[go: up one dir, main page]

JPS6358162B2 - - Google Patents

Info

Publication number
JPS6358162B2
JPS6358162B2 JP13326081A JP13326081A JPS6358162B2 JP S6358162 B2 JPS6358162 B2 JP S6358162B2 JP 13326081 A JP13326081 A JP 13326081A JP 13326081 A JP13326081 A JP 13326081A JP S6358162 B2 JPS6358162 B2 JP S6358162B2
Authority
JP
Japan
Prior art keywords
fluorine
group
containing polymer
membrane
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP13326081A
Other languages
Japanese (ja)
Other versions
JPS5834806A (en
Inventor
Toshikatsu Sada
Akihiko Nakahara
Masaki Shiromizu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokuyama Corp
Original Assignee
Tokuyama Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokuyama Corp filed Critical Tokuyama Corp
Priority to JP13326081A priority Critical patent/JPS5834806A/en
Publication of JPS5834806A publication Critical patent/JPS5834806A/en
Publication of JPS6358162B2 publication Critical patent/JPS6358162B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はスルホニル基を有する含弗素高分子体
からカルボキシル基を有する含弗素高分子体の新
規な製造方法に関し、詳しくは該スルホニル基を
効率よくカルボキシル基に変換する方法に関す
る。 従来、含弗素系高分子体に結合するスルホニル
基をカルボキシル基に変換する方法については、
多くの提案がされている。例えば、スルホニル基
を有する含弗素系高分子体を還元する方法(特開
昭52―24177号),酸化反応する方法(特開昭53―
132069号),フエノール類と反応させる方法(特
開昭54―20981号),アミン類と反応させる方法
(特開昭54―21478号)などがある。 本発明者らは、上記とは別の方法について鋭意
研究を重ねた結果、意外にもスルホニル基を有す
る含弗素高分子体をSO3と接触させることによつ
て、該スルホニル基が簡単に且つ効率よくカルボ
キシル基に変換されることを見出し、本発明を提
案するに至つたものである。即ち、本発明はスル
ホニル基を有する含弗素系高分子体をSO3と接触
させることを特徴とするカルボキシル基を有する
含弗素高分子体の製造方法である。 本発明にいうスルホニル基とは、式−SO2Xで
示されるもので、例えばスルホン酸基(XがOH
基),スルホン酸基のアルカリ金属塩型またはア
ンモニウム塩型,スルホニルハライド基(Xがハ
ロゲン),スルホンアミド基(XがNR1R2で、
R1,R2が水素またはアルキル基),スルホン酸エ
ステル基(XがOR′で、R′がアルキル基),スル
フイン酸基(Xが水素),スルフイン酸のアルカ
リ金属塩型またはアンモニウム塩型などを総称す
る。 本発明で用いられるスルホニル基を有する含弗
弗素系高分子体としては、特にパーフルオロカー
ボン系の高分子母体にスルホニル基を化学的に結
合したものであればよい。含弗素系高分子体の形
状は、一般に膜状,粒状,粉状,溶液状,繊維状
であるが、特に膜状にあつては厚み0.01〜2mm範
囲の少くとも一方向に1cm以上の大きさを有する
ものが好適であり、該含弗素系高分子体にスルホ
ニル基はその断面において均一に分布しているも
の、ある勾配をもつて分布しているもの、層状ま
たは階段状に分布しているものなど何ら制限され
ない。かかるスルホニル基を有する含弗素系高分
子体は、例えばスルホニルハライド基を有する含
弗素ビニルモノマーの重合体,または他の含弗素
ビニルモノマーとの共重合体、あるいは含弗素系
高分子体に後処理によりスルホニル基を導入して
製造される。具体的に好適なスルホニル基を有す
る含弗素系高分子体としては、パーフルオロ
(3,6―ジオキシ―4―メチル―7―オクテン
スルホニルハライド)を主成分とするパーフルオ
ロアルキルビニルエーテルスルホニルハライドと
テトラフルオロエチレン,トリフルオロエチレ
ン,フツ化ビニリデン,クロロトリフルオロエチ
レン,ヘキサフルオロプロピレン,パーフルオロ
アルキルビニルエーテルなどとを公知の重合方法
によつて製造される。かくして得られた含弗素系
高分子体は、そのまま粉状,溶液状または適当に
粒状,繊維状,膜状に成形して用いられる。さら
に、膜状物においては、その寸法安定性および機
械的強度を増加させるために、補強材としてポリ
テトラフルオロエチレンなどの多孔性シート,布
などを裏打ちすることも好適である。 本発明の最大の特徴は、上記したスルホニル基
を有する含弗素系高分子体をSO3と接触させるこ
とにある。用いるSO3は特に無水のSO3が好まし
く、また気体または液体のいずれでもよく、さら
にスルホニル基を有する含弗素系高分子体との接
触時にSO3を遊離するものであれば何ら制限され
ない。したがつて、SO3のみならず発煙硫酸,硫
酸水素ナトリウム,ピロ硫酸ナトリウムなどを加
熱して用いられる。 本発明のスルホニル基を有する含弗素系高分子
体にSO3を接触させる方法は、特に制限されな
い。例えば、SO3を気体の状態で接触させる場合
には、減圧下,加圧下あるいは不活性ガスで希釈
下に存在させてもよい。また、SO3を液体の状態
で接触させる場合には、接触系の温度を均一に調
節するために、濃硫酸などの溶媒で希釈して用い
ることが好ましい。このようなSO3の仕込み量
は、接触系において含弗素系高分子体が有するス
ルホニル基と等モル以上であればよいが、実際に
は一般に5倍モル以上が必要である。また、スル
ホニル基を有する含弗素系高分子体とSO3とを接
触させる温度は、一般に室温〜250℃特に30〜120
℃の温度範囲が好ましく、250℃以上の温度でも
カルボキシル基の生成は認められるが、他の副反
応,生成したカルボキシル基の脱離、あるいは含
弗素高分子体の変形,強度の劣化などの欠点を伴
うため好ましくない。 さらに、本発明の方法においてはスルホニル基
を有する含弗素系高分子体にSO3を接触させる際
に、触媒としてNaF,KF,CsF,RbFなどのア
ルカリ金属弗化物,NaCl,KClなどのアルカリ
金属塩化物、またはAgF,Ag2SO4などを共存さ
せることによつて、該スルホニル基のカルボキシ
ル基への変換率を著しく向上させることが出来
る。上記の触媒としては、特にNaF,KF,CsF
などのアルカリ金属弗化物が好ましい。かかる触
媒の共存量は、存在するSO3量に対して0.001〜
10%(重量比)が好適である。 本発明により得られる含弗素高分子体は、赤外
スペクトル(高分子体が粉状,粒状および繊維状
の場合にはKBr法;膜状の場合にはATR法また
は透過法で測定することによつて、1780cm-1に新
しい吸収帯が生じ、さらにアルカリ処理すること
によつて1680cm-1にシフトすることから、該含弗
素系高分子体に結合したカルボキシル基に起因す
ることが認められる。一方、本発明のSO3で接触
させる前の含弗素系高分子体において例えば1060
cm-1に強く認められるスルホン酸基の吸収帯(ス
ルホニル基かスルホン酸基の場合)は、一般に接
触処理を充分に行うことによつて殆んど消失して
しまう。また、接触処理を弱めることによつて、
上記スルホン酸基は大部分が残存し、少量のカル
ボキシル基の生成が認められる。したがつて、本
発明によれば、接触条件を適宜選択することによ
り、含弗素系高分子体のスルホニル基を任意の割
合でカルボキシル基に変換することも可能であ
る。 本発明の方法により含弗素系高分子体の有する
スルホニル基がカルボキシル基に変換し得る理由
は明確に出来ないが、スルホニル基から1段で容
易に且つ効率よく変換され、連続的に処理するこ
とも出来るため工業的にも有利である。また、本
発明に得られるカルボキシル基を有する含弗素系
高分子体は、従来公知の用途に制限なく用いるこ
とが出来る。例えば、カルボキシル基を有する含
弗素系高分子体が粉状,粒状あるいは可溶性の場
合には、触媒,PHコントローラー,特殊イオン
交換樹脂などに用いられ、また膜状の場合には近
年開発されている食塩電解用のイオン交換膜とし
て極めて有用である。特に食塩電解用のイオン交
換膜の好ましい態様として提案されている。片面
にスルホン酸基と他面にカルボキシル基を有する
膜の製造に本発明の方法は好ましく適用される。 実施例 1 テトラフルオロエチレンとパーフルオロ(3,
6―ジオキサ―4―メチル―7―オクテンスルホ
ニルフルオライド)の共重合体で加水分解したと
きの交換容量が0.91ミリ当量/グラム乾燥樹脂
(H+型),厚さが0.175mmのフイルムを水400部,
ジメチルスルホキシド600部,水酸化カリウム15
部からなる加水分解浴に浸漬してスルホン酸ソー
ダとした膜を用いて次の反応を行なつた。 即ち、セパラブルフラスコ中に膜及び膜が浸漬
する量のSO3を加え、45℃で8hrs反応した。反応
後の膜を10%のNaOHを含むメタノール―水
(容量比1/1)の混合溶液中で一夜浸漬して後、
膜の一方の表面のみサンドペーパーによつて削り
とつて薄膜としたのち、赤外吸収スペクトルを測
定した。その結果、1680cm-1に強い新しい吸収ピ
ークが見られた。次いで、これをメタノールと
4.0N−HClの1:1の混合溶液中に一夜浸漬後
にATRによつて測定したところ、1680cm-1の吸
収は消失して、1790cm-1に新しい吸収ピークが現
われた。反応条件の選定によつて吸収強度の強弱
が変化した。これはパーフルオロのカルボン酸基
に帰属される吸収である。また反応条件の選定に
よつて未反応の膜に見られる1060cm-1のスルン酸
基に帰属される吸収は弱くなるか消滅した。 上記で得た膜を用いて3.5N−NaClを陽極液と
して、有効通電面積0.5dm2の電解槽を用いて電流
密度30A/dm2で食塩電解を実施した。陰極室か
ら10規定のNaOHを取得した。電解温度は80℃
であつた。 電解テストの結果、電解電圧3.35V,電流効率
92%及びNaOH中のNaCl濃度は70ppm(as50%
NaOH)であつた。 実施例2および比較例1 膜及び反応条件を変えて実施例1と同様の反応
を行つた。反応条件及び得られた膜の電解テスト
の結果を表―1に示す。得られた膜はいづれも赤
外スペクトルでカルボキシル基の存在が強く認め
られた。又、比較のために本発明の反応を行わな
かつた膜の電解テストの結果を表―1のNo.7に示
す。 この実験で用いた膜(実施例1で用いたもの以
外)は次のものである。 膜A 実施例1で用いた膜を1%のNH4OHを含
む水溶液に一夜浸漬してNH4型の膜とした。
得られた膜をさらに20%のPCl5を含むPOCl3
中で還流下に20時間反応させた。その後、
CCl4中に浸漬してPCl5,POCl3を洗浄した。
得られた膜の一部をATR法で赤外スペクト
ルを測定したところ、1060cm-1の−
SO3 -NH4 +基の吸収帯はなく、代りに1420cm
-1に−SO2Cl基の吸収帯が認められた。 膜B 膜Aの一部を10%のNa2SO3を含む水溶液
中に50℃で10時間浸漬した。その後水洗し、
ATR法での赤外スペクトルを測定したとこ
ろ、1420cm-1の−SO2Cl基は殆んど認められ
ず、代りに930,1030cm-1に−SO2Na基に起
因する吸収帯が強く認められた。 膜C テトラフルオロエチレンとパーフルオロ
(3,6―ジオキサ―7―オクテンスルホニ
ルフルオライド)の共重合体で加水分解後の
交換容量が0.83ミリ当量/グラム乾燥樹脂
(H+)である2枚のフイルムにポリテトラフ
ルオロエチレンの400デニールの糸よりなり
タテ・ヨコインチ当り40本打込んだ布(補強
材)をはさみ、加熱融着して膜とした。この
膜の片面を水とエチレンジアミンの混合溶液
(容量比10/1)中に20時間浸漬して膜の片
面にスルホンアミド基(−SO2NHCH2
CH2NH2又は−SO2NH・CH2・CH2
NH・SO2−)を有する膜とした。浸漬後10
%のNaOHを含むメタノール―水混合溶液
中に浸漬して未反応の−SO2F基を加水分解
した。又、本発明の処理を行う時はエチレン
ジアミンと接触しなかつた面をテフロン粘着
テープでシールして行つた。 膜D 膜Cと作るときの中間体であるスルホニル
フルオライドを結合した膜
The present invention relates to a novel method for producing a fluorine-containing polymer having a carboxyl group from a fluorine-containing polymer having a sulfonyl group, and more particularly to a method for efficiently converting the sulfonyl group into a carboxyl group. Conventionally, methods for converting sulfonyl groups bonded to fluorine-containing polymers into carboxyl groups are as follows:
Many proposals have been made. For example, a method of reducing a fluorine-containing polymer having a sulfonyl group (JP-A-52-24177), a method of oxidation reaction (JP-A-53-24177),
132069), a method of reacting with phenols (Japanese Patent Laid-Open No. 54-20981), and a method of reacting with amines (Japanese Patent Laid-Open No. 54-21478). As a result of extensive research into methods other than those described above, the present inventors unexpectedly discovered that by contacting a fluorine-containing polymer having a sulfonyl group with SO 3 , the sulfonyl group can be easily and easily removed. The present inventors have discovered that it can be efficiently converted into a carboxyl group, and have proposed the present invention. That is, the present invention is a method for producing a fluorine-containing polymer having a carboxyl group, which comprises bringing the fluorine-containing polymer having a sulfonyl group into contact with SO 3 . The sulfonyl group referred to in the present invention is represented by the formula -SO 2 X, for example, a sulfonic acid group (X is OH
group), alkali metal salt type or ammonium salt type of sulfonic acid group, sulfonyl halide group (X is halogen), sulfonamide group (X is NR 1 R 2 ,
R 1 , R 2 are hydrogen or an alkyl group), sulfonic acid ester group (X is OR' and R' is an alkyl group), sulfinic acid group (X is hydrogen), alkali metal salt type or ammonium salt type of sulfinic acid etc. collectively. The fluorine-containing polymer having a sulfonyl group used in the present invention may be one in which a sulfonyl group is chemically bonded to a perfluorocarbon polymer matrix. The shape of the fluorine-containing polymer is generally film-like, granular, powder-like, solution-like, or fibrous. In particular, the film-like shape has a thickness in the range of 0.01 to 2 mm and a size of at least 1 cm in one direction. The sulfonyl groups in the fluorine-containing polymer are preferably distributed uniformly in its cross section, distributed with a certain gradient, or distributed in layers or steps. There are no restrictions on who you are. Such a fluorine-containing polymer having a sulfonyl group can be, for example, a polymer of a fluorine-containing vinyl monomer having a sulfonyl halide group, a copolymer with another fluorine-containing vinyl monomer, or a fluorine-containing polymer after being processed. It is produced by introducing a sulfonyl group. Specifically preferred fluorine-containing polymers having sulfonyl groups include perfluoroalkyl vinyl ether sulfonyl halides containing perfluoro (3,6-dioxy-4-methyl-7-octensulfonyl halide) as a main component and tetrafluorocarbons. It is produced by a known polymerization method with fluoroethylene, trifluoroethylene, vinylidene fluoride, chlorotrifluoroethylene, hexafluoropropylene, perfluoroalkyl vinyl ether, etc. The fluorine-containing polymer thus obtained can be used as it is in the form of powder, solution, or appropriately formed into granules, fibers, or films. Furthermore, in order to increase the dimensional stability and mechanical strength of the membrane-like material, it is also suitable to back it with a porous sheet such as polytetrafluoroethylene, cloth, etc. as a reinforcing material. The most important feature of the present invention is that the above-mentioned fluorine-containing polymer having a sulfonyl group is brought into contact with SO 3 . The SO 3 used is particularly preferably anhydrous SO 3 and may be either gas or liquid, and is not particularly limited as long as it liberates SO 3 upon contact with a fluorine-containing polymer having a sulfonyl group. Therefore, not only SO 3 but also fuming sulfuric acid, sodium hydrogen sulfate, sodium pyrosulfate, etc. can be heated and used. The method of bringing SO 3 into contact with the fluorine-containing polymer having a sulfonyl group of the present invention is not particularly limited. For example, when contacting SO 3 in a gaseous state, it may be present under reduced pressure, increased pressure, or diluted with an inert gas. Further, when contacting SO 3 in a liquid state, it is preferable to dilute it with a solvent such as concentrated sulfuric acid in order to uniformly control the temperature of the contact system. The amount of SO 3 to be charged may be at least equimolar to the sulfonyl group possessed by the fluorine-containing polymer in the contact system, but in reality, it is generally required to be at least 5 times the mole. Further, the temperature at which the fluorine-containing polymer having a sulfonyl group and SO 3 are brought into contact is generally room temperature to 250°C, particularly 30 to 120°C.
℃ is preferable, and formation of carboxyl groups is observed even at temperatures of 250℃ or higher, but there are disadvantages such as other side reactions, elimination of the generated carboxyl groups, deformation of the fluorine-containing polymer, and deterioration of strength. This is not desirable because it involves Furthermore, in the method of the present invention, when bringing SO 3 into contact with a fluorine-containing polymer having a sulfonyl group, alkali metal fluorides such as NaF, KF, CsF, and RbF, and alkali metals such as NaCl and KCl are used as catalysts. By coexisting chloride, AgF, Ag 2 SO 4 or the like, the conversion rate of the sulfonyl group to carboxyl group can be significantly improved. The above catalysts include NaF, KF, CsF, etc.
Alkali metal fluorides such as are preferred. The coexisting amount of such a catalyst is 0.001 to 0.001 to the amount of SO3 present.
10% (weight ratio) is suitable. The fluorine-containing polymer obtained by the present invention can be measured by infrared spectroscopy (KBr method if the polymer is in the form of powder, granules, or fibers; ATR method or transmission method if the polymer is in the form of a film). Therefore, since a new absorption band appears at 1780 cm -1 and is further shifted to 1680 cm -1 by alkali treatment, it is recognized that the absorption band is caused by the carboxyl group bonded to the fluorine-containing polymer. On the other hand, in the fluorine-containing polymer before contacting with SO 3 of the present invention, for example, 1060
Generally, the absorption band of sulfonic acid groups (in the case of sulfonyl groups or sulfonic acid groups), which is strongly observed at cm -1 , almost disappears by carrying out sufficient contact treatment. Also, by weakening the contact treatment,
Most of the above sulfonic acid groups remain, and a small amount of carboxyl groups are observed to be formed. Therefore, according to the present invention, by appropriately selecting the contact conditions, it is also possible to convert the sulfonyl groups of the fluorine-containing polymer into carboxyl groups at any ratio. Although it is not clear why the sulfonyl group of the fluorine-containing polymer can be converted into a carboxyl group by the method of the present invention, it is possible to convert the sulfonyl group easily and efficiently in one step, and the process can be carried out continuously. It is also industrially advantageous because it can also be used. Further, the fluorine-containing polymer having a carboxyl group obtained in the present invention can be used in conventionally known applications without any limitations. For example, when fluorine-containing polymers with carboxyl groups are in powder, granular, or soluble form, they are used in catalysts, PH controllers, special ion exchange resins, etc., and when they are in membrane form, they have been developed in recent years. It is extremely useful as an ion exchange membrane for salt electrolysis. In particular, it has been proposed as a preferred embodiment of an ion exchange membrane for salt electrolysis. The method of the present invention is preferably applied to the production of membranes having sulfonic acid groups on one side and carboxyl groups on the other side. Example 1 Tetrafluoroethylene and perfluoro(3,
When hydrolyzed with a copolymer of 6-dioxa-4-methyl-7-octensulfonyl fluoride, the exchange capacity is 0.91 milliequivalents/gram dry resin (H + type), and a film with a thickness of 0.175 mm is mixed with water. 400 copies,
600 parts of dimethyl sulfoxide, 15 parts of potassium hydroxide
The following reaction was carried out using a membrane made of sodium sulfonate by immersing it in a hydrolysis bath consisting of: That is, the membrane and SO 3 in an amount sufficient to immerse the membrane were added to a separable flask, and the reaction was carried out at 45° C. for 8 hours. After the reaction, the membrane was immersed overnight in a mixed solution of methanol and water (volume ratio 1/1) containing 10% NaOH.
After sanding only one surface of the film to make a thin film, the infrared absorption spectrum was measured. As a result, a strong new absorption peak was observed at 1680 cm -1 . This is then mixed with methanol.
When measured by ATR after overnight immersion in a 1:1 mixed solution of 4.0N-HCl, the absorption at 1680 cm -1 disappeared and a new absorption peak appeared at 1790 cm -1 . The strength of the absorption intensity changed depending on the selection of reaction conditions. This absorption is attributed to the perfluoro carboxylic acid group. Furthermore, by selecting the reaction conditions, the absorption attributed to the sulnic acid group at 1060 cm -1 observed in the unreacted film became weaker or disappeared. Using the membrane obtained above, salt electrolysis was carried out at a current density of 30 A/dm 2 using an electrolytic cell with an effective current carrying area of 0.5 dm 2 using 3.5N-NaCl as the anolyte. 10N NaOH was obtained from the cathode chamber. Electrolysis temperature is 80℃
It was hot. As a result of electrolysis test, electrolysis voltage 3.35V, current efficiency
NaCl concentration in 92% and NaOH is 70ppm (as50%
NaOH). Example 2 and Comparative Example 1 The same reaction as in Example 1 was carried out by changing the membrane and reaction conditions. Table 1 shows the reaction conditions and the results of the electrolytic test of the membrane obtained. In all of the obtained films, the presence of carboxyl groups was strongly recognized in the infrared spectrum. For comparison, No. 7 in Table 1 shows the results of an electrolytic test on a membrane that was not subjected to the reaction of the present invention. The membranes used in this experiment (other than those used in Example 1) were as follows. Membrane A The membrane used in Example 1 was immersed overnight in an aqueous solution containing 1% NH 4 OH to form an NH 4 type membrane.
The resulting membrane was further treated with POCl3 containing 20% PCl5 .
The mixture was reacted for 20 hours under reflux. after that,
PCl 5 and POCl 3 were washed away by immersing it in CCl 4 .
When we measured the infrared spectrum of a part of the obtained film using the ATR method, we found that -1060 cm -1
There is no absorption band for the SO 3 - NH 4 + group, instead at 1420 cm
An absorption band of -SO 2 Cl group was observed at -1 . Membrane B A portion of Membrane A was immersed in an aqueous solution containing 10% Na 2 SO 3 at 50° C. for 10 hours. Then wash with water,
When an infrared spectrum was measured using the ATR method, the -SO 2 Cl group at 1420 cm -1 was hardly observed, and instead a strong absorption band due to the -SO 2 Na group was observed at 930 and 1030 cm -1 . It was done. Membrane C: Two sheets of copolymer of tetrafluoroethylene and perfluoro(3,6-dioxa-7-octensulfonyl fluoride) with an exchange capacity of 0.83 milliequivalents/g dry resin (H + ) after hydrolysis. A cloth (reinforcement material) made of 400 denier polytetrafluoroethylene threads (40 threads per inch vertically and horizontally) was sandwiched between the film and heat-fused to form a membrane. One side of this membrane was immersed in a mixed solution of water and ethylenediamine (volume ratio 10/1) for 20 hours to form a sulfonamide group (-SO 2 NHCH 2 ) on one side of the membrane.
CH 2 NH 2 or −SO 2 NH・CH 2・CH 2
NH・SO 2 −). 10 after soaking
The unreacted -SO2F groups were hydrolyzed by immersion in a methanol-water mixed solution containing % NaOH. Furthermore, when performing the treatment of the present invention, the surface that did not come into contact with ethylenediamine was sealed with Teflon adhesive tape. Membrane D: A membrane that combines sulfonyl fluoride, which is an intermediate when making membrane C.

【表】 * オートクレーブ中で加熱した。
[Table] * Heated in an autoclave.

Claims (1)

【特許請求の範囲】 1 スルホニル基を有する含弗素系高分子体を
SO3と接触させることを特徴とするカルボキシル
基を有する含弗素系高分子体の製造方法。 2 スルホニル基がスルホニルハライド基または
スルホン酸基である特許請求の範囲第1項記載の
製造方法。 3 含弗素系高分子体がパーフルオロカーボン系
の高分子体である特許請求の範囲第1項記載の製
造方法。 4 スルホニル基を有する含弗素系高分子体がテ
トラフルオロエチレンとパーフルオロアルキルス
ルホニルビニルエーテルの共重合体である特許請
求の範囲第1項または第4項記載の製造方法。 5 含弗素系高分子体が膜状物である特許請求の
範囲第1項、第3項または第4項記載の製造方
法。 6 膜状物が電解用隔膜である特許請求の範囲第
5項記載の製造方法。 7 触媒存在下に接触させることを特徴とする特
許請求の範囲第1項記載の製造方法。 8 アルカリ金属弗化物の共存下に接触させる特
許請求の範囲第7項記載の製造方法。 9 アルカリ金属弗化物がNaF,KF,CsF,
RbF,AgFのいずれかである特許請求の範囲第
8項記載の製造方法。
[Claims] 1. A fluorine-containing polymer having a sulfonyl group
A method for producing a fluorine-containing polymer having a carboxyl group, the method comprising contacting with SO 3 . 2. The manufacturing method according to claim 1, wherein the sulfonyl group is a sulfonyl halide group or a sulfonic acid group. 3. The manufacturing method according to claim 1, wherein the fluorine-containing polymer is a perfluorocarbon polymer. 4. The manufacturing method according to claim 1 or 4, wherein the fluorine-containing polymer having a sulfonyl group is a copolymer of tetrafluoroethylene and perfluoroalkylsulfonyl vinyl ether. 5. The manufacturing method according to claim 1, 3, or 4, wherein the fluorine-containing polymer is a film-like material. 6. The manufacturing method according to claim 5, wherein the membrane-like material is a diaphragm for electrolysis. 7. The production method according to claim 1, characterized in that the contact is carried out in the presence of a catalyst. 8. The manufacturing method according to claim 7, which comprises contacting in the presence of an alkali metal fluoride. 9 Alkali metal fluorides include NaF, KF, CsF,
The manufacturing method according to claim 8, which is either RbF or AgF.
JP13326081A 1981-08-27 1981-08-27 Method for producing fluorine-containing polymer having carboxyl group Granted JPS5834806A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13326081A JPS5834806A (en) 1981-08-27 1981-08-27 Method for producing fluorine-containing polymer having carboxyl group

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13326081A JPS5834806A (en) 1981-08-27 1981-08-27 Method for producing fluorine-containing polymer having carboxyl group

Publications (2)

Publication Number Publication Date
JPS5834806A JPS5834806A (en) 1983-03-01
JPS6358162B2 true JPS6358162B2 (en) 1988-11-15

Family

ID=15100453

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13326081A Granted JPS5834806A (en) 1981-08-27 1981-08-27 Method for producing fluorine-containing polymer having carboxyl group

Country Status (1)

Country Link
JP (1) JPS5834806A (en)

Also Published As

Publication number Publication date
JPS5834806A (en) 1983-03-01

Similar Documents

Publication Publication Date Title
EP0025644B1 (en) Fluorinated polymer cation exchange membrane for electrolysis, process for its preparation and process for electrolysing an aqueous solution of an alkali metal chloride
US6670424B1 (en) Ross-linked sulphonated polymers and their preparation process
US3784399A (en) Films of fluorinated polymer containing sulfonyl groups with one surface in the sulfonamide or sulfonamide salt form and a process for preparing such
CN111065624A (en) Fluorine-containing sulfonyl compound, fluorine-containing sulfonyl-containing monomer, and method for producing the same
CA1046457A (en) Electrolytic diaphragms, and method of electrolysis using the same
JPH0237936B2 (en)
KR20080003857A (en) Fluorinated ionomers with reduced amounts of carbonyl end groups
GB2053902A (en) Novel Fluorinated Compounds
EP0053455B1 (en) Preparation of a fluorocarbon cation-exchange membrane and electrolysis process using the membrane
US4266036A (en) Recovery of polymeric cation exchange materials for reuse by converting by reaction to the precursor form
CA1079914A (en) Method for preparation of cation exchange membrane
CA1126443A (en) Fluorinated ion exchange polymer containing carboxylic groups, and process for making same
JPS6358162B2 (en)
US4366262A (en) Method for catalyzed conversion of perfluorocarbon cationic exchange functionality with SF4
JPS61185507A (en) Method for producing anion exchanger
JPS6258382B2 (en)
JP2025505991A (en) Methods for preparing functionalized polymers
JPS59258B2 (en) Method for producing perfluorocarbon cation exchanger
CA1142693A (en) Fluorinated ion exchange polymer containing carboxylic groups, and process for making same
CA1151110A (en) Process for electrolyzing alkali metal chloride
JPS5830333B2 (en) Kairiyou Ion Koukantaino Seizouhouhou
JPS6023776B2 (en) Manufacturing method of cation exchange membrane
JPS5911582B2 (en) Fluorinated acid fluoride and its manufacturing method
JPS6134726B2 (en)
JPS6240372B2 (en)