JPS6345031B2 - - Google Patents
Info
- Publication number
- JPS6345031B2 JPS6345031B2 JP57204975A JP20497582A JPS6345031B2 JP S6345031 B2 JPS6345031 B2 JP S6345031B2 JP 57204975 A JP57204975 A JP 57204975A JP 20497582 A JP20497582 A JP 20497582A JP S6345031 B2 JPS6345031 B2 JP S6345031B2
- Authority
- JP
- Japan
- Prior art keywords
- temperature
- expansion valve
- electric expansion
- temperature sensor
- superheat
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 238000005057 refrigeration Methods 0.000 claims description 6
- 239000003507 refrigerant Substances 0.000 description 9
- 238000010438 heat treatment Methods 0.000 description 7
- 238000010586 diagram Methods 0.000 description 6
- 238000001514 detection method Methods 0.000 description 2
- 238000004134 energy conservation Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000013021 overheating Methods 0.000 description 1
- 230000003252 repetitive effect Effects 0.000 description 1
Landscapes
- Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
Description
【発明の詳細な説明】
この発明は、冷凍サイクルにおける電気式膨張
弁の制御に関するものであり、特に、圧縮機吸入
冷媒のスーパヒート量を制御するに際し、スーパ
ヒート量を一定とはせず、例えば暖房運転時外気
温が低いときは、EERよりも能力を優先してス
ーパヒートを大きくとるようにしたものである。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to the control of an electric expansion valve in a refrigeration cycle, and in particular, when controlling the amount of superheat of refrigerant sucked into a compressor, the amount of superheat is not kept constant; When the outside temperature is low during operation, performance is prioritized over EER and super heat is increased.
従来、この種の装置として、第1図に示すもの
がある。例えば、暖房時、圧縮機1から吐出され
た高温高圧の冷媒は四方弁2を通り、室内側熱交
換器3で凝縮液化され、逆止弁18を通り膨張弁
4で減圧膨張され、逆止弁19から室外側熱交換
器5、四方弁2を介してアキユムレータ6に到
る。ここから低圧冷媒ガスは吸入管7より圧縮機
1に吸入され、再び同じサイクルを繰り返すよう
になつている。 A conventional device of this type is shown in FIG. For example, during heating, high-temperature, high-pressure refrigerant discharged from the compressor 1 passes through the four-way valve 2, is condensed and liquefied in the indoor heat exchanger 3, passes through the check valve 18, is depressurized and expanded in the expansion valve 4, and is It reaches the accumulator 6 from the valve 19 via the outdoor heat exchanger 5 and the four-way valve 2. From here, the low-pressure refrigerant gas is sucked into the compressor 1 through the suction pipe 7, and the same cycle is repeated again.
このとき、膨張弁4は感温筒20内では圧縮機
1への吸入冷媒ガスの温度を、スーパヒート量と
して検知する、所謂スーパヒートコントロールを
行つている。なお、16,17も逆止弁である。 At this time, the expansion valve 4 performs so-called superheat control in which the temperature of the refrigerant gas sucked into the compressor 1 is detected as the amount of superheat within the temperature sensing cylinder 20. Note that 16 and 17 are also check valves.
従来、スーパヒートをコントロールする装置と
して、第2図に示すような温度式自動膨張弁があ
つた。この第2図において弁本体4には冷媒入口
21と冷媒出口22が設けられ、内部には弁口2
3の開口度を制御する弁本部をそなえたスピンド
ル24とこれに作用させたばね25が収められて
いる。スピンドル24の一端部は感温筒20と直
結する感温筒室26内に取り付けたダイヤフラム
27に連結されている。 Conventionally, a thermostatic automatic expansion valve as shown in FIG. 2 has been used as a device for controlling super heat. In FIG. 2, the valve body 4 is provided with a refrigerant inlet 21 and a refrigerant outlet 22, and a valve port 2 is provided inside.
A spindle 24 having a valve part for controlling the opening degree of 3 and a spring 25 acting on the spindle 24 are housed. One end of the spindle 24 is connected to a diaphragm 27 installed in a temperature sensing cylinder chamber 26 directly connected to the temperature sensing cylinder 20 .
ダイヤフラム27の上下動によりスピンドル2
4が移動し、弁口23の開度が制御される。した
がつて、このような構造では、スーパヒート量を
ばね25により調整しているので、スーパヒート
の絶対値そのものを検知できないとともに、運転
状態に合つた最適な任意の値に制御することがで
きなかつた。 The vertical movement of the diaphragm 27 causes the spindle 2 to
4 moves, and the opening degree of the valve port 23 is controlled. Therefore, in such a structure, since the amount of superheat is adjusted by the spring 25, the absolute value of superheat itself cannot be detected, and it is not possible to control it to an arbitrary value that is optimal for the operating condition. .
この発明は、上記従来の欠点を除去するために
なされたもので、吸入管の温度から吸入管と電気
式膨張弁のバイパス路からの分岐管との合流点近
傍の温度を減算してスーパヒートの演算を行い、
かつ合流点近傍の飽和温度Tsが設定温度T0以下
のとき、目標スーパヒートSHをT3<SH<T4と、
飽和温度Tsが設定温度T0以上のときは目標スー
パヒートSHをT1<SH<T2(T1<T2<T3<T4)
となるようにして、快適性、省エネルギ性を考慮
したきめ細かい運転制御が実行できる電気式膨張
弁制御装置を提供することを目的とする。 This invention was made to eliminate the above-mentioned conventional drawbacks, and the temperature near the confluence of the suction pipe and the branch pipe from the bypass path of the electric expansion valve is subtracted from the temperature of the suction pipe to generate super heat. perform calculations,
And when the saturation temperature T s near the confluence point is lower than the set temperature T 0 , the target super heat SH is set as T 3 < SH < T 4 .
When the saturation temperature T s is higher than the set temperature T 0 , the target superheat SH is set to T 1 < SH < T 2 (T 1 < T 2 < T 3 < T 4 )
It is an object of the present invention to provide an electric expansion valve control device that can perform detailed operation control in consideration of comfort and energy saving.
以下、この発明の電気式膨張弁制御装置の実施
例について図面に基づき説明する。第3図はその
一実施例の構成を示す冷凍回路図であり、冷凍サ
イクルの暖房運転時の電気式膨張弁によるスーパ
ヒート量を選択する場合の概略図である。 Embodiments of the electric expansion valve control device of the present invention will be described below with reference to the drawings. FIG. 3 is a refrigeration circuit diagram showing the configuration of one embodiment, and is a schematic diagram when selecting the amount of superheat by the electric expansion valve during heating operation of the refrigeration cycle.
この第3図において、1は圧縮機であり、ここ
で圧縮された高温高圧の冷媒ガスは、四方弁2を
通り室内側熱交換器3で凝縮液化され、電気信号
によつてその開度の調整できる電気式膨張弁4で
減圧され、室外側熱交換器5で蒸発気化し四方弁
2で流路が切換えられてアキユムレータ6に至
り、吸入管7より圧縮機1に吸入され再び同じサ
イクルを繰り返すようになつている。 In this Fig. 3, 1 is a compressor, and the high-temperature, high-pressure refrigerant gas compressed here passes through a four-way valve 2 and is condensed and liquefied in an indoor heat exchanger 3. The pressure is reduced by the adjustable electric expansion valve 4, evaporated by the outdoor heat exchanger 5, the flow path is switched by the four-way valve 2, and reaches the accumulator 6, where it is sucked into the compressor 1 through the suction pipe 7 and repeats the same cycle. It's becoming repetitive.
また、電気式膨張弁4の両端を接続するバイパ
ス路11を有し、このバイパス路11の途中にキ
ヤピラリチユーブ8と9が設けられている。この
バイパス路11の途中から分岐管12が圧縮機1
の吸入管7に合流している。この分岐管12の途
中にキヤピラリチユーブ10があり、合流点付近
に温度センサ13が設けられており、また、吸入
管7にも温度センサ14が設けられている。 It also has a bypass path 11 that connects both ends of the electric expansion valve 4, and capillary tubes 8 and 9 are provided in the middle of this bypass path 11. A branch pipe 12 is connected to the compressor 1 from the middle of this bypass path 11.
It merges into the suction pipe 7 of. There is a capillary tube 10 in the middle of this branch pipe 12, a temperature sensor 13 is provided near the confluence point, and a temperature sensor 14 is also provided in the suction pipe 7.
前記二つの温度センサ13,14の信号が制御
器15に送られ、それによつて電気式膨張弁4の
開度を指示する信号がでるように構成されてい
る。 The configuration is such that signals from the two temperature sensors 13 and 14 are sent to a controller 15, thereby outputting a signal instructing the opening degree of the electric expansion valve 4.
次に、以上のように構成されたこの発明の電気
式膨張弁制御装置の動作について説明する。暖房
運転時の高圧冷媒液がバイパス路11を通りキヤ
ピラリチユーブ8で断熱膨張し、さらに分岐管1
2を経由してキヤピラリチユーブ10で低圧の圧
縮機の吸入管7内の圧力にまで減圧され、温度セ
ンサ13は吸入圧力相当の飽和温度を示すことに
なる。 Next, the operation of the electric expansion valve control device of the present invention configured as described above will be explained. During heating operation, the high-pressure refrigerant liquid passes through the bypass path 11, expands adiabatically in the capillary tube 8, and then flows through the branch pipe 1.
2, the pressure is reduced to the pressure in the suction pipe 7 of the low-pressure compressor in the capillary tube 10, and the temperature sensor 13 indicates a saturation temperature corresponding to the suction pressure.
また、この温度は低圧圧力にも相当し外気温と
も一定の相関があり、外気温が低ければ当然温度
センサ13も低い温度を示すことになる。 Further, this temperature corresponds to low pressure and has a certain correlation with the outside temperature, and if the outside temperature is low, the temperature sensor 13 will naturally indicate a low temperature.
一方、温度センサ14は吸入管7に取り付けら
れているため、吸入温度を示している。この二つ
の温度センサ13,14の検出出力は制御器15
に加えられ、制御器15によりこの二つの検出出
力に基づいてスーパヒート量を演算し、電気式膨
張弁4の開度制御を行う。 On the other hand, since the temperature sensor 14 is attached to the suction pipe 7, it indicates the suction temperature. The detection outputs of these two temperature sensors 13 and 14 are sent to the controller 15.
The amount of superheat is calculated by the controller 15 based on these two detection outputs, and the opening degree of the electric expansion valve 4 is controlled.
次に、この二つの温度センサ13,14の信号
により電気式膨張弁4のスーパヒートコントロー
ルを実行する状態を第4図のフローチヤートによ
り説明する。 Next, the state in which super heat control of the electric expansion valve 4 is executed based on the signals from the two temperature sensors 13 and 14 will be explained with reference to the flowchart shown in FIG.
図中Tiは吸入温度であり、Tsは飽和温度で、
ある一定時間毎に検出され制御器15に送られて
くる信号である。ステツプAでこの二つの信号が
制御器15に送られてくると、ステツプBで制御
器15はスーパヒート量SH=Ti−Tsが演算でき
る。 In the figure, Ti is the suction temperature, Ts is the saturation temperature,
This is a signal that is detected at certain fixed time intervals and sent to the controller 15. When these two signals are sent to the controller 15 in step A, the controller 15 can calculate the superheat amount SH=Ti-Ts in step B.
次に、ステツプCで、飽和温度Tsがある設定
値T0以下のときは、低外気温時に相当し、暖房
能力は不足しているはずである。そのときは
EERは無視しても能力優先の運転を実行させる
ために、スーパヒート量SHをある設定値T3から
T4の間におさめるようにしたい(ステツプD)。 Next, in step C, when the saturation temperature Ts is below a certain set value T0 , this corresponds to a low outside temperature, and the heating capacity is supposed to be insufficient. That time
In order to perform performance-oriented operation even if EER is ignored, the superheat amount SH is set from a certain setting value T 3 .
I want to keep it between T4 (Step D).
また、飽和温度Tsがある設定値T0より大きい
ときは、暖房能力よりもEERを優先した運転が
望ましい。 Furthermore, when the saturation temperature Ts is higher than a certain set value T 0 , it is desirable to perform an operation that prioritizes EER over heating capacity.
以上の点で、特に重要なことは第5図に示すス
ーパヒート量SHと暖房能力Qと外気温(T01>
T02)との相関で解るように、外気温T02が低い
ときは外気温T01が高いときより、スーパヒート
量SHの大きい方が能力が上昇することである。
これにより第4図に示すフローチヤートの設定温
度はステツプG、H、IのごとくT1<T2<T3<
T4という関係を満足することである。 In the above points, what is particularly important is the superheat amount SH, heating capacity Q, and outside temperature (T 01 >
As can be seen from the correlation with T 02 ), when the outside temperature T 02 is low, the capacity increases when the superheat amount SH is larger than when the outside temperature T 01 is high.
As a result, the set temperature in the flowchart shown in FIG .
The goal is to satisfy the relationship T 4 .
さらに、スーパヒート量SHが設定巾以下のと
きは電気膨張弁4の開度E*はステツプEにおい
て現状開度Eより開く+ΔE方向に信号が出され、
スーパヒート量SHが設定巾以上のときは電気式
膨張弁4の開度E*はステツプFにおいて現状開
度Eより閉じる−k・ΔE方向に信号が出される。 Furthermore, when the superheat amount SH is less than the set width, a signal is issued in step E to open the opening E * of the electric expansion valve 4 in the direction of +ΔE, which is wider than the current opening E.
When the superheat amount SH is equal to or greater than the set width, a signal is output in step F in the direction of -k.ΔE in which the opening degree E * of the electric expansion valve 4 is closer than the current opening degree E.
以上のように、この発明の電気式膨張弁制御装
置によれば、電気式膨張弁にバイパス路を設け、
このバイパス路からキヤピラリチユーブを有する
分岐管を圧縮機の吸入管に合流させ、その合流点
近傍の飽和温度Tsが設定温度T0より低いとき、
目標スーパヒートSHをT3<SH<T4とし、飽和
温度Tsが設定温度T0より高いとき、目標スーパ
ヒートSHをT3<SH<T4となるように制御器で
電気式膨張弁の開度制御を行うようにしたので、
標準温度条件下ではEER優先の膨張弁開度が実
行され、低温時の暖房能力不足時には能力優先の
開度が実行され、快適性、省エネルギ制を考慮し
たきめ細かな運転制御が実行できるものである。 As described above, according to the electric expansion valve control device of the present invention, the electric expansion valve is provided with a bypass path,
From this bypass path, a branch pipe having a capillary tube joins the suction pipe of the compressor, and when the saturation temperature T s near the joining point is lower than the set temperature T 0 ,
When the target super heat SH is T 3 < SH < T 4 and the saturation temperature T s is higher than the set temperature T 0 , the controller opens the electric expansion valve so that the target super heat SH becomes T 3 < SH < T 4 . Since we decided to perform degree control,
Under standard temperature conditions, the expansion valve opening is given priority to EER, and when heating capacity is insufficient at low temperatures, the opening is given priority to capacity, making it possible to perform fine-grained operation control that takes comfort and energy conservation into consideration. be.
第1図は従来の冷凍サイクルの概略図、第2図
は従来の温度式膨張弁の構成を示す断面図、第3
図はこの発明の電気式膨張弁制御装置の一実施例
の冷媒回路図、第4図は第3図の電気式膨張弁制
御装置における制御器の演算および判断を示すフ
ローチヤート、第5図は外気温とスーパヒート量
と暖房能力との相関を示す概略図である。
1……圧縮機、2……四方弁、3……室内側熱
交換器、4……電気式膨張弁、5……室外側熱交
換器、6……アキユムレータ、7……吸入管、8
〜10……キヤピラリチユーブ、11……バイパ
ス路、12……分岐管、13,14……温度セン
サ。なお、図中同一符号は同一または相当部分を
示す。
Figure 1 is a schematic diagram of a conventional refrigeration cycle, Figure 2 is a sectional view showing the configuration of a conventional thermostatic expansion valve, and Figure 3 is a schematic diagram of a conventional refrigeration cycle.
The figure is a refrigerant circuit diagram of one embodiment of the electric expansion valve control device of the present invention, FIG. 4 is a flowchart showing the calculation and judgment of the controller in the electric expansion valve control device of FIG. 3, and FIG. FIG. 2 is a schematic diagram showing the correlation between outside temperature, superheat amount, and heating capacity. 1... Compressor, 2... Four-way valve, 3... Indoor heat exchanger, 4... Electric expansion valve, 5... Outdoor heat exchanger, 6... Accumulator, 7... Suction pipe, 8
~10... Capillary tube, 11... Bypass path, 12... Branch pipe, 13, 14... Temperature sensor. Note that the same reference numerals in the figures indicate the same or corresponding parts.
Claims (1)
張弁、室外側熱交換器およびアキユムレータを環
状に接続してなる冷凍サイクルにおいて、前記電
気式膨張弁の両端を接続するバイパス通路を有
し、このパイパス通路の途中に直列に第1、第2
のキヤピラリチユーブを設け、上記第1と第2の
キヤピラリチユーブの接続点から第3のキヤピラ
リチユーブを有する分岐管を介して上記圧縮機の
吸入管に合流させるとともにその合流点付近の温
度を検出する第1の温度センサを設け、上記吸入
管の温度を検出する第2の温度センサを設け、上
記第2の温度センサの検出値から上記第1の温度
センサの検出値を減算してスーパヒート量の演算
を行いかつ上記第1の温度センサの検出飽和温度
Tsが設定温度T0より低いとき目標スーパヒート
SHをT3<SH<T4(T3、T4は設定値)とし、上
記検出飽和温度Tsが上記設定温度T0以上のとき
は上記目標スーパヒートSHをT1<SH<T2(T1、
T2は設定値で、T1<T2<T3<T4)となるように
上記電気式膨張弁の開度制御を制御器で行うこと
を特徴とする電気式膨張弁制御装置。1. A refrigeration cycle in which a compressor, a four-way valve, an indoor heat exchanger, an electric expansion valve, an outdoor heat exchanger, and an accumulator are connected in a ring, including a bypass passage connecting both ends of the electric expansion valve. The first and second pipes are connected in series in the middle of this bypass passage.
A capillary tube is provided, and the connection point of the first and second capillary tubes is connected to the suction pipe of the compressor via a branch pipe having a third capillary tube, and the temperature near the confluence point is A first temperature sensor is provided to detect the temperature of the suction pipe, a second temperature sensor is provided to detect the temperature of the suction pipe, and the value detected by the first temperature sensor is subtracted from the value detected by the second temperature sensor. Calculate the amount of superheat and detect the saturation temperature of the first temperature sensor.
Target super heat when T s is lower than set temperature T 0
SH is set as T 3 < SH < T 4 (T 3 and T 4 are set values), and when the detected saturation temperature T s is higher than the set temperature T 0 , the target superheat SH is set as T 1 < SH < T 2 ( T1 ,
An electric expansion valve control device characterized in that a controller controls the opening of the electric expansion valve so that T 2 is a set value and T 1 <T 2 <T 3 <T 4 .
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57204975A JPS5995349A (en) | 1982-11-22 | 1982-11-22 | Controller for electric type expansion valve |
AU19128/83A AU547326B2 (en) | 1982-11-22 | 1983-09-14 | Control of super-heat quantity to compressor by control of expansion valve |
GB08324678A GB2130747B (en) | 1982-11-22 | 1983-09-14 | Control device for refrigeration cycle |
DE19833340736 DE3340736A1 (en) | 1982-11-22 | 1983-11-10 | CONTROL DEVICE FOR A COOLING CIRCUIT |
HK728/87A HK72887A (en) | 1982-11-22 | 1987-10-07 | Control device for refrigeration cycle |
MY635/87A MY8700635A (en) | 1982-11-22 | 1987-12-30 | Control device for refrigeration cycle |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57204975A JPS5995349A (en) | 1982-11-22 | 1982-11-22 | Controller for electric type expansion valve |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5995349A JPS5995349A (en) | 1984-06-01 |
JPS6345031B2 true JPS6345031B2 (en) | 1988-09-07 |
Family
ID=16499391
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP57204975A Granted JPS5995349A (en) | 1982-11-22 | 1982-11-22 | Controller for electric type expansion valve |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5995349A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2676381B2 (en) * | 1988-08-26 | 1997-11-12 | ヤマハ発動機株式会社 | Cover device for engine accessories |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100540808B1 (en) * | 2003-10-17 | 2006-01-10 | 엘지전자 주식회사 | Superheat control method of heat pump system |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5666661A (en) * | 1979-11-01 | 1981-06-05 | Matsushita Electric Ind Co Ltd | Air conditioning equipment |
JPS5740421A (en) * | 1980-08-25 | 1982-03-06 | Sumitomo Chem Co Ltd | Preparation of methylstyrene |
-
1982
- 1982-11-22 JP JP57204975A patent/JPS5995349A/en active Granted
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5666661A (en) * | 1979-11-01 | 1981-06-05 | Matsushita Electric Ind Co Ltd | Air conditioning equipment |
JPS5740421A (en) * | 1980-08-25 | 1982-03-06 | Sumitomo Chem Co Ltd | Preparation of methylstyrene |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2676381B2 (en) * | 1988-08-26 | 1997-11-12 | ヤマハ発動機株式会社 | Cover device for engine accessories |
Also Published As
Publication number | Publication date |
---|---|
JPS5995349A (en) | 1984-06-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS6334459A (en) | Air conditioner | |
JPH04169755A (en) | Air conditioner | |
JPS6345031B2 (en) | ||
JP3149625B2 (en) | Operation control device for air conditioner | |
JP2625556B2 (en) | Operation control device for air conditioner | |
JPH0285647A (en) | Air conditioner | |
JPH0243011Y2 (en) | ||
JPS6345030B2 (en) | ||
JPH0212543Y2 (en) | ||
JPH0330769Y2 (en) | ||
JPH0723794B2 (en) | Air conditioner | |
JPH05332622A (en) | Operation control device for air conditioner | |
JPH0579894B2 (en) | ||
JPH03144245A (en) | Air conditioner operation control device | |
JPS63290368A (en) | Heat pump type air conditioner | |
JPH0228034B2 (en) | ||
JPS6298168A (en) | Refrigerant flow controller for refrigerating air conditioner | |
JPH08128747A (en) | Control device for air conditioner | |
JPH0245796B2 (en) | ||
KR100301847B1 (en) | device for controlling flow rate of refrigerant in air conditioner and method for controlling the same | |
JPH0236058Y2 (en) | ||
JPH0510183Y2 (en) | ||
JPS63290357A (en) | Method of controlling refrigerant for heat pump type air conditioner | |
JPH0524417B2 (en) | ||
JPH0226145B2 (en) |