成す
ると、誘導析出作用により、立方晶構造となる。BP、
B(PN)はBNと同じ■−V族化化合物のセラミクス
であるため、上記誘導析出は容易であり、力1つ膜相互
の密着性も良い。Further, the BP and B(PN) films deposited on the substrate surface also have a cubic crystal structure, and when a CBN film is formed on the B(PN') film by vapor deposition, the structure becomes a cubic crystal structure due to the induced precipitation effect. B.P.
Since B (PN) is a ceramic of the ■-V group compound like BN, the above-mentioned induced precipitation is easy and the adhesion between the films is good.
した力;って本発明においては、簡単な手段で基材面?
こ高硬度な被膜を形成することができる。In the present invention, the force applied to the base material surface can be easily applied by simple means.
This makes it possible to form a highly hard coating.
実施例1.(装置)
第8図には本発明に用いられる装置系が示される。図に
おいて(1)はN2またはNH8源に連絡するガス送通
路であり(2)はBCl3またはB2H6源に連絡する
ガス送通路であり(3)はH2源に連絡するガス送通路
であり、(4)はPH1源に連絡するガス送通路であり
(5)はAr源に連絡するガス送通路であり、該ガス送
通路(1) 、 (2> 、 (8) 、 (4)には
夫々圧力計(1)A 、 (2)A 、 (a)A 、
(41Aと流量計(1)B 、 (2)B 、 (8
)B 、 (41Bが設けられており、ガス送通路(5
)には圧力計(5)Aが設けられている。該ガス送通路
(5)は後端において、流量計〔6)Aを有するガス送
通路(6)と流量計(7)A 、 PCl3飽和器(7
)B、圧力計(7)Cおよびパルプ(7) Dを有する
ガス送通路(7)とが並列されている。Example 1. (Apparatus) FIG. 8 shows an apparatus system used in the present invention. In the figure, (1) is a gas passageway communicating with the N2 or NH8 source, (2) is a gas passageway communicating with a BCl3 or B2H6 source, (3) is a gas passageway communicating with an H2 source, and ( 4) is a gas passage that connects to the PH1 source; (5) is a gas passage that connects to the Ar source; gas passages (1), (2>, (8), and (4)) are provided with Pressure gauge (1)A, (2)A, (a)A,
(41A and flowmeter (1)B, (2)B, (8
)B, (41B are provided, and the gas passage (5
) is provided with a pressure gauge (5)A. The gas passage (5) has a gas passage (6) having a flow meter [6) A, a flow meter (7) A, and a PCl3 saturator (7) at the rear end.
)B, a pressure gauge (7)C and a gas passageway (7) having a pulp (7)D are arranged in parallel.
該ガス送通路(1) 、 (2) 、 (8) 、 (
4) 、 (6) 、 (7)は後端においてガス送通
路(1)から三方バルブ(1)Cを介して分岐している
合流路(8)により合流せしめられ、該合流路(8)か
らは誘導結合型反応管(9)Aを有する反応路制が設け
られ、該反応路C9)の後段には圧力計04A、液体N
2トラップαOB、および真空ポンプQOCを有する吸
引路GOが配されている。なお、送通路(1)の後段シ
こは三方パルプ(1)Cを介して反応管(9)Ac N
H,を送る場合にのみ用いる送通路(1)が配されてい
る。The gas transmission passages (1), (2), (8), (
4), (6), and (7) are merged at the rear end by a merging path (8) that branches from the gas feed passage (1) via a three-way valve (1)C, and the merging path (8) A reaction path system having an inductively coupled reaction tube (9)A is provided from the reaction path C9), and a pressure gauge 04A and a liquid N
A suction path GO having two traps αOB and a vacuum pump QOC is arranged. In addition, the latter part of the feed passage (1) is connected to the reaction tube (9) Ac N via the three-way pulp (1) C.
A conveyance path (1) is provided which is used only when conveying H.
第4図には誘導結合型反応管〔9)への詳細が示せれる
。図において0])Aは管であり、内部に熱電対に)A
が挿着され、該V!電対HAの先端には黒鉛力1らなる
発熱媒体HAが挿着され、外側にはコイル(財)Aが配
され、処理されるべき基材Wは管811◇への内部の発
熱媒体に)A上にセットされる。FIG. 4 shows details of the inductively coupled reaction tube [9]. 0])A in the figure is a tube, with a thermocouple inside)A
is inserted, and the corresponding V! A heating medium HA made of graphite 1 is inserted at the tip of the couple HA, a coil A is placed on the outside, and the base material W to be processed is connected to the heating medium inside the tube 811◇. ) is set on A.
実施例2.、(第1の方法)
実施例1に示す装置において、反応管(9)A内を真空
ボンデQOC)こより、吸引路αOを介して5〜20T
orrの圧力に設定し、コイル(財)Aに周波数1.1
1.56MH2,出力100〜600Wの高周波を与え
てプラズマを発生させ、発熱媒体■Aを加熱して反応管
(9)A内の温度を800〜800°Cに設定する。Example 2. , (First method) In the apparatus shown in Example 1, the inside of the reaction tube (9) A was vacuum bonded (QOC) to 5 to 20 T via the suction path αO.
Set the pressure to orr, and set the frequency to coil A to 1.1.
Plasma is generated by applying a high frequency wave of 1.56 MH2 and an output of 100 to 600 W, heating the exothermic medium A and setting the temperature inside the reaction tube (9) A at 800 to 800°C.
反応管(9)A内の温度は熱電対のAによって発熱媒体
41Aの温度として検出し、その結果1こよりコイル(
ハ)Aにかける高周波の出力を加減して反応管(9)A
内の温度を一定に保つ。The temperature inside the reaction tube (9) A is detected as the temperature of the heating medium 41A by the thermocouple A, and as a result, the temperature inside the reaction tube (9) A is detected as the temperature of the heating medium 41A.
C) Adjust the output of high frequency applied to A to react to the reaction tube (9) A.
Keep the internal temperature constant.
本実施例では、基材表面をC−BNで研磨し、下記の条
件で反応管(9)lこ各種ガスを送通しBN膜を形成す
る。In this example, the surface of the base material is polished with C-BN, and various gases are passed through the reaction tube (9) under the following conditions to form a BN film.
BC,l、 :N2:N2:Ar=1 : 10 :
8 : 6(容積比)流速= 0.4 ax/ see
反応時間=20分
反応温度520°C
反応圧力” 5 TOrr
高周波出力=500W
実施例8.(第2の方法)
基材表面トこ下記の条件の電解メッキにより、Cuを被
覆し、その上に実施例2と同様の条件を用いてBN膜を
形成する。BC,l, :N2:N2:Ar=1:10:
8:6 (volume ratio) flow rate = 0.4 ax/see Reaction time = 20 minutes Reaction temperature 520°C Reaction pressure 5 TOrr High frequency output = 500W Example 8. (Second method) Substrate surface topography Cu is coated by electrolytic plating under the following conditions, and a BN film is formed thereon using the same conditions as in Example 2.
電解メッキ条件
浴組成 CCuS04−5N20=100/lH2So
4=100g/l
温度 80℃
電流密度4 A/dm2
実施例4.(第8の方法)
本実施例では前記反応2を適用する。PCj28はガス
送通路(7)において、0℃に保ったPCI 8飽和器
(7)B内のPCI!8溶液中CAr源からIrを担体
として送通する。そして、下記のような段階により反応
管(9)Aに各種ガスを送通し、基材表面)n B P
−B (PN)−BN膜を形成する。Electrolytic plating condition bath composition CCuS04-5N20=100/lH2So
4=100g/l Temperature 80°C Current density 4 A/dm2 Example 4. (Eighth Method) In this example, the reaction 2 described above is applied. PCj28 is connected to the PCI 8 saturator (7) B kept at 0°C in the gas passageway (7). Ir is delivered as a carrier from a CAr source in 8 solution. Then, various gases are passed through the reaction tube (9)A through the following steps, and the base material surface)n B P
-B (PN)-BN film is formed.
a、BCI、:PCI3:N2:Ar=2: 1:8:
6(容積比)b、上記ガス混合物に更にNをPO2”N
z=1:20になるように添加する。a, BCI, :PCI3:N2:Ar=2: 1:8:
6 (volume ratio) b, further adding N to the above gas mixture PO2”N
Add so that z=1:20.
c、 PCA’6の供給を停止し、BCl3:N2:N
2:Ar=1:10:8:6に調節する。c. Stop the supply of PCA'6 and change BCl3:N2:N
2:Adjust Ar=1:10:8:6.
夫々反応時間=20分
流 速== 9.4 (11/ 9eC反応温度=5
20°C
反応圧力= 5 ’porr
高周波出力=500W
このようにして、第5図に示すと同様な被膜が基材Wに
形成される。Reaction time = 20 minutes Flow rate = 9.4 (11/9eC Reaction temperature = 5
20° C. Reaction pressure = 5'porr High frequency power = 500 W In this way, a coating similar to that shown in FIG. 5 is formed on the base material W.
以上のようにして得られたBNgllは、Xfi1m析
によりC−BN構造が認められ、マイクロビッカース硬
さも4000にり/1nI2以上のものが得られた。In the BNgll obtained as described above, a C-BN structure was recognized by Xfi1m analysis, and a micro-Vickers hardness of 4000/1nI2 or more was obtained.
第1図は横軸に反応温度(°C)をとり、 縦軸に膜厚
(μm)をとったグラフ、第2図は横軸にN2/BC1
3(モル比)をとり縦軸に膜厚(μm)をとったグラフ
、第3図は本発明に用いられる装置系の一実施例の模式
図、第4図は銹導結合型反応管の詳細説明図、第5図は
被覆された基材の側断面図の模式図である。
図中、W・・・・基材、F ・・・・BP膜、F2・・
・・B(PN)膜、F3・・・・BN膜
特許出願人 大同特殊鋼株式会社
第1図
:、1度(°C)
〜’BCfLsFigure 1 is a graph with reaction temperature (°C) on the horizontal axis and film thickness (μm) on the vertical axis, and Figure 2 shows N2/BC1 on the horizontal axis.
3 (molar ratio) and the film thickness (μm) is plotted on the vertical axis. Figure 3 is a schematic diagram of an embodiment of the apparatus system used in the present invention, and Figure 4 is a diagram of a reaction tube of the rust-conducting type reaction tube. The detailed illustration, FIG. 5, is a schematic side sectional view of the coated substrate. In the figure, W...Base material, F...BP film, F2...
...B (PN) membrane, F3...BN membrane patent applicant Daido Steel Co., Ltd. Figure 1: 1 degree (°C) ~'BCfLs
Claims (5)
に蒸着によって窒化ホウ素膜を形成することを特徴とす
る表面被覆方法。(1) A surface coating method characterized by subjecting the surface of a substrate to a preliminary treatment and forming a boron nitride film on the treated surface by vapor deposition.
て研磨する処理である「特許請求の範囲第(1)項」記
載の表面被覆方法。(2) The surface coating method according to claim (1), wherein the pretreatment is polishing the surface of the substrate with cubic boron nitride.
「特許請求の範囲第(1)項」記載の表面被覆方法。(3) The surface coating method according to claim (1), wherein the pretreatment is a process of coating the surface of the substrate with copper.
ウ素膜を形成する処理である「特許請求の範囲第(1)
項」記載の表面被覆方法。(4) Claim No. (1) in which the preliminary treatment is a treatment of forming a phosphorus boron nitride film on the surface of the substrate by vapor deposition.
The surface coating method described in Section 1.
処理、銅を被覆処理、蒸着によつてリン窒化ホウ素膜を
形成する処理の二処理又は三処理を施す処理である「特
許請求の範囲第(1)項」記載の表面被覆方法。(5) The pretreatment is a process that performs two or three processes: polishing with cubic boron nitride, coating with copper, and forming a phosphorus boron nitride film by vapor deposition. The surface coating method described in item (1).
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP21040586A JPS6365081A (en) | 1986-09-05 | 1986-09-05 | Surface coating method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP21040586A JPS6365081A (en) | 1986-09-05 | 1986-09-05 | Surface coating method |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS6365081A true JPS6365081A (en) | 1988-03-23 |
Family
ID=16588769
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP21040586A Pending JPS6365081A (en) | 1986-09-05 | 1986-09-05 | Surface coating method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6365081A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63239103A (en) * | 1987-03-27 | 1988-10-05 | Ulvac Corp | Cubic boron nitride coated body and production thereof |
JPH04258606A (en) * | 1990-10-01 | 1992-09-14 | Phillips Petroleum Co | Apparatus for producing ethylene polymer |
-
1986
- 1986-09-05 JP JP21040586A patent/JPS6365081A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63239103A (en) * | 1987-03-27 | 1988-10-05 | Ulvac Corp | Cubic boron nitride coated body and production thereof |
JPH0513082B2 (en) * | 1987-03-27 | 1993-02-19 | Ulvac Corp | |
JPH04258606A (en) * | 1990-10-01 | 1992-09-14 | Phillips Petroleum Co | Apparatus for producing ethylene polymer |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7050337B2 (en) | High Adhesion Boron Dope Inclined Diamond Layer in WC-Co Cutting Tools | |
JP3675577B2 (en) | Method for producing diamond-coated article | |
US5370299A (en) | Bonding tool having diamond head and method of manufacturing the same | |
JPS63153275A (en) | diamond coated alumina | |
JPH044395B2 (en) | ||
US3368914A (en) | Process for adherently depositing a metal carbide on a metal substrate | |
JPS61124573A (en) | Diamond-coated base material and its production | |
US5955212A (en) | Superhard film-coated member and method of manufacturing the same | |
CN110468385A (en) | Micro-Nano Diamond Com-posite coating, preparation method and application, cold extruding mold and punching head and mold | |
CN110565065A (en) | Silicon carbide-nano diamond composite coating, preparation method and application thereof, cold extrusion die male die and die | |
CN105986247A (en) | Fluidized bed device for coating film on surface of diamond, method and product prepared through method | |
JPS6365081A (en) | Surface coating method | |
JPS62138395A (en) | Diamond film manufacturing method | |
JP2801485B2 (en) | Composite and method for producing the same | |
JPH04157157A (en) | Production of artificial diamond coated material | |
JPH02267284A (en) | Polycrystalline diamond object and production thereof by vapor synthesis method | |
JPS61261480A (en) | Diamond coated member | |
US5567522A (en) | Diamond cutting tool and method of manufacturing the same | |
IE901649A1 (en) | Method For Improving Adhesion Of Synthetic Diamond Coatings¹To Substrates | |
JPH0656585A (en) | Diamond film coating method | |
JPH06262525A (en) | Grinding wheel and its manufacture | |
JP2000273632A (en) | Production of flat ceramic bulk material free from warpage by chemical vapor deposition method | |
JPH0225562A (en) | Sintered hard alloy coated with cubic boron nitride | |
JP3160399B2 (en) | Diamond film manufacturing method | |
JPH05299478A (en) | Bonding tool and manufacturing method thereof |