[go: up one dir, main page]

JPS634941B2 - - Google Patents

Info

Publication number
JPS634941B2
JPS634941B2 JP57026124A JP2612482A JPS634941B2 JP S634941 B2 JPS634941 B2 JP S634941B2 JP 57026124 A JP57026124 A JP 57026124A JP 2612482 A JP2612482 A JP 2612482A JP S634941 B2 JPS634941 B2 JP S634941B2
Authority
JP
Japan
Prior art keywords
silicon wafer
solder
solder foil
silicon
separated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57026124A
Other languages
Japanese (ja)
Other versions
JPS58143553A (en
Inventor
Tadao Kushima
Tasao Soga
Toshitaka Yamamoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP57026124A priority Critical patent/JPS58143553A/en
Publication of JPS58143553A publication Critical patent/JPS58143553A/en
Publication of JPS634941B2 publication Critical patent/JPS634941B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L24/33Structure, shape, material or disposition of the layer connectors after the connecting process of a plurality of layer connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/8319Arrangement of the layer connectors prior to mounting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/838Bonding techniques
    • H01L2224/83801Soldering or alloying
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01024Chromium [Cr]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01047Silver [Ag]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/014Solder alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/102Material of the semiconductor or solid state bodies
    • H01L2924/1025Semiconducting materials
    • H01L2924/10251Elemental semiconductors, i.e. Group IV
    • H01L2924/10253Silicon [Si]

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Die Bonding (AREA)

Abstract

PURPOSE:To prevent the generation of a strain by scribing and the adhesion of solder fine particles by melting and separating solder foil fixed temporarily onto a semiconductor wafer by using a double beam heat source wire and scanning a heat source wire melting and cutting the semiconductor wafer in the solder foil and the semiconductor wafer. CONSTITUTION:The solder foil 5 with external size the same as a silicon wafer 1, which has glass 4 and SiO2 4a as surface protective films and is separated into a plurality of pellets and the surface thereof has metallic electrode films 6 such as Ni, Cr-Ni-Ag films, is heated in a reducing atmosphere and fixed temporarily onto both surfaces of the silicon wafer 1, and one laser beams 10 of double beam laser beams are scanned as shown in the arrow so that only the solder foil 5 fixed temporarily onto the silicon wafer 1 is melted and separated. The solder foil 5 on the silicon wafer 1 is separated into a plurality of silicon pellet shapes by scanning the other laser beams 8 so as to melt and cut glass 4 on the silicon wafer 1 and the silicon wafer 1 from a clearance section melted and separated, and the solder electrodes of the silicon pellets are formed collectively under the state of the silicon wafer.

Description

【発明の詳細な説明】 本発明は半導体装置の製造方法、特に、半導体
ウエハ状態で半導体ペレツトとなる部分にはんだ
電極を形成しておき、半導体ウエハを切断して
固々の半導体ペレツトを得る製造方法に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a semiconductor device, and more particularly, to a method for manufacturing a semiconductor device, in which a solder electrode is formed in a portion of a semiconductor wafer that will become a semiconductor pellet, and the semiconductor wafer is cut to obtain solid semiconductor pellets. It is about the method.

従来、半導体ペレツトへはんだ電極を形成させ
る方法として、第1図から第3図に示すように、
まずpn接合を形成するための拡散等の工程が終
了したシリコンウエハ1の両面にニツケル層2を
設け、両面にシリコンウエハ1と同径のはんだ箔
3を塔載して還元性雰囲気、例えば水素雰囲気中
で加熱して一様に溶融接合させてから第2図のよ
うに格子状にスクライビングしてペレツト化して
いた。第3図はペレツト化されたシリコンペレツ
ト1aの断面を示すものであるが、スクライビン
グ時にはんだ微分3aが付着したり、切断部に歪
層が生ずるので、このままでは基板へボンデイン
グしても耐圧特性への悪影響があつた。このため
ペレツト化されたシリコンペレツトの側面付着物
と切断歪層をエツチング等で除去する工程が必要
である。しかしエツチング液残渣の有無の確認が
困難であると同時に、はんだ表面が汚れることか
らボンデイング不良、特に接合部にボイドが発生
するなどの問題が生じたり、はんだ箔3を接着さ
せたシリコンウエハ1をペレツト状にスクライビ
ングするのにかなりの時間が必要であるなど歩留
り上の問題も生じていた。
Conventionally, as a method for forming solder electrodes on semiconductor pellets, as shown in FIGS. 1 to 3,
First, a nickel layer 2 is provided on both sides of a silicon wafer 1 that has undergone processes such as diffusion for forming a p-n junction, and solder foil 3 having the same diameter as the silicon wafer 1 is placed on both sides in a reducing atmosphere, such as hydrogen. They were heated in an atmosphere to uniformly melt and bond, and then scribed in a grid pattern as shown in Figure 2 to form pellets. Figure 3 shows a cross section of the pelletized silicon pellet 1a, but since the solder differential 3a adheres during scribing and a strained layer is generated at the cut portion, the breakdown voltage characteristics will be poor even when bonded to a substrate. There was a negative impact on For this reason, it is necessary to remove the deposits on the side surfaces of the pelletized silicon pellets and the cut strain layer by etching or the like. However, it is difficult to confirm the presence or absence of etching solution residue, and at the same time, the solder surface becomes dirty, leading to problems such as defective bonding, especially voids at the joint, and the silicon wafer 1 to which the solder foil 3 is attached. Yield problems also arose, such as the considerable time required to scribe into pellets.

本発明の目的は、ペレツト化するためのはんだ
電極部の切断による歪やはんだ微粉の付着を生ず
ることがなく、電気特性不良が起きない半導体装
置の製造方法を提供するにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a method for manufacturing a semiconductor device that does not cause distortion or adhesion of solder fine powder due to cutting of solder electrode portions for pelletizing, and does not cause defective electrical characteristics.

本発明製造方法の特徴とするところは、還元性
雰囲気中で半導体ウエハに仮付け固定したはんだ
箔と半導体ウエハをダブルビーム熱源線を用い
て、先ず、はんだ箔を溶融分離させる熱源線を走
らせ、次に、半導体ウエハを溶融切断する熱源線
を走査させることにある。
The manufacturing method of the present invention is characterized by first running a heat source line that melts and separates the solder foil and the semiconductor wafer using a double-beam heat source line between the solder foil temporarily fixed to the semiconductor wafer and the semiconductor wafer in a reducing atmosphere. The next step is to scan the heat source line for melting and cutting the semiconductor wafer.

以下、本発明の一実施例を第4図〜第7図によ
り説明する。
An embodiment of the present invention will be described below with reference to FIGS. 4 to 7.

第4図は、本発明のダブルビームレーザ光線装
置で半導体ウエハ上の仮付けはんだ箔と半導体ウ
エハを溶融分離、溶融切断する方法の説明図であ
る。
FIG. 4 is an explanatory diagram of a method for melting and separating and melting and cutting the temporary solder foil on a semiconductor wafer and the semiconductor wafer using the double beam laser beam apparatus of the present invention.

第5図は、ダブルビームレーザ光線装置と走査
方法との構成図である。
FIG. 5 is a configuration diagram of a double beam laser beam device and a scanning method.

両図に示すように、予め表面保護膜としてガラ
ス4、SiO24aを有し複数個のペレツトに分離さ
れ、表面に金属電極膜6、例えばNi,Cr―Ni―
Ag膜を有するシリコンウエハ1の両面に、前記
シリコンウエハ1と同等の外形寸法のはんだ箔5
(例えばPb―5%Sn―1.5%Agはんだ)を還元性
雰囲気中で加熱して仮付け固定したシリコンウエ
ハ1を、ダブルビームレーザ光線の一方のレーザ
光線10で前記シリコンウエハ1上に仮付け固定
したはんだ箔5のみを溶融分離するように、矢印
にて示す如く走査させる。ついで他方のレーザ光
線8で溶融分離した間隙部からシリコンウエハ1
上のガラス4、シリコンウエハ1を溶融切断する
ように走査させることにより、前記シリコンウエ
ハ1上のはんだ箔5を複数個のシリコンペレツト
形状に分離し、シリコンウエハの状態でシリコン
ペレツトのはんだ電極を一括形成する。尚、1
b,5aは溶断部である。
As shown in both figures, the pellets are separated into a plurality of pellets with glass 4 and SiO 2 4a as a surface protection film, and a metal electrode film 6 such as Ni, Cr-Ni-
Solder foils 5 having the same external dimensions as the silicon wafer 1 are placed on both sides of the silicon wafer 1 having the Ag film.
A silicon wafer 1 which is temporarily fixed by heating (for example, Pb-5%Sn-1.5%Ag solder) in a reducing atmosphere is temporarily fixed onto the silicon wafer 1 using one laser beam 10 of a double beam laser beam. Scanning is performed as shown by the arrows so that only the fixed solder foil 5 is melted and separated. The silicon wafer 1 is then melted and separated by the other laser beam 8.
The solder foil 5 on the silicon wafer 1 is separated into a plurality of silicon pellet shapes by scanning the upper glass 4 and the silicon wafer 1 so as to melt and cut them. Form electrodes all at once. Furthermore, 1
b and 5a are fusing parts.

前記方法は、第5図に示すように、シリコンウ
エハ1上のはんだ箔5、ガラス4とシリコンウエ
ハ1の一部1bを、溶断が可能であるように、ビ
ーム光線10,8の出力調整は、はんだ箔溶融分
離するビーム径は少なくてもシリコンウエハ1を
溶融切断するビーム径よりも大きくし、ビーム先
端がシリコンウエハ1のガラス4に接しない程度
に、ビーム発振装置12,13で調整できるよう
な装置によると容易に目的が達成できる。またビ
ーム光線8,10のヘツド7,9が一体となつた
機構11にすることにより高精度、高能力ではん
だ電極が形成できる。前記の溶融分離、溶融切断
を行う場合、レーザ光線ヘツド7,9の移動、あ
るいはシリコンウエハ1のホルダーの移動など、
いずれの方式でも本目的は達成し得るものであ
る。
In this method, as shown in FIG. 5, the output of the beams 10 and 8 is adjusted so that the solder foil 5 on the silicon wafer 1, the glass 4, and the part 1b of the silicon wafer 1 can be melted. The beam diameter for melting and separating the solder foil is at least larger than the beam diameter for melting and cutting the silicon wafer 1, and can be adjusted by the beam oscillation devices 12 and 13 to such an extent that the beam tip does not touch the glass 4 of the silicon wafer 1. With such a device, the purpose can be easily achieved. Furthermore, by forming the mechanism 11 in which the heads 7 and 9 of the beams 8 and 10 are integrated, solder electrodes can be formed with high precision and high performance. When performing the above-mentioned melting separation and melting cutting, there are various steps such as moving the laser beam heads 7 and 9 or moving the holder of the silicon wafer 1.
This objective can be achieved using either method.

第6図は、ダブルビームレーザ光線でペレツト
形状にスクライビングされたシリコンウエハ1の
断面構造図である。シリコンウエハ1の下面にも
ダブルビームレーザ光線を本発明に従つて走査し
ている。
FIG. 6 is a cross-sectional structural view of a silicon wafer 1 scribed into a pellet shape with a double beam laser beam. The lower surface of the silicon wafer 1 is also scanned with a double beam laser beam according to the present invention.

ダブルビームレーザ光線を走査させた場合、シ
リコンウエハ1に仮付け固定されたはんだ箔5
は、先行走査するビーム光線で局部的に溶融さ
れ、表面張力によつてペレツトの金属電極6側に
集つてはんだ溶断部5aのようになり、はんだ電
極間に間隙が生ずる。この間隙を通して追従する
ビーム光線が走査することにより、前記はんだ箔
5を溶融切断することによるガラス4など表面保
護膜へのはんだ溶着が生ずることなく、スクライ
ビングができる。
When the double beam laser beam is scanned, the solder foil 5 temporarily fixed to the silicon wafer 1
is locally melted by the preceding scanning beam, and due to surface tension, gathers on the metal electrode 6 side of the pellet to form a solder fusion portion 5a, creating a gap between the solder electrodes. By scanning the following beam through this gap, scribing can be performed without causing solder welding to the surface protective film such as glass 4 due to melting and cutting of the solder foil 5.

第7図は、上記の工程で得たシリコンペレツト
1cを導電リード14に組込んではんだ電極によ
りボンデイングした状態の断面構造図である。
FIG. 7 is a cross-sectional structural view of the silicon pellet 1c obtained in the above process incorporated into the conductive lead 14 and bonded with a solder electrode.

本発明製造方法によれば、第7図のように、シ
リコンペレツト1c側面にはんだ微粉やエツチン
グ液残渣の付着はなく、従つて電気特性上の問題
もなく、接着はんだ部5bの厚さのばらつきも発
生しないので高信頼性の半導体装置を高歩留りで
得ることができる。
According to the manufacturing method of the present invention, as shown in FIG. 7, there is no adhesion of solder fine powder or etching solution residue to the side surface of the silicon pellet 1c, and therefore there is no problem with electrical characteristics, and the thickness of the adhesive solder portion 5b can be reduced. Since no variations occur, highly reliable semiconductor devices can be obtained at a high yield.

なお、ダブルビームレーザ光線の代りの熱源線
として、ダブルの電子ビームも可能であり、はん
だを分離する側の熱源としてアーク、光ビーム等
を組合わせることは可能である。
Note that a double electron beam can be used as a heat source instead of a double beam laser beam, and it is also possible to combine an arc, a light beam, etc. as a heat source for separating the solder.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図〜第3図は従来の半導体装置の製造方法
を工程毎に示す図、第4図〜第7図は本発明の半
導体装置の製造方法の一実施例を工程毎に示す図
である。 1…シリコンウエハ、1a,1c…シリコンペ
レツト、1b…溶断部、2…ニツケル層、3,5
…はんだ箔、3a…はんだ微粉、4…ガラス、5
…はんだ箔、5a…溶断部、5b…接着はんだ
部、6…金属電極膜、7,9…レーザ光線ヘツド
部、8,10…レーザ光線、11…一体機構、1
2,13…ビーム発振装置、14…導電リード。
1 to 3 are diagrams showing each step of a conventional semiconductor device manufacturing method, and FIGS. 4 to 7 are diagrams showing each step of an embodiment of the semiconductor device manufacturing method of the present invention. . DESCRIPTION OF SYMBOLS 1...Silicon wafer, 1a, 1c...Silicon pellet, 1b...Fusion part, 2...Nickel layer, 3,5
...Solder foil, 3a...Solder fine powder, 4...Glass, 5
...Solder foil, 5a...Fuse part, 5b...Adhesive solder part, 6...Metal electrode film, 7, 9...Laser beam head part, 8, 10...Laser beam, 11...Integrated mechanism, 1
2, 13... Beam oscillation device, 14... Conductive lead.

Claims (1)

【特許請求の範囲】[Claims] 1 半導体ウエハの半導体ペレツトとなる部分に
金属電極膜を設け、それ以外の部分には表面保護
膜を設けておいて、はんだ箔を仮付固定し、はん
だ箔のみを溶断する熱源線を走査してはんだ箔を
金属電極膜上にはんだ電極として溶断し、次に、
溶断した間に更に熱源線を走査して上記表面保護
膜および半導体ウエハを溶断し、半導体ウエハを
スクライブして半導体ペレツトを得ることを特徴
とする半導体装置の製造方法。
1. A metal electrode film is provided on the part of the semiconductor wafer that will become the semiconductor pellet, and a surface protection film is provided on the other parts. Solder foil is temporarily fixed, and a heat source line that melts only the solder foil is scanned. The solder foil is melted as a solder electrode on the metal electrode film, and then,
A method for manufacturing a semiconductor device, which comprises further scanning a heat source line during the melting process to melt the surface protection film and the semiconductor wafer, and scribe the semiconductor wafer to obtain semiconductor pellets.
JP57026124A 1982-02-22 1982-02-22 Manufacture of semiconductor device Granted JPS58143553A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57026124A JPS58143553A (en) 1982-02-22 1982-02-22 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57026124A JPS58143553A (en) 1982-02-22 1982-02-22 Manufacture of semiconductor device

Publications (2)

Publication Number Publication Date
JPS58143553A JPS58143553A (en) 1983-08-26
JPS634941B2 true JPS634941B2 (en) 1988-02-01

Family

ID=12184811

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57026124A Granted JPS58143553A (en) 1982-02-22 1982-02-22 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS58143553A (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100514075B1 (en) * 1998-12-04 2005-11-25 삼성전자주식회사 Cutting device for substrate and liquid crystal display panel using laser beam
US6562698B2 (en) * 1999-06-08 2003-05-13 Kulicke & Soffa Investments, Inc. Dual laser cutting of wafers
US7772090B2 (en) 2003-09-30 2010-08-10 Intel Corporation Methods for laser scribing wafers
JP2006269897A (en) * 2005-03-25 2006-10-05 Disco Abrasive Syst Ltd Laser processing method of wafer
DE102011075328A1 (en) * 2011-05-05 2012-11-08 Interpane Entwicklungs-Und Beratungsgesellschaft Mbh Apparatus and method for edge delamination and scoring of coated substrates
NL2026427B1 (en) 2019-09-10 2021-10-13 Tokyo Seimitsu Co Ltd Laser machining apparatus
CN117840614B (en) * 2024-03-07 2024-05-07 南京航空航天大学 Multi-wavelength laser modified welding device and method based on shallow cladding of nano-welding wire

Also Published As

Publication number Publication date
JPS58143553A (en) 1983-08-26

Similar Documents

Publication Publication Date Title
US5290986A (en) Thermally assisted shorts removal process for glass ceramic product using an RF field
US10315403B2 (en) Method for cutting object to be processed
JP3129728B2 (en) Thin film semiconductor device
JP5342772B2 (en) Processing object cutting method
US4404453A (en) Laser bonding of microelectronic circuits
US3672047A (en) Method for bonding a conductive wire to a metal electrode
US8890026B2 (en) Method for cutting processing target
JPH08148522A (en) Semiconductor device, semiconductor device mounting body and method for replacing semiconductor device
JP2003188294A (en) Manufacturing method of electronic component
JPS634941B2 (en)
JP3509985B2 (en) Chip separation method for semiconductor device
JPS634940B2 (en)
JPH08264819A (en) Semiconductor device and manufacturing method thereof
EP0040669B1 (en) Method of eliminating solder pads remaining on a ceramic substrate after removing a semiconductor chip by absorption in a porous copper block, and use in reworking modules
JPS5919356A (en) Manufacture of semiconductor device
JPS603134A (en) Wire bonding method
JPS6240119B2 (en)
JPH0729942A (en) Repair method of electronic device
JP2970636B2 (en) Optical semiconductor module and manufacturing method thereof
JPH07273133A (en) Manufacture of semiconductor device
JPH0757614A (en) Electronic part for protection of micro thin film circuit
JP3346169B2 (en) Method of forming bump
JPH11260847A (en) Method of forming solder bumps
JPH07122694A (en) Machining method for outer lead
JPH10261865A (en) Mounting method of electric part