[go: up one dir, main page]

JPS6355857B2 - - Google Patents

Info

Publication number
JPS6355857B2
JPS6355857B2 JP526383A JP526383A JPS6355857B2 JP S6355857 B2 JPS6355857 B2 JP S6355857B2 JP 526383 A JP526383 A JP 526383A JP 526383 A JP526383 A JP 526383A JP S6355857 B2 JPS6355857 B2 JP S6355857B2
Authority
JP
Japan
Prior art keywords
temperature
bulb
halogen
air
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP526383A
Other languages
Japanese (ja)
Other versions
JPS59132118A (en
Inventor
Tatsumi Hiramoto
Tetsuharu Arai
Hiroshi Shimizu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ushio Denki KK
Original Assignee
Ushio Denki KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ushio Denki KK filed Critical Ushio Denki KK
Priority to JP526383A priority Critical patent/JPS59132118A/en
Publication of JPS59132118A publication Critical patent/JPS59132118A/en
Publication of JPS6355857B2 publication Critical patent/JPS6355857B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Furnace Details (AREA)

Description

【発明の詳細な説明】 最近半導体ウエハーの熱処理にあたつて、加熱
炉として光照射装置が注目されている。つまり光
を熱源として利用するもので、大別すると放電管
から放出される光と白熱フイラメントからの放射
光とがあり、使い易さ、利用し易さ、制御のし易
さから白熱フイラメントからの放射光、すなわち
白熱電球を使用した光照射装置が今のところ推奨
されている。
DETAILED DESCRIPTION OF THE INVENTION Recently, light irradiation equipment has been attracting attention as a heating furnace for heat treatment of semiconductor wafers. In other words, it uses light as a heat source, and can be roughly divided into two types: light emitted from a discharge tube and light emitted from an incandescent filament. Synchrotron radiation, a light illumination device using an incandescent light bulb, is currently recommended.

ところで、ハロゲン電球は白熱電球の一種であ
り、バルブ内に不活性ガスとともに微量のハロゲ
ン元素を封入したものであるが、このハロゲン電
球はバルブが小形で、寿命が長く効率が良いた
め、半導体ウエハー処理用光照射装置の光源とし
てもよく用いられる。ハロゲン電球がこの様な優
れた特性を有するのはバルブ内でハロゲンガスと
タングステンとの反応の平衡状態が高温部である
タングステンフイラメント近傍と低温部であるバ
ルブ壁近傍とで異なることを利用してハロゲンサ
イクルと称する循環反応が行われるからである。
即ち、高温部ではハロゲンとタングステンは解離
し、タングステンの分圧が高くなつてフイラメン
トの蒸発が抑制され、低温部では沸点の十分高い
タングステンのハロゲン化物が形成され、バルブ
壁へのタングステンの蒸着を防止し、光出力の吸
収減衰を抑制している。しかしながら、この循環
反応が行われるためにはバルブ壁温度がいわゆる
ハロゲンサイクル可能範囲でなければならない。
この可能範囲はハロゲン元素の種類により異る
が、例えばば塩素と臭素が封入されているもので
は可能範囲は100〜650℃程度であり、バルブ壁が
これ以外の範囲ではタングステンがバルブ壁に蒸
着して黒化し、電球の寿命が著しく短かくなる。
そして、半導体ウエハーの熱処理用をはじめとし
ていろいろの用途にハロゲン電球を熱源として使
用する場合は上述の温度範囲より高い状態で使用
されることが非常に多い。このため冷風により冷
却してバルブ壁温度を調節することが行なわれ
る。しかし、大きな被処理物にも対応可能とする
ために、管状の長いハロゲン電球を近接して並設
し、面光源として使用されるときに、冷風で冷却
したのでは十分に調節できないことが多い。なぜ
ならば、バルブ壁の温度が例えば800〜1000℃と
高い場合には冷風の流速を上げ、熱伝達率を上げ
ることにより適正温度に下げようとするが、面光
源の下流側を適正温度に下げるために流速を上げ
すぎると上流側のバルブ温度が過冷却となり、逆
に上流側を適正温度にしようとすると下流側が過
熱され、いずれにしても電球の寿命が短かくなる
問題点があつた。
By the way, a halogen light bulb is a type of incandescent light bulb that has a small amount of halogen element sealed together with an inert gas inside the bulb.The halogen light bulb has a small bulb, long life, and high efficiency, so it is suitable for semiconductor wafers. It is also often used as a light source for processing light irradiation equipment. The reason why halogen bulbs have such excellent properties is that the equilibrium state of the reaction between halogen gas and tungsten inside the bulb is different between the high temperature area near the tungsten filament and the low temperature area near the bulb wall. This is because a cyclic reaction called a halogen cycle takes place.
That is, in the high temperature section, halogen and tungsten dissociate, and the partial pressure of tungsten increases, suppressing the evaporation of the filament.In the low temperature section, tungsten halide with a sufficiently high boiling point is formed, preventing tungsten vapor deposition on the valve wall. This prevents the absorption and attenuation of optical output. However, in order for this cyclic reaction to take place, the valve wall temperature must be within a so-called halogen cycle range.
The possible range differs depending on the type of halogen element, but for example, for those containing chlorine and bromine, the possible range is about 100 to 650°C, and if the valve wall is outside this range, tungsten will evaporate on the valve wall. This will cause the bulb to turn black and significantly shorten the life of the bulb.
When a halogen bulb is used as a heat source for various purposes including heat treatment of semiconductor wafers, it is very often used at temperatures higher than the above-mentioned temperature range. For this reason, the valve wall temperature is adjusted by cooling with cold air. However, in order to be able to handle large objects, long tubular halogen bulbs are installed closely together and used as a surface light source, but cooling with cold air often does not allow sufficient adjustment. . This is because when the temperature of the bulb wall is high, for example 800 to 1000 degrees Celsius, the flow rate of cold air is increased and the heat transfer coefficient is increased to lower the temperature to the appropriate temperature, but the downstream side of the surface light source is lowered to the appropriate temperature. Therefore, if the flow rate was increased too much, the temperature of the bulb on the upstream side would become overcooled, and conversely, if the upstream side was brought to the proper temperature, the downstream side would overheat, resulting in a problem that shortened the bulb's lifespan.

そこで本発明は、冷却風で冷却する際に上流側
と下流側のいずれのバルブ壁もその温度がハロゲ
ンサイクル可能な適正範囲に保持されてハロゲン
電球の寿命を長くすることが可能な光照射装置を
提供することを目的とする。そしてこの目的は、
被処理物を取り囲む透明容器と、この透明容器の
外にあつて被処理物を照射する、管状に長いハロ
ゲン白熱電球と、このハロゲン白熱電球に近接配
置したミラーと、透明容器の外面とミラーの間で
ハロゲン白熱電球の長手方向に沿つて当該電球の
バルブ壁を冷却する冷却風を循環送風する手段と
を備え、循環送風により冷却風の入口温度を外気
温より高温とすることを特徴とする光照射装置に
より達成される。
Therefore, the present invention provides a light irradiation device that can extend the life of a halogen bulb by maintaining the temperature of both the upstream and downstream bulb walls within an appropriate range that allows the halogen cycle when cooling with cooling air. The purpose is to provide And this purpose is
A transparent container that surrounds the object to be processed, a long tubular halogen incandescent light bulb that is placed outside the transparent container and irradiates the object to be processed, a mirror that is placed close to the halogen incandescent light bulb, and a mirror between the outer surface of the transparent container and the mirror. and a means for circulating cooling air for cooling the bulb wall of the halogen incandescent bulb along the longitudinal direction of the halogen incandescent bulb, and the circulating air makes the inlet temperature of the cooling air higher than the outside air temperature. This is achieved by a light irradiation device.

以下に図面により本発明の実施例を具体的に説
明する。
Embodiments of the present invention will be specifically described below with reference to the drawings.

被処理物が装填される容器1は石英ガラスから
なる透明な箱型であり、蓋11と共働して密閉空
間が構成される。容器1の側面には一対の給排気
口1aが設けられ、容器1内部を減圧したり雰囲
気を調整できるようになつている。そしてこの容
器1をほゞ密閉するように反射部材2が容器1外
壁に近接して箱型に配置されている。この反射部
材2は内面がミラーであり、内部に導水路21が
形成され、冷却水供給機構に接続されている。こ
れらの反射部材2のうち側方反射部材2aが開閉
可能であり、容器1を取出すことができる。そし
て上方反射部材2bの内面には半円形の複数の凹
溝が設けられて管状の長いハロゲン電球3を受容
する空所4が形成されている。そして電球3の保
持部の前後には風路部材5,5が連設され、一方
の風路部材5は冷却フアン6に接続されて内部の
空気が吸引されるようになつている。更にこの冷
却フアン6には循環ダクト7が接続され、この循
環ダクト7の一端は他方の風路部材5に接続さ
れ、冷却フアン6にて吸引された冷却風は再度電
球3の上流側に流入するようになつている。そし
て循環ダクト7には熱交換器8が介装され、排出
されて来た冷却風の温度が高い場合にはこの熱交
換器8にて適正温度に冷却されるようになつてい
る。なお、本実施例のように全ての冷却風を循環
させることなく、電球3の下流側から吸引された
高温の冷却風の一部分のみ循環するようにし、低
温の外気とミツクスして外気温度より高い適正温
度にして上流側から流入するようにしてもよい。
A container 1 into which objects to be processed are loaded is a transparent box-shaped container made of quartz glass, and cooperates with a lid 11 to form a closed space. A pair of air supply and exhaust ports 1a are provided on the side surface of the container 1, so that the inside of the container 1 can be depressurized and the atmosphere can be adjusted. A reflecting member 2 is arranged in a box shape close to the outer wall of the container 1 so as to substantially seal the container 1. This reflecting member 2 has a mirror inner surface, has a water conduit 21 formed therein, and is connected to a cooling water supply mechanism. Of these reflective members 2, the side reflective member 2a can be opened and closed, and the container 1 can be taken out. A plurality of semicircular grooves are provided on the inner surface of the upper reflecting member 2b to form a cavity 4 for receiving a long tubular halogen light bulb 3. Air passage members 5, 5 are arranged in series before and after the holding portion of the light bulb 3, and one air passage member 5 is connected to a cooling fan 6 so that the air inside is sucked. Furthermore, a circulation duct 7 is connected to this cooling fan 6, and one end of this circulation duct 7 is connected to the other air passage member 5, so that the cooling air sucked by the cooling fan 6 flows into the upstream side of the light bulb 3 again. I'm starting to do that. A heat exchanger 8 is interposed in the circulation duct 7, and when the temperature of the discharged cooling air is high, the heat exchanger 8 cools it to an appropriate temperature. Note that instead of circulating all of the cooling air as in this embodiment, only a portion of the high-temperature cooling air drawn from the downstream side of the light bulb 3 is circulated, so that it is mixed with low-temperature outside air and has a temperature higher than the outside air temperature. It may be made to flow in from the upstream side at an appropriate temperature.

冷却風を循環させることにより冷却風の入口温
度を外気温度より高温とするのは、これにより風
量を増大させても上流側のバルブ壁の温度はあま
り下らず、下流側の温度のみを効果的に下げるこ
とができ、風量を下げると、下げたことによる下
流側の温度上昇分は上流側の温度上昇分より小さ
く、いずれにしても上流側と下流側との温度差が
小さくなり、従つて過熱と過冷却とのアンバラン
スが解消され、ハロゲンサイクル可能範囲内に容
易に調節できるからである。
The reason why the inlet temperature of the cooling air is made higher than the outside air temperature by circulating the cooling air is that even if the air volume is increased, the temperature of the valve wall on the upstream side does not decrease much, and only the temperature on the downstream side is affected. When the air volume is lowered, the temperature rise on the downstream side due to the reduction is smaller than the temperature rise on the upstream side, and in any case, the temperature difference between the upstream and downstream sides becomes smaller, This is because the imbalance between superheating and supercooling can be eliminated, and the temperature can be easily adjusted to within the halogen cycle range.

次に具体的数値例をあげると、外径が8mmで定
格が2KWの管状ハロゲン電球3を中心間距離2
0mmで並列状に配列して点灯し、毎分0.15m3の風
量で冷却風を熱交換器8により除熱しながら循環
させたところ、入口温度は45℃であり、電球3を
冷却した後の出口温度は110℃であつた。そして
5500時間点灯したところで下流側のバルブ壁が黒
化し、この条件下では電球3の寿命は5500時間で
あることが分つた。これに対して、従来通りに冷
却風を循環させることなく、15℃の外気を送風し
たところ出口温度は80℃となり、1500時間点灯し
たところで上流側のバルブ壁が黒化した。この実
施例から本発明によれば電球の寿命が著しく長く
なることが分る。
Next, to give a specific numerical example, a tubular halogen bulb 3 with an outer diameter of 8 mm and a rating of 2 KW is placed with a center distance of 2.
When the lights were arranged in parallel at 0mm and the cooling air was circulated at an air volume of 0.15m3 per minute while removing heat by the heat exchanger 8, the inlet temperature was 45℃, and the temperature after cooling the bulbs 3 was The outlet temperature was 110°C. and
After being lit for 5,500 hours, the bulb wall on the downstream side turned black, indicating that under these conditions, the lifespan of Bulb 3 was 5,500 hours. In contrast, when outside air at 15°C was blown without circulating cooling air as before, the outlet temperature was 80°C, and the upstream bulb wall turned black after being lit for 1,500 hours. This example shows that the present invention significantly extends the life of the light bulb.

以上説明したように、本発明は冷却風を循環さ
せ、入口温度を外気温より高くなるようにしたの
で、上流側と下流側のバルブ壁の温度差を小さく
することが可能となり、上流側と下流側とを共に
容易にハロゲンサイクル可能範囲内に調節するこ
とができ、従つてハロゲン電球の寿命が著しく長
い光照射装置を提供することができる。
As explained above, the present invention circulates the cooling air and makes the inlet temperature higher than the outside air temperature, which makes it possible to reduce the temperature difference between the upstream and downstream valve walls. It is possible to provide a light irradiation device in which both the downstream side and the downstream side can be easily adjusted within the halogen cycleable range, and the life of the halogen bulb is therefore extremely long.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例の横断面図、第2図は
第1図−線での縦断面図、第3図は第1図
−線での縦断面図である。 1……容器、2……反射部材(ミラー)、3…
…ハロゲン電球、5……風路部材、6……冷却フ
アン、7……循環ダクト、8……熱交換器。
FIG. 1 is a cross-sectional view of an embodiment of the present invention, FIG. 2 is a vertical cross-sectional view taken along the line--FIG. 1, and FIG. 3 is a vertical cross-sectional view taken along the line--FIG. 1. 1... Container, 2... Reflective member (mirror), 3...
...Halogen light bulb, 5...Air path member, 6...Cooling fan, 7...Circulation duct, 8...Heat exchanger.

Claims (1)

【特許請求の範囲】[Claims] 1 被処理物を取り囲む透明容器と、該透明容器
の外にあつて被処理物を照射する、管状に長いハ
ロゲン白熱電球と、該ハロゲン白熱電球に近接配
置したミラーと、前記透明容器の外面とミラーの
間で前記ハロゲン白熱電球の長手方向に沿つて当
該電球のバルブ壁を冷却する冷却風を循環送風す
る手段とを備え、循環送風により冷却風の入口温
度を外気温より高温とすることを特徴とする光照
射装置。
1. A transparent container surrounding the object to be treated, a long tubular halogen incandescent bulb located outside the transparent container and irradiating the object to be treated, a mirror disposed close to the halogen incandescent bulb, and an outer surface of the transparent container. means for circulating cooling air for cooling the bulb wall of the halogen incandescent bulb along the length of the halogen incandescent bulb between the mirrors, and making the inlet temperature of the cooling air higher than the outside air temperature by circulating air. Characteristic light irradiation device.
JP526383A 1983-01-18 1983-01-18 Optical irradiator Granted JPS59132118A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP526383A JPS59132118A (en) 1983-01-18 1983-01-18 Optical irradiator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP526383A JPS59132118A (en) 1983-01-18 1983-01-18 Optical irradiator

Publications (2)

Publication Number Publication Date
JPS59132118A JPS59132118A (en) 1984-07-30
JPS6355857B2 true JPS6355857B2 (en) 1988-11-04

Family

ID=11606338

Family Applications (1)

Application Number Title Priority Date Filing Date
JP526383A Granted JPS59132118A (en) 1983-01-18 1983-01-18 Optical irradiator

Country Status (1)

Country Link
JP (1) JPS59132118A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0462048U (en) * 1990-10-02 1992-05-27

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5049443B2 (en) * 2000-04-20 2012-10-17 東京エレクトロン株式会社 Heat treatment system
US20070167029A1 (en) * 2005-11-11 2007-07-19 Kowalski Jeffrey M Thermal processing system, components, and methods
JP6094605B2 (en) * 2015-01-20 2017-03-15 トヨタ自動車株式会社 Single crystal manufacturing equipment

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0462048U (en) * 1990-10-02 1992-05-27

Also Published As

Publication number Publication date
JPS59132118A (en) 1984-07-30

Similar Documents

Publication Publication Date Title
TWI613936B (en) Method and system for controlling convective flow in a light-sustained plasma
JP2002203804A (en) Heating apparatus, heat treatment equipment having the heating apparatus, and method for conrolling heat treatment
JPS59928A (en) light heating device
JPS63502548A (en) Equipment for heat treatment of thin parts such as silicon wafers
US1895887A (en) Incandescent electric lamp
JP2019145518A (en) Open plasma lamp for forming light-sustained plasma
KR19980041866A (en) Thermal Processor for Semiconductor Wafers
KR100970013B1 (en) Heat treatment device
JP2011190511A (en) Heating apparatus
US4883424A (en) Apparatus for heat treating substrates
JPS6355857B2 (en)
JPS5925142B2 (en) heat treatment equipment
JP2006524885A (en) Infrared radiator and lighting device
SU953975A3 (en) Apparatus for sterilizing liquids
JP2000306857A (en) Photoirradiating type heat-treating device
JP4329629B2 (en) Excimer lamp
JPH04297581A (en) Photochemical vapor growth device
NO115469B (en)
JPH05136074A (en) Heating equipment for semiconductor manufacturing equipment
JPS6111401B2 (en)
JPS634345Y2 (en)
SU760490A1 (en) Infrared heating apparatus
JPS60182654A (en) Light illumination device
JPH02282689A (en) Infrared ray heating furnace
JPH09199509A (en) Semiconductor film forming apparatus