JPS6353615B2 - - Google Patents
Info
- Publication number
- JPS6353615B2 JPS6353615B2 JP56088179A JP8817981A JPS6353615B2 JP S6353615 B2 JPS6353615 B2 JP S6353615B2 JP 56088179 A JP56088179 A JP 56088179A JP 8817981 A JP8817981 A JP 8817981A JP S6353615 B2 JPS6353615 B2 JP S6353615B2
- Authority
- JP
- Japan
- Prior art keywords
- thin film
- film magnetic
- magnetic material
- lower thin
- magnetic body
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 239000010409 thin film Substances 0.000 claims description 130
- 239000000696 magnetic material Substances 0.000 claims description 59
- 239000004020 conductor Substances 0.000 claims description 16
- 230000005415 magnetization Effects 0.000 claims description 13
- 239000000758 substrate Substances 0.000 claims description 11
- 239000012212 insulator Substances 0.000 claims description 4
- 239000010408 film Substances 0.000 description 26
- 230000035699 permeability Effects 0.000 description 13
- 238000004544 sputter deposition Methods 0.000 description 12
- 229910003271 Ni-Fe Inorganic materials 0.000 description 10
- 229910045601 alloy Inorganic materials 0.000 description 10
- 239000000956 alloy Substances 0.000 description 10
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 8
- 238000006243 chemical reaction Methods 0.000 description 8
- 229920001721 polyimide Polymers 0.000 description 6
- 239000009719 polyimide resin Substances 0.000 description 6
- 239000011810 insulating material Substances 0.000 description 5
- 238000005530 etching Methods 0.000 description 4
- 230000005284 excitation Effects 0.000 description 4
- 229910000640 Fe alloy Inorganic materials 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 238000010586 diagram Methods 0.000 description 2
- 230000001965 increasing effect Effects 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 230000001681 protective effect Effects 0.000 description 2
- 229910000531 Co alloy Inorganic materials 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
Classifications
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B5/00—Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
- G11B5/127—Structure or manufacture of heads, e.g. inductive
- G11B5/31—Structure or manufacture of heads, e.g. inductive using thin films
- G11B5/3109—Details
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Magnetic Heads (AREA)
Description
【発明の詳細な説明】
本発明は、磁気デイスク、磁気ドラム、磁気テ
ープ等の磁気記録媒体への高密度の書込み(記
録)・読出し(再生)に好適な薄膜磁気ヘツドに
関する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a thin film magnetic head suitable for high-density writing (recording) and reading (reproduction) on magnetic recording media such as magnetic disks, magnetic drums, and magnetic tapes.
従来の薄膜磁気ヘツドは、第1図に示すよう
に、下部薄膜磁性体11と、下部薄膜磁性体11
上に積層され一端が下部薄膜磁性体11の一端に
連らなり、他端が下部薄膜磁性体11の他端に所
定のギヤツプGを介して対向する上部薄膜磁性体
12と、下部薄膜磁性体11と上部薄膜磁性体1
2との間を貫通するように配置された薄膜コイル
導体13とを、絶縁基板14上に下部薄膜磁性体
11が絶縁基板14側となるように積層した構成
を採つている。15は薄膜コイル導体13相互
間、薄膜コイル導体13と下部薄膜磁性体11及
び上部薄膜磁性体12との間、及びギヤツプG間
に充填された絶縁物、16は下部薄膜磁性体1
1、上部薄膜磁性体12及び薄膜コイル導体13
を被覆する絶縁物である。 As shown in FIG. 1, a conventional thin film magnetic head includes a lower thin film magnetic body 11 and a lower thin film magnetic body 11.
An upper thin film magnetic body 12 which is laminated on top and has one end connected to one end of the lower thin film magnetic body 11 and the other end facing the other end of the lower thin film magnetic body 11 with a predetermined gap G therebetween; and a lower thin film magnetic body. 11 and upper thin film magnetic body 1
2 and a thin film coil conductor 13 disposed to penetrate between the thin film magnetic material 11 and the thin film coil conductor 13 are stacked on an insulating substrate 14 so that the lower thin film magnetic material 11 is on the insulating substrate 14 side. 15 is an insulator filled between the thin film coil conductors 13, between the thin film coil conductor 13 and the lower thin film magnetic body 11 and the upper thin film magnetic body 12, and between the gaps G; 16 is the lower thin film magnetic body 1;
1. Upper thin film magnetic body 12 and thin film coil conductor 13
It is an insulating material that covers the
薄膜磁気ヘツドの電磁変換特性は、薄膜磁性体
の磁気特性に大きく依存している。このため薄膜
磁気ヘツドでは、薄膜磁性体をできるだけ透磁率
の高い磁性材料で形成すること、単軸磁気異方性
を付与し、磁化容易軸を記録媒体のトラツク幅方
向に向け、磁化困難軸を励磁方向とし、磁化回転
による磁化反転を行なわしめ、薄膜磁性体の使用
周波数領域である高周波領域での透磁率を大きく
すること等が行なわれている。しかしながら、こ
れらの方法によつて薄膜磁気ヘツドの電磁変換特
性の向上を図つても、特定の用途或いは磁気記録
の高密度化を考慮すれば必ずしも充分ではない。 The electromagnetic conversion characteristics of a thin film magnetic head are largely dependent on the magnetic properties of the thin film magnetic material. For this reason, in thin-film magnetic heads, the thin-film magnetic body is made of a magnetic material with as high magnetic permeability as possible, and uniaxial magnetic anisotropy is imparted, the axis of easy magnetization is directed in the track width direction of the recording medium, and the axis of difficult magnetization is directed. Efforts have been made to increase the magnetic permeability in a high frequency region, which is the frequency range in which thin film magnetic materials are used, by changing the excitation direction and performing magnetization reversal by magnetization rotation. However, even if the electromagnetic conversion characteristics of the thin film magnetic head are improved by these methods, it is not necessarily sufficient in consideration of specific applications or high density magnetic recording.
本発明の目的は、良好な電磁変換特性を有する
改良された薄膜磁気ヘツドを提供することにあ
る。 It is an object of the present invention to provide an improved thin film magnetic head with good electromagnetic conversion properties.
本発明の目的を具体的に言えば、薄膜磁性体の
透磁率を高くして電磁変換特性の向上を図つた薄
膜磁気ヘツドを提供することにある。 Specifically, it is an object of the present invention to provide a thin film magnetic head in which the magnetic permeability of the thin film magnetic material is increased to improve electromagnetic conversion characteristics.
かかる目的を奏する本発明薄膜磁気ヘツドの特
徴とするところは、上部薄膜磁性体及び下部薄膜
磁性体の少なくとも一方を負の磁歪定数を有する
磁性材料で形成し、誘導単軸磁気異方性の磁化容
易軸と記録媒体のトラツク幅方向とを一致させる
とともに波長の方向が記録媒体のトラツク幅方向
と実質的に直角をなすうねりを形成した点にあ
る。 The thin film magnetic head of the present invention that achieves the above object is characterized in that at least one of the upper thin film magnetic material and the lower thin film magnetic material is formed of a magnetic material having a negative magnetostriction constant, and magnetization with induced uniaxial magnetic anisotropy is achieved. The point is that the easy axis and the track width direction of the recording medium are made to coincide with each other, and a undulation is formed in which the wavelength direction is substantially perpendicular to the track width direction of the recording medium.
以下本発明薄膜磁気ヘツドを実施例として示し
た図面により説明する。 DESCRIPTION OF THE PREFERRED EMBODIMENTS The thin film magnetic head of the present invention will be explained below with reference to drawings showing examples thereof.
第2図において、21は絶縁基板24上に形成
された下部薄膜磁性体、22は下部薄膜磁性体2
1上に積層され一端が下部薄膜磁性体21の一端
に連らなり、他端が下部薄膜磁性体21の他端に
所定のギヤツプGを介して対向する上部薄膜磁性
体で、この上部薄膜磁性体22は負の磁歪定数を
有する磁性材料で形成すると共に波長の方向(矢
印27の方向)が記録媒体28のトラツク幅方向
(紙面と直角をなす方向)と実質的に直角をなし
かつ互いに平行をなす複数個のうねりを備えてい
る。23は上部薄膜磁性体22と下部薄膜磁性体
21との間を貫通して所定のターン数を形成する
薄膜コイル導体、25は薄膜コイル導体23相互
間、薄膜コイル導体23と上部薄膜磁性体22及
び下部薄膜磁性体21との間、及びギヤツプG間
に充填された絶縁物、26は下部薄膜磁性体2
1、上部薄膜磁性体22及び薄膜コイル導体23
を被覆する絶縁物である。ここで述べた負の磁歪
定数を有する磁性体としては、Ni−Fe系合金を
例に採ればNiを82.5重量%より多くすることによ
つて得られる。 In FIG. 2, 21 is a lower thin film magnetic body formed on an insulating substrate 24, and 22 is a lower thin film magnetic body 2.
1, one end of which is connected to one end of the lower thin film magnetic material 21, and the other end of which is opposed to the other end of the lower thin film magnetic material 21 through a predetermined gap G; The body 22 is formed of a magnetic material having a negative magnetostriction constant, and the wavelength direction (direction of arrow 27) is substantially perpendicular to the track width direction of the recording medium 28 (direction perpendicular to the paper surface) and parallel to each other. It has multiple undulations that form a shape. 23 is a thin film coil conductor that penetrates between the upper thin film magnetic material 22 and the lower thin film magnetic material 21 to form a predetermined number of turns; 25 is a thin film coil conductor 23 between the thin film coil conductors 23 and the upper thin film magnetic material 22; and the lower thin film magnetic body 21 and an insulator filled between the gap G; 26 is the lower thin film magnetic body 2;
1. Upper thin film magnetic body 22 and thin film coil conductor 23
It is an insulating material that covers the Taking a Ni--Fe alloy as an example, the magnetic material having the negative magnetostriction constant described here can be obtained by increasing the Ni content to more than 82.5% by weight.
かかる構成の薄膜磁気ヘツドによれば従来のう
ねりのない薄膜磁性体で構成した薄膜磁気ヘツド
に比較して電磁変換特性を向上することができ
る。これを第3図により説明する。第3図aは第
1図の薄膜磁気ヘツドの上部薄膜磁性体12を示
すもので、その誘導単軸磁気異方性の磁化容易軸
方向を矢印121、励磁方向を矢印122、記録
媒体のトラツク幅方向を123で表示してある。
この磁性体の励磁方向122における比透磁率
μ、誘導単軸磁気異方性定数をKu、飽和磁化を
Is、真空中の透磁率をμoとすると、
=ls2/2μoKu+1 ……(1)
で与えられる。一方、第3図bは第2図の薄膜磁
気ヘツドの上部薄膜磁性体22を示すもので、2
21は誘導単軸異方性の磁化容易軸方向、222
はうねりの波長方向及び励磁方向、223は記録
媒体のトラツク幅方向をそれぞれ示す。磁化容易
軸の方向221とうねりの波長方向222とが直
交する場合には、磁性体22内に矢印224で示
す方向に引張応力σ(σ>0)が生じる。磁歪定
数λの磁性体には、うねりが存在することによつ
て、磁化容易軸方向221に1.5λ〓の応力誘起異
方性225が生じる。このため、うねりを有する
磁性体の全異方性定数Kは、誘導単軸磁気異方性
定数Kuと応力誘起異方性1.5λ〓の和で与えられ
る。従つて、うねりを有する上部薄膜磁性体22
の励磁方向222の比透磁率μsは、
s=Is2/2μpK+1=Is2/2μp(Ku+1.5λ〓)+
1=Is2/2μpKu+3μoλ〓+1……(2)
となる。上部薄膜磁性体22の磁歪定数λは負
(λ<0)であるため、その比透磁率はKu>|
1.5λ〓|の範囲において、うねりのない第3図a
の薄膜磁性体の比透磁率よりも大きくなる。即
ち、本発明によれば電磁変換特性の優れた薄膜磁
気ヘツドを得ることができる。これを数値例によ
り説明する。 A thin film magnetic head having such a structure can improve electromagnetic conversion characteristics as compared to a conventional thin film magnetic head made of a thin film magnetic material without waviness. This will be explained with reference to FIG. FIG. 3a shows the upper thin film magnetic body 12 of the thin film magnetic head in FIG. The width direction is indicated by 123.
The relative magnetic permeability μ in the excitation direction 122 of this magnetic material, the induced uniaxial magnetic anisotropy constant Ku, and the saturation magnetization
If Is and the magnetic permeability in vacuum are μo, it is given by =ls 2 /2μoKu+1 ...(1). On the other hand, FIG. 3b shows the upper thin film magnetic body 22 of the thin film magnetic head of FIG.
21 is the easy axis direction of magnetization of induced uniaxial anisotropy, 222
223 indicates the wavelength direction and excitation direction of the waviness, and 223 indicates the track width direction of the recording medium. When the direction 221 of the axis of easy magnetization and the wavelength direction 222 of the waviness are perpendicular to each other, a tensile stress σ (σ>0) is generated in the magnetic body 22 in the direction shown by the arrow 224. Due to the presence of waviness in a magnetic material with a magnetostriction constant λ, a stress-induced anisotropy 225 of 1.5λ is generated in the easy axis direction 221 of magnetization. Therefore, the total anisotropy constant K of a magnetic material having undulations is given by the sum of the induced uniaxial magnetic anisotropy constant Ku and the stress-induced anisotropy 1.5λ〓. Therefore, the upper thin film magnetic body 22 having undulations
The relative magnetic permeability μ s in the excitation direction 222 is: s = Is 2 /2μ p K+1 = Is 2 /2μ p (Ku+1.5λ〓)+
1=Is 2 /2μ p Ku+3μoλ〓+1...(2). Since the magnetostriction constant λ of the upper thin film magnetic body 22 is negative (λ<0), its relative magnetic permeability is Ku>|
Figure 3a with no undulation within the range of 1.5λ〓|
is larger than the relative permeability of the thin film magnetic material. That is, according to the present invention, a thin film magnetic head with excellent electromagnetic conversion characteristics can be obtained. This will be explained using a numerical example.
第4図に誘導単軸磁気異方性定数Ku=120J/
m3、磁歪定数λ=−1.5×10-6、うねりの波長
84μm、うねりの高さΔh0〜2.0μmの膜厚2μmの
Ni−Fe合金膜のうねり高さΔhと1MHzでの比透
磁率との関係を実線で示す。比較のために、磁
歪定数λのみが2.0×10-6と正であり、他の諸条
件は同じ場合のうねり高さΔhと1MHzでの比透磁
率との関係を点線で示す。前述の如く、うねり
を有する磁歪定数負のNi−Fe合金膜の比透磁率
はうねりの無い平担な磁歪定数負のNi−Fe合金
膜の比透磁率およびうねりを有する磁歪正のNi
−Fe合金膜の比透磁率のいずれよりも大きい。 Figure 4 shows the induced uniaxial magnetic anisotropy constant Ku=120J/
m 3 , magnetostriction constant λ=-1.5×10 -6 , waviness wavelength
84μm, waviness height Δh0~2.0μm, film thickness 2μm
The solid line shows the relationship between the waviness height Δh of the Ni-Fe alloy film and the relative magnetic permeability at 1 MHz. For comparison, the dotted line shows the relationship between the waviness height Δh and the relative magnetic permeability at 1 MHz when only the magnetostriction constant λ is positive at 2.0×10 −6 and other conditions are the same. As mentioned above, the relative permeability of a Ni-Fe alloy film with a negative magnetostriction constant that has undulations is the same as that of a flat Ni-Fe alloy film with a negative magnetostriction constant without undulations, and that of a Ni-Fe alloy film with a positive magnetostriction constant that has undulations.
-It is larger than any of the relative magnetic permeability of the Fe alloy film.
本発明薄膜磁気ヘツドの薄膜磁性体の望ましい
うねりの波長、望ましいうねりの高さ、望ましい
磁歪定数の値等は、Ku>|1.5λ〓|の条件から決
められる。換言すれば、誘導単軸磁気異方性定数
Kuの値によつて望ましいうねりの波長、望まし
いうねりの高さ、望ましい磁歪定数の値は決ま
る。 The desirable wavelength of the waviness, the desirable height of the waviness, the desirable value of the magnetostriction constant, etc. of the thin film magnetic material of the thin film magnetic head of the present invention are determined from the condition of Ku>|1.5λ|. In other words, the induced uniaxial magnetic anisotropy constant
The desirable wavelength of the waviness, the desired height of the waviness, and the desirable value of the magnetostriction constant are determined by the value of Ku.
第5図は本発明薄膜磁気ヘツドの製法を説明す
るための断面図である。アルミナ等の非磁性絶縁
基板51上にスパツタアルミナ膜52を形成し、
その上にCrを介した膜厚1〜2μmのCuからなる
金属層をスパツタリングにより形成し、この金属
層を線幅8μm、線間隔4μmにエツチングしてうね
り形成部材53を形成する。次に部材53上に
Ni−FeとCuとが直接接触するのを防止する目的
でアルミナ膜54を2〜3μmスパツタリングによ
り形成する。アルミナ膜54上に下部薄膜磁性体
であるNi−Fe合金膜55を磁界中スパツタリン
グにより形成する。 FIG. 5 is a sectional view for explaining the manufacturing method of the thin film magnetic head of the present invention. A sputtered alumina film 52 is formed on a non-magnetic insulating substrate 51 such as alumina,
A metal layer of Cu having a thickness of 1 to 2 .mu.m is formed thereon via Cr by sputtering, and this metal layer is etched to a line width of 8 .mu.m and a line spacing of 4 .mu.m to form the undulation forming member 53. Next, on the member 53
In order to prevent direct contact between Ni--Fe and Cu, an alumina film 54 of 2 to 3 μm is formed by sputtering. A Ni--Fe alloy film 55, which is a lower magnetic thin film, is formed on the alumina film 54 by sputtering in a magnetic field.
負の磁歪定数を有するNi−Fe合金膜55を得
るために、市販のNi−Fe合金ターゲツトよりも
Ni量の多いNi−Fe合金ターゲツトを用いる。下
部薄膜磁性体にはうねり形成部材53であるCr
−Cuの金属層の形状にならつて、うねりが形成
される。次に下部薄膜磁性体をエツチングで所定
の形状にパターンニングする。次に磁気ギヤツプ
Gを構成するアルミナ膜56をスパツタリングに
より形成し、下部薄膜磁性体と上部薄膜磁性体と
の接続部であるバツクギヤツプ部57のアルミナ
膜をエツチングにより除去する。次に薄膜コイル
導体となる密着層用Crを介した膜厚1.5〜2μmの
Cu膜58をスパツタリングにより形成し、所定
の形状にパターニングする。次にCu膜58上に
絶縁材であるポリイミド系樹脂(日立化成製PIQ
樹脂)層59を回転塗布する。ポリイミド系樹脂
は特開昭55−25886号に記載されている有機絶縁
膜であるシプレイレジストに比べてCu膜59の
形状にならい易い。すなわち、薄膜コイル導体の
形状が上部薄膜磁性体の形状に転写される。そこ
で、絶縁材でありポリイミド系樹脂を所定の温度
でベーク後、不必要な部分であるバツクギヤツプ
部57およびフロントギヤツプ部Gの絶縁材をエ
ツチングで除去する。次に、下部薄膜磁性体55
の形成と同様な方法で上部薄膜磁性体60を磁界
中スパツタリング及びエツチングにより形成す
る。 In order to obtain the Ni-Fe alloy film 55 with a negative magnetostriction constant,
A Ni-Fe alloy target with a large amount of Ni is used. The lower thin film magnetic material has Cr, which is the undulation forming member 53.
-Waviness is formed following the shape of the Cu metal layer. Next, the lower thin film magnetic material is patterned into a predetermined shape by etching. Next, an alumina film 56 constituting the magnetic gap G is formed by sputtering, and the alumina film in the back gap portion 57, which is the connecting portion between the lower thin film magnetic material and the upper thin film magnetic material, is removed by etching. Next, a film with a thickness of 1.5 to 2 μm is coated with Cr for the adhesion layer, which will become the thin film coil conductor.
A Cu film 58 is formed by sputtering and patterned into a predetermined shape. Next, polyimide resin (Hitachi Chemical PIQ), which is an insulating material, is applied on the Cu film 58.
A layer 59 (resin) is spin-coated. The polyimide resin can more easily follow the shape of the Cu film 59 than the shipley resist, which is an organic insulating film described in JP-A No. 55-25886. That is, the shape of the thin film coil conductor is transferred to the shape of the upper thin film magnetic body. Therefore, after baking the polyimide resin which is the insulating material at a predetermined temperature, the insulating material of the unnecessary parts of the back gap part 57 and the front gap part G is removed by etching. Next, the lower thin film magnetic body 55
The upper thin film magnetic body 60 is formed by sputtering and etching in a magnetic field in the same manner as in the formation of .
但し、上部薄膜磁性体60はポリイミド系樹脂
上にスパツタリングすることから、スパツタリン
グ時の基板温度が高すぎると、ポリイミド系樹脂
の変形等の望ましくない現象が生じる。すなわ
ち、上部薄膜磁性体60のスピツタリング時の基
板温度は下部薄膜磁性体55のスパツタリング時
の基板温度よりも低い方が望ましい。次に、外部
回路と接続するのに必要な端子部を公知の方法で
形成し、最後に保護膜61としてアルミナ膜をス
パツタリングにより形成する。 However, since the upper thin film magnetic material 60 is sputtered onto the polyimide resin, if the substrate temperature during sputtering is too high, undesirable phenomena such as deformation of the polyimide resin will occur. That is, the substrate temperature during sputtering of the upper thin film magnetic material 60 is desirably lower than the substrate temperature during sputtering of the lower thin film magnetic material 55. Next, terminal portions necessary for connection to an external circuit are formed by a known method, and finally, an alumina film is formed as a protective film 61 by sputtering.
保護膜用アルミナ61のスパツタリングに際し
ては、磁気コアに大きな応力が加わらない様なス
パツタリング条件とすることが重要である。この
様にして製作した薄膜磁気ヘツドは、下部薄膜磁
性体55が平坦で、上部薄膜磁性体60がポリイ
ミド系樹脂のエツチング斜面以外は平坦である薄
膜磁気ヘツドに比べて、読出電圧が1.3倍大きく、
書込電流が30%小さいという良好な電磁変換特性
を有していた。 When sputtering the alumina 61 for the protective film, it is important to set sputtering conditions such that no large stress is applied to the magnetic core. The thin film magnetic head manufactured in this manner has a read voltage 1.3 times higher than that of a thin film magnetic head in which the lower thin film magnetic material 55 is flat and the upper thin film magnetic material 60 is flat except for the etched slope of the polyimide resin. ,
It had good electromagnetic conversion characteristics with a 30% lower write current.
以上の説明から明らかな如く、本発明によれ
ば、公知の薄膜磁性体が平坦な薄膜磁気ヘツドに
比べて良好な電磁変換特性を有する高性能薄膜磁
気ヘツドを提供することができる。更に、公知の
薄膜磁気ヘツドの薄膜磁気体としては誘導単軸磁
気異方性定数の小さいNi−Fe系合金膜が多く採
用されているが、本発明の薄膜磁気ヘツドの薄膜
磁性体としては誘導単軸磁気異方性定数の大きい
合金膜でも、応力誘起異方性定数1.5λ〓を負にす
ることにより、全異方性定数Kを小さくすること
が出来る。すなわち、飽和磁化IsがNi−Fe合金
膜の飽和磁化よりも大きい合金膜例えばNi−Fe
−Co合金膜も薄膜磁性体の材料として用いるこ
とが出来、Ni−Fe合金膜を薄膜磁性体として用
いた薄膜磁気ヘツドの書込時に問題となつていた
薄膜磁性体の飽和の問題も回避できるという大き
な効果がある。 As is clear from the above description, according to the present invention, it is possible to provide a high-performance thin-film magnetic head that has better electromagnetic conversion characteristics than known thin-film magnetic heads made of flat thin-film magnetic material. Furthermore, although a Ni-Fe alloy film with a small induction uniaxial magnetic anisotropy constant is often used as the thin film magnetic material of the known thin film magnetic head, the thin film magnetic material of the thin film magnetic head of the present invention is an inductive one. Even in the case of an alloy film having a large uniaxial magnetic anisotropy constant, the total anisotropy constant K can be made small by making the stress-induced anisotropy constant 1.5λ〓 negative. In other words, if the saturation magnetization Is is larger than the saturation magnetization of the Ni-Fe alloy film, for example, Ni-Fe
-Co alloy film can also be used as a material for the thin film magnetic material, and the problem of saturation of the thin film magnetic material, which was a problem when writing with a thin film magnetic head using a Ni-Fe alloy film as the thin film magnetic material, can be avoided. This has a big effect.
以上は、上部薄膜磁性体のみ、上部及び下部薄
膜磁性体の両方にうねりを形成した場合を例に採
つて本発明薄膜磁気ヘツドを説明したが、本発明
はこれらに限定されることなく下部薄膜磁性体の
みにうねりを形成する場合にも同様の効果を奏し
本発明の技術に思想に含まれる。 In the above, the thin film magnetic head of the present invention has been explained by taking as an example the case in which undulations are formed in only the upper thin film magnetic material and in both the upper and lower thin film magnetic materials. However, the present invention is not limited to these. Similar effects can be achieved even when undulations are formed only in the magnetic material, and this is included in the concept of the technology of the present invention.
第1図は従来の薄膜磁気ヘツドの概略断面図、
第2図は本発明薄膜磁気ヘツドの一実施例を示す
概略断面図、第3図は本発明の効果を説明するた
めの薄膜磁性体の概略斜視図、第4図はうねりの
高さと比透磁率との関係を示す特性曲線図、第5
図は本発明薄膜磁気ヘツドの他の実施例を示す概
略断面図である。
21……下部薄膜磁性体、22……上部薄膜磁
性体、23……薄膜コイル導体、24……絶縁基
板。
Figure 1 is a schematic cross-sectional view of a conventional thin film magnetic head.
FIG. 2 is a schematic sectional view showing an embodiment of the thin film magnetic head of the present invention, FIG. 3 is a schematic perspective view of a thin film magnetic material for explaining the effects of the present invention, and FIG. 4 is a diagram showing the height of waviness and relative permeability. Characteristic curve diagram showing the relationship with magnetic property, No. 5
The figure is a schematic sectional view showing another embodiment of the thin film magnetic head of the present invention. 21... Lower thin film magnetic material, 22... Upper thin film magnetic material, 23... Thin film coil conductor, 24... Insulating substrate.
Claims (1)
下部薄膜磁性体上に位置し一端が下部薄膜磁性体
の一端に連らなり他端が下部薄膜磁性体の他端に
所定のギヤツプを介して対向する上部薄膜磁性体
と、下部薄膜磁性体と上部薄膜磁性体との間を貫
通するように配置される薄膜コイル導体と、上部
薄膜磁性体と下部薄膜磁性体とコイル導体との間
を埋め且つ前記ギヤツプを決定する絶縁物とを具
備する薄膜磁気ヘツドにおいて、下部薄膜磁性体
及び上部薄膜磁性体の少なくとも一方が負の磁歪
定数を有する磁性材料からなるとともに誘導単軸
磁気異方性の磁化容易軸と記録媒体のトラツク幅
方向とが一致しており、且つ該負の磁歪定数を有
する磁性材料の薄膜磁性体表面に波長の方向が記
録媒体のトラツク幅方向と実質的に直角をなすよ
うにうねりを有することを特徴とする薄膜磁気ヘ
ツド。 2 絶縁基板上に配置された下部薄膜磁性体と、
下部薄膜磁性体上に位置し一端が下部薄膜磁性体
の一端に連らなり他端が下部薄膜磁性体の他端に
所定のギヤツプを介して対向する上部薄膜磁性体
と、下部薄膜磁性体と上部薄膜磁性体との間を貫
通するように配置される薄膜コイル導体と、上部
薄膜磁性体と下部薄膜磁性体とコイル導体との間
を埋め且つ前記ギヤツプを決定する絶縁物とを具
備する薄膜磁気ヘツドにおいて、下部薄膜磁性体
と絶縁基板との間にうねり形成部材を有し、これ
によつて下部薄膜磁性体表面に波長の方向が記録
媒体のトラツク幅方向と実質的に直角をなすよう
にうねりを有し、且つ該下部薄膜磁性体は誘導単
軸磁気異方性の磁化容易軸と記録媒体のトラツク
幅方向とが一致しているとともに負の磁歪定数を
有する磁性材料よりなることを特徴とする薄膜磁
気ヘツド。[Claims] 1. A lower thin film magnetic material disposed on an insulating substrate;
an upper thin film magnetic body located on the lower thin film magnetic body, one end of which is connected to one end of the lower thin film magnetic body, and the other end of which is opposed to the other end of the lower thin film magnetic body through a predetermined gap, and a lower thin film magnetic body; A thin film comprising: a thin film coil conductor disposed to penetrate between the upper thin film magnetic material; and an insulator filling the space between the upper thin film magnetic material, the lower thin film magnetic material, and the coil conductor and determining the gap. In the magnetic head, at least one of the lower thin film magnetic material and the upper thin film magnetic material is made of a magnetic material having a negative magnetostriction constant, and the easy axis of magnetization of the induced uniaxial magnetic anisotropy coincides with the track width direction of the recording medium. What is claimed is: 1. A thin film magnetic head, characterized in that the thin film magnetic head has undulations on the surface of the thin film magnetic material made of the magnetic material having a negative magnetostriction constant so that the wavelength direction is substantially perpendicular to the track width direction of the recording medium. 2. A lower thin film magnetic material disposed on an insulating substrate;
an upper thin film magnetic body located on the lower thin film magnetic body, one end of which is connected to one end of the lower thin film magnetic body, and the other end of which is opposed to the other end of the lower thin film magnetic body through a predetermined gap, and a lower thin film magnetic body; A thin film comprising: a thin film coil conductor disposed to penetrate between the upper thin film magnetic material; and an insulator filling the space between the upper thin film magnetic material, the lower thin film magnetic material, and the coil conductor and determining the gap. The magnetic head has a undulation forming member between the lower thin film magnetic material and the insulating substrate, so that the wavelength direction on the surface of the lower thin film magnetic material is substantially perpendicular to the track width direction of the recording medium. The lower thin film magnetic body is made of a magnetic material in which the easy axis of magnetization of the induced uniaxial magnetic anisotropy coincides with the track width direction of the recording medium and has a negative magnetostriction constant. Features a thin film magnetic head.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8817981A JPS57203219A (en) | 1981-06-10 | 1981-06-10 | Thin film magnetic head |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8817981A JPS57203219A (en) | 1981-06-10 | 1981-06-10 | Thin film magnetic head |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS57203219A JPS57203219A (en) | 1982-12-13 |
JPS6353615B2 true JPS6353615B2 (en) | 1988-10-25 |
Family
ID=13935673
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP8817981A Granted JPS57203219A (en) | 1981-06-10 | 1981-06-10 | Thin film magnetic head |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS57203219A (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4663683A (en) * | 1982-11-11 | 1987-05-05 | Matsushita Electric Industrial Co., Ltd. | Magnetoresistive thin film head |
JPS61192011A (en) * | 1985-02-20 | 1986-08-26 | Hitachi Ltd | Thin film magnetic head |
JPH0278006A (en) * | 1988-09-13 | 1990-03-19 | Nec Corp | Thin film magnetic head |
US5170303A (en) * | 1990-04-30 | 1992-12-08 | Seagate Technology Inc. | Inductive thin film head having improved readback characteristics |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5038325A (en) * | 1973-08-09 | 1975-04-09 | ||
JPS55101124A (en) * | 1979-01-29 | 1980-08-01 | Ibm | Thin layer magnetic haed assembly |
US4241367A (en) * | 1978-03-03 | 1980-12-23 | Matsushita Electric Industrial Co., Ltd. | Thin film magnetic head |
-
1981
- 1981-06-10 JP JP8817981A patent/JPS57203219A/en active Granted
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5038325A (en) * | 1973-08-09 | 1975-04-09 | ||
US4241367A (en) * | 1978-03-03 | 1980-12-23 | Matsushita Electric Industrial Co., Ltd. | Thin film magnetic head |
JPS55101124A (en) * | 1979-01-29 | 1980-08-01 | Ibm | Thin layer magnetic haed assembly |
Also Published As
Publication number | Publication date |
---|---|
JPS57203219A (en) | 1982-12-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5995342A (en) | Thin film heads having solenoid coils | |
US6466402B1 (en) | Compact MR write structure | |
EP0131716B1 (en) | Composite thin film transducer head | |
US6195232B1 (en) | Low-noise toroidal thin film head with solenoidal coil | |
US6775902B1 (en) | Method of making a magnetic head with aligned pole tips | |
US5949627A (en) | Thin film magnetic head with stress relief layering | |
JP2947621B2 (en) | Thin film magnetic head | |
EP0071489A2 (en) | A perpendicular magnetic recording and reproducing head | |
US5173826A (en) | Thin film head with coils of varying thickness | |
JPS58212615A (en) | thin film magnetic head | |
US5969911A (en) | Inductive/MR composite type thin-film magnetic head | |
US5675459A (en) | Magnetoresistive head with improved insulation between a main electrode layer and a lower shield layer | |
JPH0778858B2 (en) | Thin film magnetic head | |
US5959813A (en) | Combination read/write thin film magnetic head using a shielding magnetic layer | |
US4884156A (en) | Magnetic head having a thin-film and a coil | |
JPS6353615B2 (en) | ||
JPH0329104A (en) | thin film magnetic head | |
US6042897A (en) | Combination read/write thin film magnetic head and its manufacturing method | |
JPH0476171B2 (en) | ||
JP3089886B2 (en) | Method of manufacturing magnetoresistive head | |
JPS62114113A (en) | Thin film magnetic head | |
JP3210139B2 (en) | Magnetoresistive magnetic head | |
JP2747216B2 (en) | Thin film magnetic head | |
JP2001084531A (en) | Magnetoresistance effect type thin film magnetic head | |
JPH0673167B2 (en) | Thin film magnetic head |