JPH06232435A - Organic photovoltaic device - Google Patents
Organic photovoltaic deviceInfo
- Publication number
- JPH06232435A JPH06232435A JP3311985A JP31198591A JPH06232435A JP H06232435 A JPH06232435 A JP H06232435A JP 3311985 A JP3311985 A JP 3311985A JP 31198591 A JP31198591 A JP 31198591A JP H06232435 A JPH06232435 A JP H06232435A
- Authority
- JP
- Japan
- Prior art keywords
- organic compound
- film
- organic
- compound layer
- amorphous
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000013086 organic photovoltaic Methods 0.000 title claims abstract description 9
- 150000002894 organic compounds Chemical class 0.000 claims abstract description 77
- 239000004065 semiconductor Substances 0.000 claims description 8
- 239000004020 conductor Substances 0.000 claims description 4
- 239000000203 mixture Substances 0.000 claims description 4
- 238000006243 chemical reaction Methods 0.000 abstract description 14
- 238000009413 insulation Methods 0.000 abstract 1
- 238000003475 lamination Methods 0.000 abstract 1
- 239000010410 layer Substances 0.000 description 72
- 239000010408 film Substances 0.000 description 67
- 239000010409 thin film Substances 0.000 description 19
- 230000000052 comparative effect Effects 0.000 description 9
- IEQIEDJGQAUEQZ-UHFFFAOYSA-N phthalocyanine Chemical compound N1C(N=C2C3=CC=CC=C3C(N=C3C4=CC=CC=C4C(=N4)N3)=N2)=C(C=CC=C2)C2=C1N=C1C2=CC=CC=C2C4=N1 IEQIEDJGQAUEQZ-UHFFFAOYSA-N 0.000 description 9
- FVDOBFPYBSDRKH-UHFFFAOYSA-N perylene-3,4,9,10-tetracarboxylic acid Chemical compound C=12C3=CC=C(C(O)=O)C2=C(C(O)=O)C=CC=1C1=CC=C(C(O)=O)C2=C1C3=CC=C2C(=O)O FVDOBFPYBSDRKH-UHFFFAOYSA-N 0.000 description 8
- 238000007740 vapor deposition Methods 0.000 description 8
- 239000011521 glass Substances 0.000 description 7
- 238000000034 method Methods 0.000 description 6
- 238000005259 measurement Methods 0.000 description 5
- MGJXBDMLVWIYOQ-UHFFFAOYSA-N methylazanide Chemical compound [NH-]C MGJXBDMLVWIYOQ-UHFFFAOYSA-N 0.000 description 5
- 239000000049 pigment Substances 0.000 description 5
- 239000002356 single layer Substances 0.000 description 5
- VXQQVDCKACIRQG-UHFFFAOYSA-N NNPP Chemical compound NNPP VXQQVDCKACIRQG-UHFFFAOYSA-N 0.000 description 4
- -1 porphyrin compounds Chemical class 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- 229910052802 copper Inorganic materials 0.000 description 3
- 239000010949 copper Substances 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 229910052759 nickel Inorganic materials 0.000 description 3
- 125000002080 perylenyl group Chemical group C1(=CC=C2C=CC=C3C4=CC=CC5=CC=CC(C1=C23)=C45)* 0.000 description 3
- XKJCHHZQLQNZHY-UHFFFAOYSA-N phthalimide Chemical compound C1=CC=C2C(=O)NC(=O)C2=C1 XKJCHHZQLQNZHY-UHFFFAOYSA-N 0.000 description 3
- NRCMAYZCPIVABH-UHFFFAOYSA-N Quinacridone Chemical class N1C2=CC=CC=C2C(=O)C2=C1C=C1C(=O)C3=CC=CC=C3NC1=C2 NRCMAYZCPIVABH-UHFFFAOYSA-N 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- 238000000151 deposition Methods 0.000 description 2
- 230000008021 deposition Effects 0.000 description 2
- 239000000975 dye Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- RBTKNAXYKSUFRK-UHFFFAOYSA-N heliogen blue Chemical compound [Cu].[N-]1C2=C(C=CC=C3)C3=C1N=C([N-]1)C3=CC=CC=C3C1=NC([N-]1)=C(C=CC=C3)C3=C1N=C([N-]1)C3=CC=CC=C3C1=N2 RBTKNAXYKSUFRK-UHFFFAOYSA-N 0.000 description 2
- 229910052745 lead Inorganic materials 0.000 description 2
- 229910052749 magnesium Inorganic materials 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 239000011368 organic material Substances 0.000 description 2
- 229910052709 silver Inorganic materials 0.000 description 2
- 229910052725 zinc Inorganic materials 0.000 description 2
- GEYOCULIXLDCMW-UHFFFAOYSA-N 1,2-phenylenediamine Chemical compound NC1=CC=CC=C1N GEYOCULIXLDCMW-UHFFFAOYSA-N 0.000 description 1
- WJFKNYWRSNBZNX-UHFFFAOYSA-N 10H-phenothiazine Chemical compound C1=CC=C2NC3=CC=CC=C3SC2=C1 WJFKNYWRSNBZNX-UHFFFAOYSA-N 0.000 description 1
- VEPOHXYIFQMVHW-XOZOLZJESA-N 2,3-dihydroxybutanedioic acid (2S,3S)-3,4-dimethyl-2-phenylmorpholine Chemical compound OC(C(O)C(O)=O)C(O)=O.C[C@H]1[C@@H](OCCN1C)c1ccccc1 VEPOHXYIFQMVHW-XOZOLZJESA-N 0.000 description 1
- TXWSZJSDZKWQAU-UHFFFAOYSA-N 2,9-dimethyl-5,12-dihydroquinolino[2,3-b]acridine-7,14-dione Chemical compound N1C2=CC=C(C)C=C2C(=O)C2=C1C=C(C(=O)C=1C(=CC=C(C=1)C)N1)C1=C2 TXWSZJSDZKWQAU-UHFFFAOYSA-N 0.000 description 1
- VESMRDNBVZOIEN-UHFFFAOYSA-N 9h-carbazole-1,2-diamine Chemical compound C1=CC=C2C3=CC=C(N)C(N)=C3NC2=C1 VESMRDNBVZOIEN-UHFFFAOYSA-N 0.000 description 1
- JBRZTFJDHDCESZ-UHFFFAOYSA-N AsGa Chemical compound [As]#[Ga] JBRZTFJDHDCESZ-UHFFFAOYSA-N 0.000 description 1
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 1
- 235000000177 Indigofera tinctoria Nutrition 0.000 description 1
- PCNDJXKNXGMECE-UHFFFAOYSA-N Phenazine Natural products C1=CC=CC2=NC3=CC=CC=C3N=C21 PCNDJXKNXGMECE-UHFFFAOYSA-N 0.000 description 1
- 238000002441 X-ray diffraction Methods 0.000 description 1
- 125000000217 alkyl group Chemical group 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910021417 amorphous silicon Inorganic materials 0.000 description 1
- HFACYLZERDEVSX-UHFFFAOYSA-N benzidine Chemical compound C1=CC(N)=CC=C1C1=CC=C(N)C=C1 HFACYLZERDEVSX-UHFFFAOYSA-N 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 1
- 229940097275 indigo Drugs 0.000 description 1
- COHYTHOBJLSHDF-UHFFFAOYSA-N indigo powder Natural products N1C2=CC=CC=C2C(=O)C1=C1C(=O)C2=CC=CC=C2N1 COHYTHOBJLSHDF-UHFFFAOYSA-N 0.000 description 1
- 229910003437 indium oxide Inorganic materials 0.000 description 1
- PJXISJQVUVHSOJ-UHFFFAOYSA-N indium(iii) oxide Chemical compound [O-2].[O-2].[O-2].[In+3].[In+3] PJXISJQVUVHSOJ-UHFFFAOYSA-N 0.000 description 1
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 1
- DZVCFNFOPIZQKX-LTHRDKTGSA-M merocyanine Chemical compound [Na+].O=C1N(CCCC)C(=O)N(CCCC)C(=O)C1=C\C=C\C=C/1N(CCCS([O-])(=O)=O)C2=CC=CC=C2O\1 DZVCFNFOPIZQKX-LTHRDKTGSA-M 0.000 description 1
- 229910021421 monocrystalline silicon Inorganic materials 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- CSHWQDPOILHKBI-UHFFFAOYSA-N peryrene Natural products C1=CC(C2=CC=CC=3C2=C2C=CC=3)=C3C2=CC=CC3=C1 CSHWQDPOILHKBI-UHFFFAOYSA-N 0.000 description 1
- 229950000688 phenothiazine Drugs 0.000 description 1
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 125000004076 pyridyl group Chemical group 0.000 description 1
- 150000003233 pyrroles Chemical class 0.000 description 1
- WVIICGIFSIBFOG-UHFFFAOYSA-N pyrylium Chemical class C1=CC=[O+]C=C1 WVIICGIFSIBFOG-UHFFFAOYSA-N 0.000 description 1
- 150000004053 quinones Chemical class 0.000 description 1
- 239000001022 rhodamine dye Substances 0.000 description 1
- 125000001424 substituent group Chemical group 0.000 description 1
- 230000008719 thickening Effects 0.000 description 1
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 description 1
- 229910001887 tin oxide Inorganic materials 0.000 description 1
- ODHXBMXNKOYIBV-UHFFFAOYSA-N triphenylamine Chemical compound C1=CC=CC=C1N(C=1C=CC=CC=1)C1=CC=CC=C1 ODHXBMXNKOYIBV-UHFFFAOYSA-N 0.000 description 1
- 238000001771 vacuum deposition Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K30/00—Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
- H10K30/20—Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising organic-organic junctions, e.g. donor-acceptor junctions
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K30/00—Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
- H10K30/50—Photovoltaic [PV] devices
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K71/00—Manufacture or treatment specially adapted for the organic devices covered by this subclass
- H10K71/10—Deposition of organic active material
- H10K71/191—Deposition of organic active material characterised by provisions for the orientation or alignment of the layer to be deposited
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K71/00—Manufacture or treatment specially adapted for the organic devices covered by this subclass
- H10K71/50—Forming devices by joining two substrates together, e.g. lamination techniques
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/60—Organic compounds having low molecular weight
- H10K85/615—Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
- H10K85/621—Aromatic anhydride or imide compounds, e.g. perylene tetra-carboxylic dianhydride or perylene tetracarboxylic di-imide
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/549—Organic PV cells
Landscapes
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Photovoltaic Devices (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、有機化合物を用いた光
電池、太陽電池、光センサー、フォトダイオードなどの
光起電力素子に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a photovoltaic element such as a photovoltaic cell, a solar cell, an optical sensor and a photodiode, which uses an organic compound.
【0002】[0002]
【従来の技術】社会の発展にともないエネルギーの使用
量が飛躍的に増加している。そんな中で太陽電池の開発
が盛んになってきている。現在商品化されているものと
して、アモルファスシリコン、単結晶シリコン、ガリウ
ムヒ素などを用いた無機太陽電池がある。しかし無機系
の太陽電池の作製は、高コストであり、フレキシブルな
素子の作製が困難であるといった欠点を持ち合わせてい
る。このような欠点を解消するために、最近、有機太陽
電池(光起電力素子)の研究が盛んになってきている。
それは、無機太陽電池に比べて低コストで、大面積化が
可能であり、またフレキシブルな素子が作製できるため
である。2. Description of the Related Art The amount of energy used has increased dramatically with the development of society. Under such circumstances, the development of solar cells has become active. Currently commercialized products are inorganic solar cells using amorphous silicon, single crystal silicon, gallium arsenide and the like. However, the production of an inorganic solar cell has the drawbacks of high cost and difficulty in producing a flexible element. In order to eliminate such drawbacks, research on organic solar cells (photovoltaic devices) has recently become active.
This is because the cost is lower than that of the inorganic solar cell, the area can be increased, and a flexible element can be manufactured.
【0003】有機太陽電池は、一般に無機太陽電池に比
べて開放電圧(Voc)、短絡光電流(Jsc)が低い
のが現状であり、またフィルファクター(ff)も低く
なっている。Organic solar cells generally have lower open-circuit voltage (Voc) and short-circuit photocurrent (Jsc) than inorganic solar cells, and the fill factor (ff) is also low.
【0004】従来研究されている有機起電力素子として
は、[1]ショットキ接合を有するもの(例 A. K. Gh
osh et al, Appl. Phys. Lett., 32, P495 (1978))、
[2]無機/有機のPNヘテロ接合を有するもの(例
R. O. Loutfy et al, Appl.Phys. Lett., 42, P165, (1
983))、[3]有機/有機のPNヘテロ接合を有するも
の(例 C. Tang, Appl. Phys. Lett., 48, P183 (198
6))などがある。[1]〜[3]の中で最も高い変換効率
を示すのが[3]の素子であり、この素子は、N型有機
材料としてペリレン顔料を用い、またP型有機材料とし
てフタロシアニン顔料を用いたものである。Organic electromotive devices that have been conventionally studied include those having a [1] Schottky junction (eg, AK Gh
osh et al, Appl. Phys. Lett., 32, P495 (1978)),
[2] Having an inorganic / organic PN heterojunction (example
RO Loutfy et al, Appl.Phys. Lett., 42, P165, (1
983)), [3] having an organic / organic PN heterojunction (eg C. Tang, Appl. Phys. Lett., 48, P183 (198)
6)) etc. The element of [3] has the highest conversion efficiency among [1] to [3]. This element uses a perylene pigment as an N-type organic material and a phthalocyanine pigment as a P-type organic material. It was what I had.
【0005】[0005]
【発明が解決しようとする課題】しかし、これまで述べ
てきた有機太陽電池は、有機化合物層がかなり薄いため
(上記[3]の素子では、有機化合物層が30〜50n
mであることが望ましいと記載されている)、ピンホー
ルのない素子の作製がきわめて困難であり、素子の信頼
性を低下させている。この傾向は、光電流増加に好まし
い配向性膜を作製するときに得に顕著になる。これは、
ピンホールが多数存在すると、再現性がなくなり、また
2つの電極間の短絡が比較的高い確率で存在するように
なるためである。However, in the organic solar cells described so far, the organic compound layer is considerably thin (in the device of [3] above, the organic compound layer is 30 to 50 n
m is desirable), it is extremely difficult to manufacture an element without pinholes, and the reliability of the element is reduced. This tendency becomes particularly remarkable when an oriented film that is preferable for increasing photocurrent is produced. this is,
This is because if there are a large number of pinholes, reproducibility will be lost, and a short circuit between two electrodes will occur with a relatively high probability.
【0006】本発明はこのような従来技術の問題点を解
消し、膜を厚くすることなく、変換効率及び信頼性の高
い有機光起電力素子を提供する事を目的とする。An object of the present invention is to solve the problems of the prior art and to provide an organic photovoltaic element having high conversion efficiency and reliability without thickening the film.
【0007】[0007]
【課題を解決するための手段】本発明者らは上記目的を
達成すべく鋭意研究を重ねた結果、通常の抵抗加熱蒸着
により有機光起電力層を形成する際、最初にその配向膜
を蒸着し、次いで蒸着速度あるいは下地温度を変化させ
て非晶質膜を蒸着することにより、非晶質膜が配向膜内
に存在する結晶間のピンホールを低減させ、電気的短絡
を低減させ、変換効率及び信頼性の高い有機起電力素子
となることを見出し、本発明を完成するに至った。The inventors of the present invention have conducted extensive studies to achieve the above object, and as a result, when an organic photovoltaic layer is formed by ordinary resistance heating vapor deposition, the alignment film is first vapor deposited. Then, by changing the deposition rate or the base temperature to deposit the amorphous film, the amorphous film reduces pinholes between crystals existing in the alignment film, reduces electrical short circuits, and converts The inventors have found that the organic electromotive element has high efficiency and reliability, and completed the present invention.
【0008】即ち、本発明によれば、導体間に少なくと
も有機化合物からなる光起電力層を挾持してなる光起電
力素子において、前記有機化合物層が同一組成による配
向膜と非晶質膜との積層からなる事を特徴とする有機光
起電力素子が提供される。また本発明によれば、導体間
に少なくともP型半導体特性を有する有機化合物層とN
型半導体特性を有する有機化合物層からなる光起電力層
を挾持してなる光起電力素子において、前記2つの有機
化合物層の少なくとも一方が、配向膜及び非晶質膜との
積層からなる事を特徴とする有機光起電力素子が提供さ
れる。非晶質膜の膜厚は、配向膜の膜厚の1/3以下に
おいてより効果的である。本発明は、ショットキ接合
型、有機/有機のPNヘテロ接合型、無機/有機のPN
ヘテロ接合型などの有機化合物の薄膜を有する全ての光
起電力素子に適用される。That is, according to the present invention, in a photovoltaic element in which a photovoltaic layer made of at least an organic compound is sandwiched between conductors, the organic compound layer has an alignment film and an amorphous film having the same composition. There is provided an organic photovoltaic element, which is characterized by comprising a laminated structure of Further, according to the present invention, an organic compound layer having at least P-type semiconductor characteristics and an N layer are provided between conductors.
In a photovoltaic element sandwiching a photovoltaic layer composed of an organic compound layer having type semiconductor characteristics, at least one of the two organic compound layers comprises a laminate of an alignment film and an amorphous film. A featured organic photovoltaic device is provided. The film thickness of the amorphous film is more effective when it is 1/3 or less of the film thickness of the alignment film. The present invention includes Schottky junction type, organic / organic PN heterojunction type, inorganic / organic PN
It is applied to all photovoltaic devices having a thin film of an organic compound such as a heterojunction type.
【0009】ここで挙げている非晶質膜とは、透過型電
子顕微鏡観察及びX線回折により配向性が認められない
ものをいう。The amorphous film mentioned here means a film whose orientation is not observed by transmission electron microscope observation and X-ray diffraction.
【0010】先ず、本発明をショットキ接合型素子に適
用した例を図1を参照しながら具体的に説明すると、透
光性絶縁支持体1から順次、上部電極2、配向性有機化
合物層3a、非晶質性有機化合物層3b、下部電極4を
有するものである。なお3aと3bは、同一組成の有機
化合物からなる層である。First, an example in which the present invention is applied to a Schottky junction type element will be described in detail with reference to FIG. 1. In this order, the translucent insulating support 1 and the upper electrode 2 and the oriented organic compound layer 3a are sequentially formed. It has an amorphous organic compound layer 3b and a lower electrode 4. Note that 3a and 3b are layers made of organic compounds having the same composition.
【0011】次に、本発明を有機/有機のPNヘテロ接
合型素子に適用した例を図2を参照しながら具体的に説
明すると、透光性絶縁支持体1から順次、上部電極2、
配向性P型有機化合物層5a、非晶質性N型有機化合物
層5b,配向性P型有機化合物層6a,非晶質性N型有
機化合物層6b、下部電極4を有するものである。なお
5aと5b、6aと6bは、それぞれ同一組成の有機化
合物からなる層である。また配向膜と非晶質膜を有する
有機化合物の層は、単層でも多層でもかまわない。Next, an example in which the present invention is applied to an organic / organic PN heterojunction type element will be described in detail with reference to FIG. 2. The transparent insulating support 1 and the upper electrode 2,
It has an oriented P-type organic compound layer 5a, an amorphous N-type organic compound layer 5b, an oriented P-type organic compound layer 6a, an amorphous N-type organic compound layer 6b, and a lower electrode 4. Note that 5a and 5b and 6a and 6b are layers made of organic compounds having the same composition. Further, the organic compound layer having the alignment film and the amorphous film may be a single layer or multiple layers.
【0012】次に、本発明を無機/有機のPNヘテロ接
合型素子に適用した例を図3を参照しながら具体的に説
明すると、透光性絶縁支持体1から順次、上部電極2、
N型無機半導体層7、配向性P型有機化合物層6a、非
晶質性P型有機化合物層6b、下部電極4を有するもの
である。Next, an example in which the present invention is applied to an inorganic / organic PN heterojunction type element will be described in detail with reference to FIG. 3, in which the translucent insulating support 1 and the upper electrode 2,
It has an N-type inorganic semiconductor layer 7, an oriented P-type organic compound layer 6a, an amorphous P-type organic compound layer 6b, and a lower electrode 4.
【0013】次に、本発明を無機/有機/有機のNNP
ヘテロ接合型素子に適用した例を図4を参照しながら具
体的に説明すると、透光性絶縁支持体1から順次、上部
電極2、N型無機半導体層7、配向性N型有機化合物層
5a、非晶質性N型有機化合物層5b、配向性P型有機
化合物層6a、非晶質性P型有機化合物層6b、下部電
極4を有するものである。また配向膜と非晶質膜を有す
る有機化合物層は、単層でも多層でもかまわない。Next, the present invention is applied to an inorganic / organic / organic NNP.
An example applied to a heterojunction device will be specifically described with reference to FIG. 4. In this order, from the transparent insulating support 1, the upper electrode 2, the N-type inorganic semiconductor layer 7, and the oriented N-type organic compound layer 5a are sequentially formed. The amorphous N-type organic compound layer 5b, the oriented P-type organic compound layer 6a, the amorphous P-type organic compound layer 6b, and the lower electrode 4. The organic compound layer having the alignment film and the amorphous film may be a single layer or multiple layers.
【0014】次に、本発明を無機/有機/有機/有機の
NNPPヘテロ接合型素子に適用した例を図5を参照し
ながら具体的に説明すると、透光性絶縁支持体1から順
次、上部電極2、N型無機半導体層7、配向性N型有機
化合物層5a、非晶質性N型有機化合物層5b、配向性
P型有機化合物層6a、非晶質性P型有機化合物層6
b、配向性P型有機化合物層6′a、非晶質性P型有機
化合物層6′b、下部電極4を有するものである。なお
6(6a、6b)と6′(6′a、6′b)は異なった
有機化合物の層である。また配向膜と非晶質膜を有する
有機化合物層は、単層でも多層でもかまわない。Next, an example in which the present invention is applied to an inorganic / organic / organic / organic NNPP heterojunction type element will be described in detail with reference to FIG. Electrode 2, N-type inorganic semiconductor layer 7, oriented N-type organic compound layer 5a, amorphous N-type organic compound layer 5b, oriented P-type organic compound layer 6a, amorphous P-type organic compound layer 6
b, an oriented P-type organic compound layer 6'a, an amorphous P-type organic compound layer 6'b, and a lower electrode 4. Note that 6 (6a, 6b) and 6 '(6'a, 6'b) are layers of different organic compounds. The organic compound layer having the alignment film and the amorphous film may be a single layer or multiple layers.
【0015】次に、本発明を有機/有機/有機/有機の
NNPPヘテロ接合型素子に適用した例を図6を参照し
ながら具体的に説明すると、透光性絶縁支持体1から順
次、上部電極2、配向性N型有機化合物層5a、非晶質
性N型有機化合物層5b、配向性N型有機化合物層5′
a、非晶質性N型有機化合物層5′b、配向性P型有機
化合物層6a、非晶質性P型有機化合物層6b、配向性
P型有機化合物層6′a、非晶質性P型有機化合物層
6′b、下部電極4を有するものである。また配向膜と
非晶質膜を有する有機化合物層は、単層でも多層でもか
まわない。Next, an example in which the present invention is applied to an organic / organic / organic / organic NNPP heterojunction device will be described in detail with reference to FIG. Electrode 2, oriented N-type organic compound layer 5a, amorphous N-type organic compound layer 5b, oriented N-type organic compound layer 5 '
a, amorphous N-type organic compound layer 5'b, oriented P-type organic compound layer 6a, amorphous P-type organic compound layer 6b, oriented P-type organic compound layer 6'a, amorphous It has a P-type organic compound layer 6'b and a lower electrode 4. The organic compound layer having the alignment film and the amorphous film may be a single layer or multiple layers.
【0016】次に、本発明を有機/有機のPNヘテロ接
合型タンデム構造素子に適用した例を図7を参照しなが
ら具体的に説明すると、透光性絶縁支持体1上の上部電
極2と下部電極4の間に、配向性N型有機化合物層5
a、非晶質性N型有機化合物層5b、配向性P型有機化
合物層6a、非晶質性P型有機化合物層6b、中間層8
の順で繰り返し積層されている構造を持つ素子である。
また配向膜と非晶質膜を有する有機化合物層は、単層で
も多層でもかまわない。Next, an example in which the present invention is applied to an organic / organic PN heterojunction tandem structure element will be specifically described with reference to FIG. Aligned N-type organic compound layer 5 is formed between lower electrodes 4.
a, amorphous N-type organic compound layer 5b, oriented P-type organic compound layer 6a, amorphous P-type organic compound layer 6b, intermediate layer 8
It is an element having a structure in which the layers are repeatedly stacked in this order.
The organic compound layer having the alignment film and the amorphous film may be a single layer or multiple layers.
【0017】ここでいう電極とは、酸化スズインジウ
ム、酸化スズ、酸化インジウムなどの透明電極、またA
u、Pt、Ni、Pd、Cu、Cr、Ag、Alなどの
金属電極である。また上部電極としては、透光性のもの
がよく、下部電極としては、光反射性の良いものが望ま
しい。The electrode referred to here is a transparent electrode made of indium tin oxide, tin oxide, indium oxide, or the like, or A
Metal electrodes of u, Pt, Ni, Pd, Cu, Cr, Ag, Al, etc. Further, it is preferable that the upper electrode has a light-transmitting property and the lower electrode has a good light-reflecting property.
【0018】本明細書中でいうP型有機化合物は、フタ
ロシアニン化合物類、キナクリドン化合物類、ポルフィ
リン化合物類、アゾ顔料、ジアミノカルバゾール、フェ
ニレンジアミン、トリフェニルアミン、ピラゾニン、ベ
ンジジン、スクアリリウム材料、インジゴ顔料、メロシ
アニン顔料、ピロール誘導体などである。またN型有機
化合物は、ペリレン誘導体、キノン類、ピリリウム塩、
ローダミン色素、フェノチアジン色素、フェナジン色素
等である。またP型有機化合物であるフタロシアニン化
合物類としては、中心金属がH2、Cu、Zn、Mg、
Ag、FeCl、Ni、Pb、AlCl、TiO等で、
アルキル基などで置換されていても良いものが使用され
る。同じくP型有機化合物であるキナクリドン化合物類
としては、3,10−ジメチルキナクリドン、4,11
−ジメチルキナクリドン、2,9−ジメチルキナクリド
ン、2,9−ジメチルオキシキナクリドン等が使用され
る。同じくP型有機化合物であるポルフィリン化合物類
としては、中心金属がH2、Cu、Zn、Mg、Ag、
FeCl、Ni、Pb、SnCl等で、置換基としてフ
ェニル基やピリジル基、エチル基を持っていても良いも
のが使用される。またN型有機化合物であるペリレン誘
導体としては、下記化1〜化3のような構造をとるもの
が使用される。The P-type organic compounds referred to in the present specification include phthalocyanine compounds, quinacridone compounds, porphyrin compounds, azo pigments, diaminocarbazole, phenylenediamine, triphenylamine, pyrazonin, benzidine, squarylium materials, indigo pigments, Examples include merocyanine pigments and pyrrole derivatives. N-type organic compounds include perylene derivatives, quinones, pyrylium salts,
Rhodamine dye, phenothiazine dye, phenazine dye and the like. As the phthalocyanine compounds which are P-type organic compounds, the central metals are H 2 , Cu, Zn, Mg,
Ag, FeCl, Ni, Pb, AlCl, TiO, etc.,
Those which may be substituted with an alkyl group or the like are used. The quinacridone compounds which are also P-type organic compounds include 3,10-dimethylquinacridone and 4,11.
-Dimethylquinacridone, 2,9-dimethylquinacridone, 2,9-dimethyloxyquinacridone and the like are used. Porphyrin compounds, which are also P-type organic compounds, have central metals of H 2 , Cu, Zn, Mg, Ag,
FeCl, Ni, Pb, SnCl or the like which may have a phenyl group, a pyridyl group or an ethyl group as a substituent is used. As the perylene derivative which is an N-type organic compound, one having a structure represented by the following chemical formulas 1 to 3 is used.
【0019】[0019]
【化1】 [Chemical 1]
【0020】[0020]
【化2】 [Chemical 2]
【0021】[0021]
【化3】 [Chemical 3]
【0022】本発明で用いられる有機化合物は上記した
ものに限定されず、真空蒸着又はLB法により成膜で
き、光導電性を示すものであれば使用可能である。The organic compound used in the present invention is not limited to those described above, and any compound that can be formed into a film by vacuum vapor deposition or the LB method and exhibits photoconductivity can be used.
【0023】また、本発明における素子の作製方法とし
ては、上部電極を設けた透光性絶縁支持体上に、配向膜
を室温でまたは下地温度を上げて抵抗加熱蒸着法で真空
蒸着し、連続して抵抗加熱蒸着法で下地温度を0℃以下
にするかもしくは蒸着速度を0.1nm/s以上にして
非晶質膜を作製する方法が好ましく用いられる。この時
に非晶質膜の膜厚は、配向膜の膜厚の1/3以下にする
とさらにピンホールの低減、変換効率の低減の効果が上
がる。As a method of manufacturing the device in the present invention, an alignment film is vacuum-deposited at room temperature or by raising the base temperature by a resistance heating vapor deposition method on a translucent insulating support provided with an upper electrode, and continuously. Then, a method of forming an amorphous film by a resistance heating vapor deposition method at a base temperature of 0 ° C. or lower or at a vapor deposition rate of 0.1 nm / s or higher is preferably used. At this time, if the film thickness of the amorphous film is set to 1/3 or less of the film thickness of the alignment film, the effect of further reducing pinholes and conversion efficiency is further enhanced.
【0024】[0024]
【実施例】以下実施例により本発明をさらに詳細を説明
するが、本発明はこれら実施例に限定されるものではな
い。The present invention will be described in more detail with reference to the following examples, but the present invention is not limited to these examples.
【0025】実施例1 洗浄したスライドガラス上に、Al層を真空蒸着し、そ
の上に銅フタロシアニンを使って配向性有機薄膜(膜厚
50nm)を室温で真空蒸着し、さらにその上に同じ材
料の非晶質性有機薄膜(膜厚30nm)を下地温度−5
0℃、蒸着速度1nm/sで真空蒸着し、さらにその上
にAu層を真空蒸着して本発明による光起電力素子を作
製した。この素子について、Al層側から疑似太陽光を
照射してVoc、Jsc及び変換効率ηの測定を行なっ
た。その結果を表1に示す。Example 1 An Al layer was vacuum-deposited on a cleaned glass slide, and an oriented organic thin film (film thickness 50 nm) was vacuum-deposited on it using copper phthalocyanine at room temperature, and the same material was formed thereon. Amorphous organic thin film (thickness 30 nm) of
Vacuum-deposition was performed at 0 ° C. at a deposition rate of 1 nm / s, and an Au layer was further vacuum-deposited thereon to produce a photovoltaic device according to the present invention. This device was irradiated with pseudo sunlight from the Al layer side to measure Voc, Jsc, and conversion efficiency η. The results are shown in Table 1.
【0026】[0026]
【表1】 [Table 1]
【0027】実施例2 配向性有機薄膜と非晶質性有機薄膜の膜厚をそれぞれ6
0nm、20nmにしたこと以外は実施例1と同様にし
て素子を作製し、同様の測定を行なった。その結果を表
1に示す。Example 2 The thickness of the oriented organic thin film and that of the amorphous organic thin film were each 6
An element was prepared in the same manner as in Example 1 except that the thickness was set to 0 nm and 20 nm, and the same measurement was performed. The results are shown in Table 1.
【0028】比較例1 非晶質性有機薄膜を設けないこと以外は実施例1と同じ
にして(ただし配向性有機薄膜の膜厚は90nmとし
た。)素子を作製し、同様の測定を行なった。その結果
を表1に示す。Comparative Example 1 A device was prepared in the same manner as in Example 1 except that the amorphous organic thin film was not provided (however, the thickness of the oriented organic thin film was 90 nm), and the same measurement was carried out. It was The results are shown in Table 1.
【0029】実施例3 洗浄したITO蒸着膜付きガラス上に、P型有機化合物
としてメタルフリーフタロシアニンを、N型有機化合物
としてペリレンテトラカルボン酸メチルイミドを用い、
P型有機化合物層のみに実施例1と同様に配向性膜と非
晶質膜を作製した。ここで配向性フタロシアニン膜の膜
厚を25nm、非晶質性フタロシアニン膜の膜厚を10
nmとし、また配向性ペリレンテトラカルボン酸メチル
イミド膜の膜厚を50nmとした。そしてその上にAu
層を真空蒸着して本発明による光起電力素子を作製し
た。この素子について、ITO蒸着膜付きガラス側から
疑似太陽光を照射してVoc、Jsc及び変換効率ηの
測定を行なった。その結果を表1に示す。Example 3 Metal-free phthalocyanine was used as the P-type organic compound and perylenetetracarboxylic acid methylimide was used as the N-type organic compound on the washed glass with ITO vapor-deposited film.
An oriented film and an amorphous film were formed in the same manner as in Example 1 only on the P-type organic compound layer. Here, the film thickness of the oriented phthalocyanine film is 25 nm, and the film thickness of the amorphous phthalocyanine film is 10 nm.
and the film thickness of the oriented perylenetetracarboxylic acid methylimide film was 50 nm. And on top of that Au
The layers were vacuum deposited to make a photovoltaic device according to the present invention. This device was irradiated with pseudo sunlight from the glass side with the ITO vapor deposition film to measure Voc, Jsc and conversion efficiency η. The results are shown in Table 1.
【0030】比較例2 非晶質膜を設けないこと以外は実施例3と同様にして
(ただし配向性P型有機薄膜の膜厚は35nm、配向性
N型有機薄膜の膜厚は50nmとした。)素子を作製
し、同様の測定を行なった。その結果を表1に示す。Comparative Example 2 The procedure of Example 3 was repeated except that no amorphous film was provided (the thickness of the oriented P-type organic thin film was 35 nm, and the thickness of the oriented N-type organic thin film was 50 nm). A device was prepared and the same measurement was performed. The results are shown in Table 1.
【0031】実施例4 洗浄したITO蒸着膜付きガラス上に、P型有機化合物
として銅フタロシアニンを、N型有機化合物としてペリ
レンテトラカルボン酸フェニルイミドを用い、N型有機
化合物層のみに実施例1と同様に配向性膜と非晶質膜を
作製した。ここで配向性フタロシアニン膜の膜厚を40
nm、また配向性ペリレンテトラカルボン酸フェニルイ
ミド膜の膜厚を30nm、非晶質性ペリレンテトラカル
ボン酸フェニルイミド膜の膜厚を10nmとした。そし
てその上にAu層を真空蒸着して本発明による光起電力
素子とした。この素子について、ITO蒸着膜付きガラ
ス側から疑似太陽光を照射してVoc、Jsc及び変換
効率ηの測定を行なった。その結果を表1に示す。EXAMPLE 4 Copper phthalocyanine was used as the P-type organic compound and perylenetetracarboxylic acid phenylimide was used as the N-type organic compound on the cleaned glass with ITO vapor-deposited film. Similarly, an oriented film and an amorphous film were prepared. Here, the thickness of the oriented phthalocyanine film is 40
The film thickness of the oriented perylenetetracarboxylic acid phenylimide film was 30 nm, and the film thickness of the amorphous perylenetetracarboxylic acid phenylimide film was 10 nm. Then, an Au layer was vacuum-deposited thereon to obtain a photovoltaic device according to the present invention. This device was irradiated with pseudo sunlight from the glass side with the ITO vapor deposition film to measure Voc, Jsc and conversion efficiency η. The results are shown in Table 1.
【0032】比較例3 非晶質膜を設けないこと以外は実施例4と同様にして
(ただし配向性P型有機薄膜の膜厚は40nm、配向性
N型有機薄膜の膜厚は40nmとした。)素子を作製
し、同様の測定を行なった。その結果を表1に示す。Comparative Example 3 The procedure of Example 4 was repeated except that the amorphous film was not provided (the thickness of the oriented P-type organic thin film was 40 nm, and the thickness of the oriented N-type organic thin film was 40 nm). A device was prepared and the same measurement was performed. The results are shown in Table 1.
【0033】実施例5 洗浄したITO蒸着膜付きガラス上に、P型有機化合物
としてアルミニウムクロロフタロシアニンを、N型有機
化合物としてペリレンテトラカルボン酸メチルイミドを
用い、両方の有機化合物層に実施例1と同様に配向性膜
と非晶質膜を作製した。ここで配向性フタロシアニン膜
の膜厚を40nm、非晶質性フタロシアニン膜の膜厚を
10nm、また配向性ペリレンテトラカルボン酸メチル
イミド膜の膜厚を30nm、非晶質性ペリレンテトラカ
ルボン酸メチルイミド膜の膜厚を10nmとした。そし
てその上にAu層を真空蒸着して本発明による光起電力
素子とした。この素子について、ITO蒸着膜付きガラ
ス側から疑似太陽光を照射してVoc、Jsc及び変換
効率ηの測定を行なった。その結果を表1に示す。Example 5 Aluminum chlorophthalocyanine was used as a P-type organic compound and perylenetetracarboxylic acid methylimide was used as an N-type organic compound on the cleaned glass with ITO vapor-deposited film, and both organic compound layers were the same as in Example 1. An orientated film and an amorphous film were prepared. Here, the thickness of the oriented phthalocyanine film is 40 nm, the thickness of the amorphous phthalocyanine film is 10 nm, the thickness of the oriented perylenetetracarboxylic acid methylimide film is 30 nm, and the amorphous perylenetetracarboxylic acid methylimide film is 30 nm. The film thickness was 10 nm. Then, an Au layer was vacuum-deposited thereon to obtain a photovoltaic device according to the present invention. This device was irradiated with pseudo sunlight from the glass side with the ITO vapor deposition film to measure Voc, Jsc and conversion efficiency η. The results are shown in Table 1.
【0034】比較例4 非晶質膜を設けないこと以外は実施例5と同じにして
(ただし配向性P型有機薄膜の膜厚は50nm、配向性
N型有機薄膜の膜厚は40nmとした。)素子を作製
し、同様の測定を行なった。その結果を表1に示す。Comparative Example 4 The same as Example 5 except that the amorphous film was not provided (however, the thickness of the oriented P-type organic thin film was 50 nm, and the thickness of the oriented N-type organic thin film was 40 nm). A device was prepared and the same measurement was performed. The results are shown in Table 1.
【0035】実施例6 実施例5と同様な素子を10個作製し、その素子の再現
性を評価した。10個の素子の変換効率ηの平均値を1
とした場合、最大値は1.02で、最小値は0.92で
あり、結果が安定していた。その結果を表2に示す。Example 6 Ten elements similar to those of Example 5 were produced and the reproducibility of the elements was evaluated. The average value of the conversion efficiency η of 10 elements is 1
, The maximum value was 1.02 and the minimum value was 0.92, and the result was stable. The results are shown in Table 2.
【0036】[0036]
【表2】 [Table 2]
【0037】比較例5 比較例4と同様な素子を10個作製し、その素子の再現
性を評価した。10個の素子の変換効率ηの平均値を1
とした場合、最大値は1.8で、最小値は0.39であ
り、結果がばらついていた。その結果を表2に示す。Comparative Example 5 Ten elements similar to those of Comparative Example 4 were prepared and the reproducibility of the elements was evaluated. The average value of the conversion efficiency η of 10 elements is 1
, The maximum value was 1.8 and the minimum value was 0.39, and the results varied. The results are shown in Table 2.
【0038】[0038]
【発明の効果】請求項1の光起電力素子によれば、配向
性有機薄膜の上に非晶質性有機薄膜を積層したので、実
施例1と比較例1との対比からも明らかなように、ピン
ホールが低減し、変換効率の向上が可能となる。請求項
2の光起電力素子によれば、P型有機薄膜とN型有機薄
膜の少なくとも一方を配向性膜と非晶質膜との積層にし
たので、実施例3〜5と比較例2〜4との対比からも明
らかなように、ピンホールが低減し、変換効率の向上が
可能となる。さらに、実施例6と比較例5との対比から
も明らかなように、歩留まりの向上も可能となる。請求
項3の光起電力素子によれば、非晶質性有機薄膜の膜厚
を配向性有機薄膜の膜厚に対して1/3以下にする事に
よって、実施例2に示したようにピンホールの低減、変
換効率の向上の効果をさらに有効にする事ができる。According to the photovoltaic element of claim 1, since the amorphous organic thin film is laminated on the oriented organic thin film, it is apparent from the comparison between Example 1 and Comparative Example 1. Moreover, the number of pinholes is reduced, and the conversion efficiency can be improved. According to the photovoltaic element of claim 2, since at least one of the P-type organic thin film and the N-type organic thin film is a laminated layer of an orientation film and an amorphous film, Examples 3 to 5 and Comparative Examples 2 to 2 are formed. As is clear from comparison with No. 4, pinholes are reduced and conversion efficiency can be improved. Further, as is clear from the comparison between Example 6 and Comparative Example 5, the yield can be improved. According to the photovoltaic element of claim 3, the thickness of the amorphous organic thin film is set to 1/3 or less of the thickness of the oriented organic thin film, so that the pin as shown in Example 2 is formed. The effect of reducing holes and improving the conversion efficiency can be made more effective.
【図1】本発明をショットキ接合型素子に適用した例を
示す断面図である。FIG. 1 is a cross-sectional view showing an example in which the present invention is applied to a Schottky junction device.
【図2】本発明を有機/有機のPNヘテロ接合型素子に
適用した例を示す断面図である。FIG. 2 is a sectional view showing an example in which the present invention is applied to an organic / organic PN heterojunction element.
【図3】本発明を無機/有機のPNヘテロ接合型素子に
適用した例を示す断面図である。FIG. 3 is a cross-sectional view showing an example in which the present invention is applied to an inorganic / organic PN heterojunction type element.
【図4】本発明を無機/有機/有機のNNPヘテロ接合
型素子に適用した例を示す断面図である。FIG. 4 is a sectional view showing an example in which the present invention is applied to an inorganic / organic / organic NNP heterojunction element.
【図5】本発明を無機/有機/有機/有機のNNPPヘ
テロ接合型素子に適用した例を示す断面図である。FIG. 5 is a sectional view showing an example in which the present invention is applied to an inorganic / organic / organic / organic NNPP heterojunction element.
【図6】本発明を有機/有機/有機/有機のNNPPヘ
テロ接合型素子に適用した例を示す断面図である。FIG. 6 is a cross-sectional view showing an example in which the present invention is applied to an organic / organic / organic / organic NNPP heterojunction element.
【図7】本発明を有機/有機のPNヘテロ接合型タンデ
ム構造素子に適用した例を示す断面図である。FIG. 7 is a sectional view showing an example in which the present invention is applied to an organic / organic PN heterojunction type tandem structure element.
1 支持体 2 上部電極 3a 配向性有機化合物層 3b 非晶質性有
機化合物層 4 下部電極 5a 配向性N型
有機化合物層 5b 非晶質性N型有機化合物層 5′a 配向性N
型有機化合物層 5′b 非晶質性N型有機化合物層 6a 配向性P型
有機化合物層 6b 非晶質性P型有機化合物層 7 N型無機半導
体層 8 中間層DESCRIPTION OF SYMBOLS 1 support 2 upper electrode 3a oriented organic compound layer 3b amorphous organic compound layer 4 lower electrode 5a oriented N type organic compound layer 5b amorphous N type organic compound layer 5'a oriented N
Type organic compound layer 5'b Amorphous N type organic compound layer 6a Oriented P type organic compound layer 6b Amorphous P type organic compound layer 7 N type inorganic semiconductor layer 8 Intermediate layer
Claims (3)
る光起電力層を挾持してなる光起電力素子において、前
記有機化合物層が同一組成による配向膜と非晶質膜との
積層からなる事を特徴とする有機光起電力素子。1. A photovoltaic device comprising a photovoltaic layer sandwiching at least an organic compound layer between conductors, wherein the organic compound layer comprises a laminate of an alignment film and an amorphous film having the same composition. An organic photovoltaic element characterized by:
する有機化合物層とN型半導体特性を有する有機化合物
層からなる光起電力層を挾持してなる光起電力素子にお
いて、前記2つの有機化合物層の少なくとも一方が、配
向膜及び非晶質膜との積層からなる事を特徴とする有機
光起電力素子。2. A photovoltaic element comprising a photovoltaic layer comprising at least a P-type semiconductor characteristic organic compound layer and an N-type semiconductor characteristic organic compound layer between conductors. An organic photovoltaic element, wherein at least one of the layers comprises a laminate of an alignment film and an amorphous film.
以下であることを特徴とする請求項1又は2に記載の有
機光起電力素子。3. The thickness of the amorphous film is 1/3 of the thickness of the alignment film.
It is the following, The organic photovoltaic cell of Claim 1 or 2 characterized by the following.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3311985A JPH06232435A (en) | 1991-10-30 | 1991-10-30 | Organic photovoltaic device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3311985A JPH06232435A (en) | 1991-10-30 | 1991-10-30 | Organic photovoltaic device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH06232435A true JPH06232435A (en) | 1994-08-19 |
Family
ID=18023815
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3311985A Pending JPH06232435A (en) | 1991-10-30 | 1991-10-30 | Organic photovoltaic device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH06232435A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0902339A1 (en) * | 1997-09-09 | 1999-03-17 | Asulab S.A. | Dial consisting of a solar-cell, especially for a timepiece |
US6067277A (en) * | 1997-09-09 | 2000-05-23 | Asulab S.A. | Dial formed of a solar cell in particular for a timepiece |
US8519258B2 (en) | 1998-08-19 | 2013-08-27 | The Trustees Of Princeton University | Organic photosensitive optoelectronic devices with transparent electrodes |
JP2016105510A (en) * | 1998-08-19 | 2016-06-09 | ザ、トラスティーズ オブ プリンストン ユニバーシティ | Organic photosensitive photoelectric device |
-
1991
- 1991-10-30 JP JP3311985A patent/JPH06232435A/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0902339A1 (en) * | 1997-09-09 | 1999-03-17 | Asulab S.A. | Dial consisting of a solar-cell, especially for a timepiece |
US6067277A (en) * | 1997-09-09 | 2000-05-23 | Asulab S.A. | Dial formed of a solar cell in particular for a timepiece |
US8519258B2 (en) | 1998-08-19 | 2013-08-27 | The Trustees Of Princeton University | Organic photosensitive optoelectronic devices with transparent electrodes |
JP2016105510A (en) * | 1998-08-19 | 2016-06-09 | ザ、トラスティーズ オブ プリンストン ユニバーシティ | Organic photosensitive photoelectric device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI566450B (en) | Material for controlling epitaxial growth of a photoactive layer in a photovoltaic device | |
KR100915530B1 (en) | Organic photovoltaic devices | |
US5264048A (en) | Photoelectric conversion device | |
US10297775B2 (en) | Organic optoelectronics with electrode buffer layers | |
JP2002523904A (en) | Organic photosensitive optoelectronic devices | |
JPH06318725A (en) | Photovoltaic element and its manufacture | |
CN110600614A (en) | Tunneling junction structure of perovskite/perovskite two-end laminated solar cell | |
EP3629392B1 (en) | Organic photosensitive devices with reflectors | |
CN112599675B (en) | Interlayer suitable for laminated solar cell, cell and preparation method | |
JP4759286B2 (en) | Organic solar cell module and manufacturing method thereof | |
US11744089B2 (en) | Multijunction organic photovoltaics incorporating solution and vacuum deposited active layers | |
US20130042906A1 (en) | Quantum-dot sensitized solar cell | |
JPH06232435A (en) | Organic photovoltaic device | |
JPH06177410A (en) | Manufacture of photovoltaic element and its manufacture | |
JP2017126737A (en) | Photoelectric conversion element and method of manufacturing photoelectric conversion element | |
JPH05129643A (en) | Organic photovoltaic device | |
JPH05121770A (en) | Organic photovoltaic device | |
JP2018163959A (en) | Solar cell module and method for manufacturing photoelectric conversion element | |
JPH05275728A (en) | Organic photovoltaic device | |
JP2947593B2 (en) | Stacked organic solar cells | |
JP2935998B2 (en) | Photovoltaic element | |
JPH05121771A (en) | Organic photovoltaic element | |
US20230223205A1 (en) | Multijunction photovoltaic devices with metal oxynitride layer | |
JPS6317343B2 (en) | ||
JP2763619B2 (en) | Electrical element |