[go: up one dir, main page]

JPS6347305A - Method for charging starting material into blast furnace - Google Patents

Method for charging starting material into blast furnace

Info

Publication number
JPS6347305A
JPS6347305A JP19151086A JP19151086A JPS6347305A JP S6347305 A JPS6347305 A JP S6347305A JP 19151086 A JP19151086 A JP 19151086A JP 19151086 A JP19151086 A JP 19151086A JP S6347305 A JPS6347305 A JP S6347305A
Authority
JP
Japan
Prior art keywords
pellets
furnace
blast furnace
coke
ore
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19151086A
Other languages
Japanese (ja)
Inventor
Junpei Kiguchi
淳平 木口
Takeshi Sugiyama
健 杉山
Kenichi Okimoto
沖本 憲市
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP19151086A priority Critical patent/JPS6347305A/en
Publication of JPS6347305A publication Critical patent/JPS6347305A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture Of Iron (AREA)

Abstract

PURPOSE:To improve the gas permeability in a blast furnace and to increase the rate of reduction of pellets by properly regulating the ratio of the thickness of an ore layer to the thickness of a coke layer in the peripheral and central parts of the furnace and charging pellets into the central part when starting materials are charged into the furnace. CONSTITUTION:When starting materials are charged into a blast furnace, the ration of the thickness of an iron ore layer consisting of pellets and sintered ore to the thickness of a coke layer is regulated to 0.45-0.55 in the peripheral part of the furnace and to 0.25-0.35 in the central part and the percentage of pellets in the ore layer is increased in the central part. Gas in the furnace does not flow toward the peripheral part, the rate of reduction of pellets can be prevented from being lowered by the lowering of the CO potential of gas in the central part and the conditions of the furnace are stabilized.

Description

【発明の詳細な説明】 [産業上の利用分r′f] 本発明は高炉への原料装入方法に関する。[Detailed description of the invention] [Industrial usage r'f] The present invention relates to a method for charging raw materials into a blast furnace.

[従来の技術] ペレットを高炉内へ装入する場合、高炉の壁側へペレッ
トを装入すると、ペレットが炉中心部へ流れるにつれ、
ペレットはコークス層の間にはいったり、あるいは、第
9図に示すようにベレット層6にコークス4を巻き込ん
だりし、その結果、炉内の空隙率が小さくなる。
[Prior Art] When charging pellets into a blast furnace, when the pellets are charged toward the wall side of the blast furnace, as the pellets flow toward the center of the furnace,
The pellets enter between the coke layers, or as shown in FIG. 9, the coke 4 is rolled into the pellet layer 6, and as a result, the porosity in the furnace becomes smaller.

その結果、炉内のガス分布が変化し、第1図に示すよう
にガス流れが周辺流化する0周辺流化が起ると炉中心部
におけるCOガスポテンシャル(CO/ (G O+ 
C02) )が著しく低下する。
As a result, the gas distribution inside the furnace changes, and as shown in Figure 1, when the gas flow becomes a peripheral flow, the CO gas potential (CO/ (G O+
C02) ) is significantly reduced.

COガスポテンシャルが低下すると還元率が低下するが
、特にペレットの配合比が大きい場合は焼結鉱のあるい
はペレットの配合比が少ない場合に比べて1000℃以
上での還元率は著しく低下する。なお、周辺流化が過度
になると炉壁耐大物を損傷する。
As the CO gas potential decreases, the reduction rate decreases, and particularly when the blending ratio of pellets is high, the reduction rate at temperatures above 1000° C. decreases significantly compared to when the blending ratio of sinter or pellets is small. In addition, if the peripheral flow becomes excessive, it will damage the large parts of the furnace wall.

さらに、ペレットの配合率を高くして鉱石を壁側へ装入
すると、ベリー2トの形状が丸いため、第2図に示すよ
うに高炉の中心〜中心部のペレットの分布のバラツキ(
傾斜角変動)も大きくなる。
Furthermore, when the ore is charged toward the wall with a high pellet blending ratio, the shape of the belly 2 is round, which causes variations in the pellet distribution from the center to the center of the blast furnace (
(inclination angle fluctuation) also increases.

上記理由により、ベレット配合率を・増すと、第3図及
び第4図(ペレット配合率と炉況との関係を示した図面
)に示すように、風圧変動、ソリューションロスCが増
大し、通気悪化、炉熱低下を引き起こす、その様子を第
5図により詳細に説明する。第5図は焼結鉱及びペレッ
トの荷重還元試験結果を示している。焼結鉱の場合(第
5図(a))、高温部(1100℃以上)では、COガ
スポテンシャルが下った場合(実線Bで示す場合)テも
COガスポテンシャルが通常の場合(実aAで示す場合
)に比べ還元率の変化はあまり認メラレない、一方、ペ
レットの場合は(第5図(b)’)、高温部では特にC
Oガスポテンシャルが下った場合(実線B)にはCOガ
スポテンシャルが通常の場合(実線A)に比べ還元率が
大きく低下する。すなわち、ペレットの場合COガスポ
テンシャルが低いと炉下部に未還元溶融物が落下する。
For the above reasons, when the pellet blending ratio is increased, wind pressure fluctuations and solution loss C increase, as shown in Figures 3 and 4 (drawings showing the relationship between pellet blending ratio and furnace conditions). The situation that causes deterioration and decrease in furnace heat will be explained in detail with reference to FIG. Figure 5 shows the results of load reduction tests on sintered ore and pellets. In the case of sintered ore (Fig. 5 (a)), in the high temperature section (1100°C or higher), when the CO gas potential decreases (indicated by solid line B), it also changes when the CO gas potential is normal (indicated by solid line A). On the other hand, in the case of pellets (Fig. 5(b)'), the change in reduction rate is not so noticeable compared to the case shown in Fig. 5(b)'.
When the O gas potential is lowered (solid line B), the reduction rate is significantly lower than when the CO gas potential is normal (solid line A). That is, in the case of pellets, if the CO gas potential is low, the unreduced melt will fall to the lower part of the furnace.

この未還元溶融物は、FeO+C=Fe+COなる激し
い吸熱反応を起すため炉熱の低下を引き起す。
This unreduced melt causes a violent endothermic reaction of FeO+C=Fe+CO, causing a decrease in furnace heat.

このような現象を改善するための試みとして従来、次の
ような試みがなされている。
Conventionally, the following attempts have been made to improve this phenomenon.

■ペレット形状面からの改善として、ペレットを破砕し
て破砕ペレットを使用する方法(特公昭55−4644
1号公報)。
■As an improvement in terms of pellet shape, a method of crushing pellets and using crushed pellets (Special Publication No. 55-4644)
Publication No. 1).

ペレット還元面からの改善として、ペレットに炭材等を
内装し、ポーラスなペレットを使用する方法(特公昭5
7−4528857号公報)。
As an improvement from the aspect of pellet reduction, a method of using porous pellets by incorporating charcoal material etc.
7-4528857).

[発明が解決しようとする問題点] しかし、特公昭55−46441号公報に記載されてい
る技術のように、破砕ペレットを使用する場合には、一
度製造したペレットを破砕するための大幅な歩留りの低
下を招く。
[Problems to be Solved by the Invention] However, when using crushed pellets as in the technology described in Japanese Patent Publication No. 55-46441, the yield rate for crushing the pellets once produced is large. This results in a decrease in

また、特公昭55−46441号公報に記載されている
技術のようなポーラスなペレットを使用する場合、ポー
ラスなペレットは強度が低く炉内で破壊し通気悪化をひ
きおこすことが考えられる[問題点を解決する手段] 上記問題点は、高炉の壁側の鉱石層厚/コークス層厚比
を0.45〜0.55、高炉の中心部の鉱石層厚/コー
クス層厚比を0.25〜0.35とし、ペレットを高炉
の中心部へ装入することを特徴とする高炉の原料装入方
法によって解決される。
Furthermore, when using porous pellets such as the technique described in Japanese Patent Publication No. 55-46441, porous pellets have low strength and may break in the furnace, causing poor ventilation. Means to Solve] The above problem is solved by setting the ore layer thickness/coke layer thickness ratio on the wall side of the blast furnace to 0.45 to 0.55, and the ore layer thickness/coke layer thickness ratio in the center of the blast furnace to 0.25 to 0. .35, and the problem is solved by a blast furnace raw material charging method characterized by charging pellets into the center of the blast furnace.

なお、このような鉱石層厚/コークス厚比を得るために
は、ペレット及びコークスを、たとえば、ムーバブルア
ーマ−を使用し、その押出ポイントを適宜変化させつつ
装入することにより、あるいは、ベルレスでシュートの
傾動角と旋回数を適宜変化させつつ装入することにより
行なえばよい、 なお、コークスは中心部へ装入しても
よいし、壁側に装入してもよい、壁側から装入した場合
にはパーコレーシ曹ンが起こり高炉の中心部に比較的粒
径の大きいコークスが集まり空隙率も大きくなるのでよ
り好ましい。
In order to obtain such an ore layer thickness/coke thickness ratio, pellets and coke can be charged by using a movable armor and changing the extrusion point appropriately, or by charging pellets and coke by using a bellless method. Charging can be carried out by changing the tilting angle and number of turns of the chute as appropriate. Coke may be charged into the center, or into the wall, or from the wall. It is more preferable if the coke is mixed into the blast furnace, since percolacetic carbon occurs and coke with a relatively large particle size gathers in the center of the blast furnace, increasing the porosity.

なお、本発明においてはペレットを炉中心部に装入すれ
ばよく、他の鉱石、例えば焼結鉱については必ずしも中
心部に装入する必要はない。
In the present invention, pellets may be charged into the center of the furnace, and other ores, such as sintered ore, do not necessarily need to be charged into the center.

[作用] ペレットを炉中心部に装入し、高炉の壁側の鉱石層厚/
コークス層厚比を0.45〜0.55゜高炉の中心部の
鉱石層厚/コークス層厚比を0゜25〜0.35とする
と、炉壁部はペレットの配合率が少なくなり、また、ペ
レットの流動偏析、コークスとの混合は生ずることがな
く、鉱石の分布の安定性が増す。
[Operation] Pellets are charged into the center of the furnace, and the ore layer thickness on the wall side of the blast furnace is
When the coke layer thickness ratio is set to 0.45 to 0.55° and the ore layer thickness/coke layer thickness ratio at the center of the blast furnace is set to 0°25 to 0.35, the ratio of pellets in the furnace wall is reduced, and , fluid segregation of pellets, and mixing with coke do not occur, increasing the stability of ore distribution.

また、高炉の壁側の鉱石層厚/コークス層厚比を0.4
5〜0.55、高炉の中心部の鉱石層厚/コークス層厚
比を0.25〜0.35とすると、ペレットを炉中心部
に装入することと相まって、炉中心部の空隙率が高まり
、その結果、炉中心部において、tooo℃以上の温度
域でのCOガスポテンシャルが高まり、中心流が確保さ
れる。   tooo℃以上の温度域でのCOガスポテ
ンシャルが高まることにより還元率も高まり、ひいては
、吸熱反応による炉熱の急激な低下を防止することがで
きる。
In addition, the ore layer thickness/coke layer thickness ratio on the wall side of the blast furnace was set to 0.4.
5 to 0.55, and the ratio of ore layer thickness/coke layer thickness at the center of the blast furnace to 0.25 to 0.35, combined with charging the pellets to the center of the furnace, the porosity of the center of the furnace increases. As a result, in the center of the furnace, the CO gas potential in the temperature range of too much degrees Celsius or higher increases, and a central flow is ensured. By increasing the CO gas potential in a temperature range of too much degrees centigrade or higher, the reduction rate also increases, and as a result, it is possible to prevent a sudden decrease in furnace heat due to an endothermic reaction.

[発明の実施例] コークス上にムーバブルアームを用いてペレットを5重
量%、焼結鉱を80重量%含有する鉱石を炉中心部に装
入した(実施例1)、また同様に、ペレットを40重量
%、焼結鉱を50重量%含有する鉱石を炉中心部に装入
した(実施例2)、 コークスと鉱石を交互に装入し、
高炉の壁側の鉱石層厚/コークス層厚比と、高炉の中心
部の鉱石層厚/コークス層厚比は第7図に示すような分
布とした。
[Example of the Invention] Ore containing 5% by weight of pellets and 80% by weight of sintered ore was charged onto coke using a movable arm (Example 1); Ore containing 40% by weight and 50% by weight of sintered ore was charged into the center of the furnace (Example 2), coke and ore were charged alternately,
The ore layer thickness/coke layer thickness ratio on the wall side of the blast furnace and the ore layer thickness/coke layer thickness ratio at the center of the blast furnace were distributed as shown in FIG.

なお、本例ではコークスは、炉壁側に装入した。In this example, coke was charged to the furnace wall side.

かかる、鉱石層厚/コークス層厚比において、炉操業を
行なったところ、ガス流速分布は、第8図に示すように
、中心部において高く壁側において低い分布、すなわち
、中心流をなしていた。かかる分布はベレー/ )が5
重量%の場合(実施例1)のみならず、ペレットが40
重量%(実施例2)の場合においても変りはなかった。
When the furnace was operated at such an ore layer thickness/coke layer thickness ratio, the gas flow velocity distribution was high in the center and low on the wall side, as shown in Figure 8, forming a central flow. . Such a distribution has a beret/ ) of 5
Not only in the case of weight% (Example 1) but also when the pellets were 40
There was no change in the case of weight % (Example 2).

さらに、Coガスポテンシャルを測定したところ第6図
に示すように、1000℃以上において0.8以上であ
り、高いCoガスポテンシャルを[発明の効果] 本発明は以上のように、ペレット形状や性状を変化させ
ていないため歩留り低下、強度低下を引き起こすことな
く装入分布の安定性を増し、ペレットの還元停滞をなく
すことができる。
Furthermore, when the Co gas potential was measured, as shown in FIG. 6, it was 0.8 or more at temperatures above 1000°C. Since the ratio is not changed, the stability of the charging distribution can be increased without causing a decrease in yield or strength, and it is possible to eliminate reduction stagnation of pellets.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は鉱石層厚/コークス層厚比とガス流速の分布を
示すグラフである。第2図は、ペレット配合率と鉱石傾
斜角変動係数との関係を示すグラフである。t53図は
ベレット配合率と風圧変動との関係を示すグラフである
。第4図はベレット配合率とソリューションろすCとの
関係を示すグラフである。第5図は、従来例に係り、第
5図(a)は焼結鉱の場合における温度と還元率との関
係を示すグラフである。第5図(b)はペレットの場合
における温゛度と還元率との関係を示すグラフである。 第5図(C)は温度とCoガスポテンシャルとの関係を
示すグラフである。第6図は、本発明の実施例における
温度とCoガスポテンシャルとの関係を示すグラフであ
る。第7図及び第8図は本発明の実施例に係り、第7図
は鉱石層厚/コークス層厚比の分布を示すグラフであり
、第8図はガス流速の分布を示すグラフである。第9図
はコークスの巻込みを示すための概念図である。 2Φ・コークス層、4−・コークス、6・・ペレット層
。 炉壁 第2図 ペレット配合率00 第3図 ベレット配合率(%) ペレット配合率(%) (c)        aF C’c)温度(”O) 温度(℃) 第7図 第8図 q−簀 手続補正書 昭和61年 9月 9日
FIG. 1 is a graph showing the distribution of the ore layer thickness/coke layer thickness ratio and the gas flow rate. FIG. 2 is a graph showing the relationship between pellet blending ratio and ore inclination angle variation coefficient. The t53 diagram is a graph showing the relationship between the pellet blending ratio and wind pressure fluctuation. FIG. 4 is a graph showing the relationship between pellet blending ratio and solution filtration C. FIG. 5 relates to a conventional example, and FIG. 5(a) is a graph showing the relationship between temperature and reduction rate in the case of sintered ore. FIG. 5(b) is a graph showing the relationship between temperature and reduction rate in the case of pellets. FIG. 5(C) is a graph showing the relationship between temperature and Co gas potential. FIG. 6 is a graph showing the relationship between temperature and Co gas potential in an example of the present invention. 7 and 8 relate to an embodiment of the present invention, FIG. 7 is a graph showing the distribution of the ore layer thickness/coke layer thickness ratio, and FIG. 8 is a graph showing the distribution of the gas flow rate. FIG. 9 is a conceptual diagram showing coke entrainment. 2Φ: Coke layer, 4: Coke, 6: Pellet layer. Furnace wall Fig. 2 Pellet blending ratio 00 Fig. 3 Pellet blending ratio (%) Pellet blending ratio (%) (c) aF C'c) Temperature ("O) Temperature (℃) Fig. 7 Fig. 8 Procedural amendment September 9, 1986

Claims (1)

【特許請求の範囲】 高炉の壁側の鉱石層厚/コークス層厚比を 0.45〜0.55、高炉の中心部の鉱石層厚/コーク
ス層厚比を0.25〜0.35とし、ペレットを高炉の
中心部へ装入することを特徴とする高炉への原料装入方
法。
[Claims] The ore layer thickness/coke layer thickness ratio on the wall side of the blast furnace is 0.45 to 0.55, and the ore layer thickness/coke layer thickness ratio in the center of the blast furnace is 0.25 to 0.35. , a method for charging raw materials into a blast furnace, characterized by charging pellets into the center of the blast furnace.
JP19151086A 1986-08-14 1986-08-14 Method for charging starting material into blast furnace Pending JPS6347305A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19151086A JPS6347305A (en) 1986-08-14 1986-08-14 Method for charging starting material into blast furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19151086A JPS6347305A (en) 1986-08-14 1986-08-14 Method for charging starting material into blast furnace

Publications (1)

Publication Number Publication Date
JPS6347305A true JPS6347305A (en) 1988-02-29

Family

ID=16275853

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19151086A Pending JPS6347305A (en) 1986-08-14 1986-08-14 Method for charging starting material into blast furnace

Country Status (1)

Country Link
JP (1) JPS6347305A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5086424A (en) * 1989-02-09 1992-02-04 Fujitsu Limited Communication terminal connection system
JP2008184626A (en) * 2007-01-26 2008-08-14 Kobe Steel Ltd Blast furnace operation method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5086424A (en) * 1989-02-09 1992-02-04 Fujitsu Limited Communication terminal connection system
JP2008184626A (en) * 2007-01-26 2008-08-14 Kobe Steel Ltd Blast furnace operation method

Similar Documents

Publication Publication Date Title
EP2851435B1 (en) Method for charging starting material into blast furnace
JP5168802B2 (en) Method for producing sintered ore
JP2000192153A (en) Sintered ore and production thereof, and operation of blast furnace
JPS6347305A (en) Method for charging starting material into blast furnace
JPH04263003A (en) Method for operating blast furnace
JP3247276B2 (en) Blast furnace charging method
JP2019127628A (en) Method of charging raw materials into blast furnace
JP2731829B2 (en) Blast furnace operation method
JP2006028538A (en) Blast furnace operation method using sintered ore with excellent high temperature reducibility
WO2022049781A1 (en) Iron ore pellets and manufacturing method of iron ore pellets
EP4407048A2 (en) Pig iron production method
JP3709001B2 (en) Non-fired agglomerated ore for iron making and method of using the same
JP3829516B2 (en) Blast furnace operation method
KR910003881B1 (en) Manufacturing method of sintered ore
JP3014549B2 (en) Blast furnace operation method
JPH0364563B2 (en)
EP4317464A1 (en) Raw material particles for production of agglomerate, method for producing raw material particles for production of agglomerate, agglomerate, method for producing agglomerate, and method for producing reduced iron
JP2000144218A (en) Method for charging raw material into blast furnace
JPS58217615A (en) Prereducing oven in melt reducing apparatus
JP4155225B2 (en) Blast furnace operation method
JPH06108126A (en) Blast furnace operation method
JPS60141810A (en) Method for controlling operation of blast furnace using iron ore pellet
JPS60243232A (en) Iron ore briquette
JP2724208B2 (en) Blast furnace operation method
JPS59143009A (en) Method and device for charging raw material to melt reducing furnace