JPS6341082A - photovoltaic device - Google Patents
photovoltaic deviceInfo
- Publication number
- JPS6341082A JPS6341082A JP61185457A JP18545786A JPS6341082A JP S6341082 A JPS6341082 A JP S6341082A JP 61185457 A JP61185457 A JP 61185457A JP 18545786 A JP18545786 A JP 18545786A JP S6341082 A JPS6341082 A JP S6341082A
- Authority
- JP
- Japan
- Prior art keywords
- type
- amorphous silicon
- film
- photovoltaic device
- heterojunction
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F10/00—Individual photovoltaic cells, e.g. solar cells
- H10F10/10—Individual photovoltaic cells, e.g. solar cells having potential barriers
- H10F10/16—Photovoltaic cells having only PN heterojunction potential barriers
- H10F10/167—Photovoltaic cells having only PN heterojunction potential barriers comprising Group I-III-VI materials, e.g. CdS/CuInSe2 [CIS] heterojunction photovoltaic cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/541—CuInSe2 material PV cells
Landscapes
- Photovoltaic Devices (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Abstract] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
本発明は、Cu E nX□(Xは周期表■族元素)な
る分子式を有するカルコパライト系半導体を用いた光起
電力装置に関する。The present invention relates to a photovoltaic device using a chalcopalite semiconductor having a molecular formula of Cu E nX□ (X is an element from group Ⅰ of the periodic table).
カルコパライト (黄wi tXcuFes霊)と同様
の結晶構造をもつCu1nSezやCu1nSzは、禁
制帯幅約1eVで直接遷移形の帯構造をもつ半導体で、
p、n両形の電卓を示し、高い吸収係数をもつので高効
率の太陽電池が得られる可能性がある材料としても注目
され、研究開発が進められている。
この材料を用いた光起電力装置は、一般にn形CdSと
のへテロ接合の構造をとる。 CdSは、Cu1nXt
の格子との不整合の比較的小さい理由から光入射側の窓
層として選択されているが、しかしこの場合にも格子の
不整合による光起電力特性の低下はさけられないという
問題点がある。Cu1nSez and Cu1nSz, which have a crystal structure similar to that of chalcopalite (yellow with XcuFes spirit), are semiconductors with a direct transition type band structure with a forbidden band width of about 1 eV.
Since it exhibits both p- and n-type calculators and has a high absorption coefficient, it is attracting attention as a material with the potential to produce highly efficient solar cells, and research and development is progressing. A photovoltaic device using this material generally has a heterojunction structure with n-type CdS. CdS is Cu1nXt
It is selected as the window layer on the light incident side because of the relatively small mismatch with the lattice of .
本発明は、上述のCuInX、の分子式をもつ半導体の
他の半導体とのへテロ接合を形成した際の格子の不整合
の問題を解決し、高い性能をもつ光起電力装置を提供す
ることを目的とする。The present invention aims to solve the problem of lattice mismatch when forming a heterojunction between a semiconductor having the molecular formula of CuInX and another semiconductor, and to provide a photovoltaic device with high performance. purpose.
本発明は、−導電形のCuJnL半導体膜と他導電形の
アモルファスシリコン側とからなるヘテロ接合のアモル
ファスシリコン腹側を光入射側として光起電力装置を構
成するもので、ヘテロ接合の一例がアモルファス半導体
であるため、接合における格子の不整合の問題がなくな
り、上述あ目的が達成される。The present invention configures a photovoltaic device with the amorphous silicon belly side of a heterojunction consisting of a - conductivity type CuJnL semiconductor film and a different conductivity type amorphous silicon side as the light incident side, and an example of the heterojunction is an amorphous silicon film. Since it is a semiconductor, there is no problem of lattice mismatch at the junction, and the above objective is achieved.
7fj1図は本発明の一実施例を示すもので、例えばス
テンレス鋼からなる金属基板1の上にn形多結晶Cu1
nSez膜2を1〜3μの厚さに形成し、次にほう素な
どをドープしたn形アモルフアスシリコン膜3を100
〜500人の厚さに形成し、つづいてIT○、 5nO
z’1lf4などの透明導電膜4を基板1との対向電極
として形成して、光起電力装置を構成する。このばあい
、Cu1nSe膜は、CuC1,InC1,。
(:HsNHC3eNHCHs (ジメチルセレノウレ
ア)の水溶液をスプレー法などにより霧状にして250
〜300℃に加熱した基板1に吹きつけて化学分解させ
て形成した。なお、このCu1nSez膜は、Cu +
I n + S eのそれぞれの同時真空蒸着法によ
っても、あるいはCu1nSez化合物を粉体にしたも
のを有機物とのペースト状にしたものに印刷し、600
℃で焼結して得る方法によっても形成できる。p形アモ
ルファスシリコン膜は、5iHa、 B!)16および
hの混合ガスのグロー放電分解により形成した。この膜
にはp形アモルファスシリコンカーバイト膜を用いても
よい。
このような禁制帯幅約IeVで高吸収係数のn形Cu1
nSe、膜の光入射側に禁制帯幅1.8〜2eVのp形
アモルファスシリコン膜を積層してヘテロ接合させた構
成において、p形アモルファスノリコン膜がアモルファ
ス構造であるために、格子の不整合に対する制約が緩和
されて良好なヘテロ接合が形成できる結果、高い光起電
力特性が得られる利点がある。この構成の場合、AMl
loom / cd下で、開放電圧v、、0.5v、短
絡電流J sc 23mA / cnl 、フィル・フ
ァクタFF0.55.変換効率6.3%が得られた。従
来のn CdS / p CuIn5etのへテロ接合
構造の場合の特性が、V 6C0,3V 、 J 3
C23111A/ oA 、 FFO,29,変換効率
2%であったから、本発明の効果は明らかである。逆に
p形のCurnSegを用い、n形アモルファスシリコ
ン膜とのへテロ接合としても同様の効果がある。Cu1
nSe、の導電形は、Cu/In比を0.9以下にする
とn形、1.0以上にするとp形が得られる。
第2図は、基板としてガラス板5を用いた実施例で、第
1図の場合と形成順序が逆であり、ガラス基板2の上に
透明導電膜4を被着し、次いでn形アモルフアスシリコ
ン膜3を100〜500人厚に形成する。つづいて20
0〜300℃という低温で膜形成が可能のスプレー法で
n形CuInSag l!! 2を形成し、最後にMな
どの金属電極膜6を蒸着法で形成した。この場合には光
はガラス側から入射させることになる。この場合も、第
1図の実施例と同ts n形アモルファスシリコン膜と
p形CuIn5et Illとの組合わせでもよい。
第3図および第4図はp−1−nアモルファスシリコン
セルとCuTnSezセルとのタンデム構造の光起電力
装置の実施例を示す、第3図の場合は、金属基板1の上
に第1図の場合と同様n形Cu1nSe4、膜2とn形
アモルフアスシリコン膜3を積層したのち、ひきつづい
てn形、i形、n形アモルフアスシリコン膜7.8.3
を順次形成し、その上に透明感tll14を被着する。
第4図は、ガラス基板を用いた場合のタンデム構造の実
施例で、第2図で示した実施例の構造の透明導電膜4と
n形アモルフアスシリコン膜3の間にp形、i形、n形
アモルフアスシリコン膜3゜8.7が挿入されるような
順序で膜形成を行い、タンデム構造としたものである。
このようなタンデム構造により、先ずp−1−nアモル
ファスシリコンセルで太陽光輻射のうちの400〜60
0nmの光波長領域の光電変換を行い、次いで600〜
11000nの波長領域の光はCuIn5etへテロ接
合セルで光電変換を行う結果、高い性能の光起電力袋:
が得られる。
以上のCulnXg半導体としてCu1nSezを用い
た実施例について述べたが、Cu1nSzを用いる場合
も同様な成膜法によって実施でき、すぐれた性能の光起
電力装置を製作することができる。Figure 7fj1 shows an embodiment of the present invention, in which n-type polycrystalline Cu1 is placed on a metal substrate 1 made of stainless steel, for example.
An nSez film 2 is formed to a thickness of 1 to 3 μm, and then an n-type amorphous silicon film 3 doped with boron or the like is formed to a thickness of 100 μm.
Formed to a thickness of ~500 mm, followed by IT○, 5nO
A photovoltaic device is constructed by forming a transparent conductive film 4 such as z'1lf4 as a counter electrode to the substrate 1. In this case, the Cu1nSe film is CuC1, InC1, etc. (:HsNHC3eNHCHs (dimethylselenourea) aqueous solution is made into a mist using a spray method etc.
It was formed by chemically decomposing it by spraying it onto the substrate 1 heated to ~300°C. Note that this Cu1nSez film is Cu +
By simultaneous vacuum evaporation of I n + S e, or by printing on a powdered Cu1nSez compound and a paste with an organic material, 600
It can also be formed by sintering at ℃. The p-type amorphous silicon film is 5iHa, B! ) It was formed by glow discharge decomposition of a mixed gas of 16 and h. A p-type amorphous silicon carbide film may be used for this film. Such an n-type Cu1 with a forbidden band width of about IeV and a high absorption coefficient
nSe, in a structure in which a p-type amorphous silicon film with a forbidden band width of 1.8 to 2 eV is stacked on the light incident side of the film to form a heterojunction, since the p-type amorphous silicon film has an amorphous structure, the lattice defect As a result of relaxing constraints on matching and forming a good heterojunction, there is an advantage that high photovoltaic properties can be obtained. For this configuration, AMl
Under room/cd, open circuit voltage v,,0.5v, short circuit current Jsc 23mA/cnl, fill factor FF0.55. A conversion efficiency of 6.3% was obtained. The characteristics of the conventional n CdS/p CuIn5et heterojunction structure are V 6C0,3V, J 3
Since the C23111A/oA, FFO, and conversion efficiency were 2%, the effect of the present invention is clear. Conversely, a similar effect can be obtained by using a p-type CurnSeg and forming a heterojunction with an n-type amorphous silicon film. Cu1
The conductivity type of nSe is n-type when the Cu/In ratio is 0.9 or less, and p-type when it is 1.0 or more. FIG. 2 shows an example in which a glass plate 5 is used as a substrate, and the formation order is reversed from that in FIG. A silicon film 3 is formed to a thickness of 100 to 500 layers. Continued 20
n-type CuInSag l! using a spray method that allows film formation at low temperatures of 0 to 300°C. ! 2 was formed, and finally a metal electrode film 6 of M or the like was formed by vapor deposition. In this case, the light will be incident from the glass side. In this case as well, a combination of the same ts n-type amorphous silicon film and p-type CuIn5et Ill as in the embodiment of FIG. 1 may be used. 3 and 4 show an embodiment of a photovoltaic device having a tandem structure of a p-1-n amorphous silicon cell and a CuTnSez cell. In the case of FIG. 3, the photovoltaic device shown in FIG. After laminating the n-type Cu1nSe4 film 2 and the n-type amorphous silicon film 3 in the same way as in the case of , the n-type, i-type, and n-type amorphous silicon films 7.8.3
are sequentially formed, and a transparent TLL14 is applied thereon. FIG. 4 shows an example of a tandem structure using a glass substrate, in which p-type, i-type, and , n-type amorphous silicon film 3° 8.7° are inserted, forming a tandem structure. With such a tandem structure, the p-1-n amorphous silicon cell first captures 400 to 60% of the solar radiation.
Photoelectric conversion is performed in the optical wavelength region of 0 nm, and then 600 ~
As a result of photoelectric conversion of light in the wavelength range of 11000n using a CuIn5et heterojunction cell, a high-performance photovoltaic bag is produced:
is obtained. Although the embodiment using Cu1nSez as the Cu1nXg semiconductor has been described above, the same film formation method can be used when Cu1nSz is used, and a photovoltaic device with excellent performance can be manufactured.
本発明によれば、光の吸収係数の高いCuInSezあ
るいはCu1nS1のようなカルコパライト系のCu1
nχ。
半4体とアモルファス構造で成膜技術の発達しているア
モルファスシリコン膜によりヘテロ接合構造を形成した
ため、接合における格子不整合の問題がなくなり、良好
な光起電力特性をもつ光起電力U Tlを容易に得るこ
とができ、その効果は極めて大きい。According to the present invention, chalcopalite-based Cu1 such as CuInSez or Cu1nS1, which has a high light absorption coefficient,
nχ. Since the heterojunction structure is formed using an amorphous silicon film with well-developed film formation technology, it eliminates the problem of lattice mismatch at the junction and allows photovoltaic power U Tl with good photovoltaic properties to be generated. It can be easily obtained and its effects are extremely large.
第1図は本発明の一実施例の断面図、第2図は別の実施
例の断面図、第3図、第4図はタンデム構造の本発明の
異なる二つの実施例を示す断面図である。
l:金属基板、2:n形Cu1nSe、膜、3:p形ア
モルファスシリコン膜、4:i3明導W膜、5:1,4
幻鵬電膿
第1図
第2図Fig. 1 is a sectional view of one embodiment of the present invention, Fig. 2 is a sectional view of another embodiment, and Figs. 3 and 4 are sectional views showing two different embodiments of the present invention having a tandem structure. be. l: metal substrate, 2: n-type Cu1nSe, film, 3: p-type amorphous silicon film, 4: i3 bright conductive W film, 5: 1,4
Figure 1 Figure 2
Claims (1)
式を有する半導体の一導電形の膜と他導電形のアモルフ
ァスシリコン膜からなるヘテロ接合を有し、該接合のア
モルファスシリコン側を光入射側としたことを特徴とす
る光起電力装置。1) It has a heterojunction consisting of a semiconductor film of one conductivity type and an amorphous silicon film of another conductivity type, which has a molecular formula of CuInX_2, where X is a group VI element of the periodic table, and the amorphous silicon side of the junction is the light incident side. A photovoltaic device characterized by:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61185457A JPS6341082A (en) | 1986-08-07 | 1986-08-07 | photovoltaic device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61185457A JPS6341082A (en) | 1986-08-07 | 1986-08-07 | photovoltaic device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS6341082A true JPS6341082A (en) | 1988-02-22 |
Family
ID=16171125
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP61185457A Pending JPS6341082A (en) | 1986-08-07 | 1986-08-07 | photovoltaic device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6341082A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6121541A (en) * | 1997-07-28 | 2000-09-19 | Bp Solarex | Monolithic multi-junction solar cells with amorphous silicon and CIS and their alloys |
WO2009011333A1 (en) * | 2007-07-13 | 2009-01-22 | Omron Corporation | Cis solar cell and method for manufacturing the cis solar cell |
WO2009101925A1 (en) * | 2008-02-12 | 2009-08-20 | Tokyo Electron Limited | Solar cell wherein solar photovoltaic thin film is directly formed on base |
CN101621085B (en) | 2009-08-03 | 2012-05-23 | 苏州阿特斯阳光电力科技有限公司 | Chalcopyrite semiconductor thin film heterojunction solar cells based on P-type silicon wafers |
-
1986
- 1986-08-07 JP JP61185457A patent/JPS6341082A/en active Pending
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6121541A (en) * | 1997-07-28 | 2000-09-19 | Bp Solarex | Monolithic multi-junction solar cells with amorphous silicon and CIS and their alloys |
US6368892B1 (en) * | 1997-07-28 | 2002-04-09 | Bp Corporation North America Inc. | Monolithic multi-junction solar cells with amorphous silicon and CIS and their alloys |
WO2009011333A1 (en) * | 2007-07-13 | 2009-01-22 | Omron Corporation | Cis solar cell and method for manufacturing the cis solar cell |
US8575476B2 (en) | 2007-07-13 | 2013-11-05 | Omron Corporation | CIS solar cell and method for manufacturing the same |
WO2009101925A1 (en) * | 2008-02-12 | 2009-08-20 | Tokyo Electron Limited | Solar cell wherein solar photovoltaic thin film is directly formed on base |
US8841545B2 (en) | 2008-02-12 | 2014-09-23 | Tohoku University | Solar cell wherein solar photovolatic thin film is directly formed on base |
CN101621085B (en) | 2009-08-03 | 2012-05-23 | 苏州阿特斯阳光电力科技有限公司 | Chalcopyrite semiconductor thin film heterojunction solar cells based on P-type silicon wafers |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Savadogo | Chemically and electrochemically deposited thin films for solar energy materials | |
Pulfrey | MIS solar cells: A review | |
CN107564989A (en) | The structure design of tunnel junctions in a kind of perovskite/silicon heterogenous stacked solar cell, cascade solar cell | |
JPH04233772A (en) | Manufacture of chacopyrite solar battery | |
Chamberlin et al. | Chemically sprayed thin film photovoltaic converters | |
CN114335348B (en) | PN heterojunction antimony selenide/perovskite solar cell and preparation method thereof | |
CN116669440B (en) | Solar cell and preparation method thereof, photovoltaic module and photovoltaic device | |
US4064522A (en) | High efficiency selenium heterojunction solar cells | |
JPS5846074B2 (en) | Method of manufacturing photovoltaic device | |
JPS6341082A (en) | photovoltaic device | |
CN114388696B (en) | Light absorption material, preparation method thereof and photovoltaic cell | |
Tracey et al. | Sol-gel derived TiO2/lead phthalocyanine photovoltaic cells | |
JPH0122991B2 (en) | ||
JP3444700B2 (en) | Solar cell | |
Omura et al. | Recent technical advances in thin-film CdS/CdTe solar cells | |
CN112670365A (en) | GaAs/MXene heterojunction solar cell and preparation method thereof | |
Sharma et al. | Si and GaAs SIS heterostructure solar cells using spray-deposited ITO | |
CN115498111B (en) | A perovskite solar cell | |
Janam et al. | Growth and structural characteristics of the chalcopyrite semiconductor CuInSe2 | |
JP2980546B2 (en) | Semiconductor devices and solar cells | |
JPS59181581A (en) | Photoelectric conversion device | |
CN101471424A (en) | Organic inorganic composite solar battery based on polycrystal gallium arsenic film | |
CN108039388A (en) | A kind of Cu2ZnSn(S,Se)4Thin-film solar cells and preparation method thereof | |
JPH06232435A (en) | Organic photovoltaic device | |
JP3473255B2 (en) | Manufacturing method of thin film solar cell |