JPS6337187B2 - - Google Patents
Info
- Publication number
- JPS6337187B2 JPS6337187B2 JP57226018A JP22601882A JPS6337187B2 JP S6337187 B2 JPS6337187 B2 JP S6337187B2 JP 57226018 A JP57226018 A JP 57226018A JP 22601882 A JP22601882 A JP 22601882A JP S6337187 B2 JPS6337187 B2 JP S6337187B2
- Authority
- JP
- Japan
- Prior art keywords
- plating
- plating solution
- copper
- chemical copper
- copper plating
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 238000007747 plating Methods 0.000 claims description 105
- 239000010949 copper Substances 0.000 claims description 63
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 62
- 229910052802 copper Inorganic materials 0.000 claims description 62
- 239000000126 substance Substances 0.000 claims description 43
- 239000004094 surface-active agent Substances 0.000 claims description 13
- 150000002500 ions Chemical class 0.000 claims description 12
- 150000001412 amines Chemical class 0.000 claims description 9
- 125000001301 ethoxy group Chemical group [H]C([H])([H])C([H])([H])O* 0.000 claims description 8
- DGEZNRSVGBDHLK-UHFFFAOYSA-N [1,10]phenanthroline Chemical compound C1=CN=C2C3=NC=CC=C3C=CC2=C1 DGEZNRSVGBDHLK-UHFFFAOYSA-N 0.000 claims description 6
- 239000008139 complexing agent Substances 0.000 claims description 6
- 239000003638 chemical reducing agent Substances 0.000 claims description 2
- 229910052732 germanium Inorganic materials 0.000 claims description 2
- 229910052718 tin Inorganic materials 0.000 claims description 2
- 150000008044 alkali metal hydroxides Chemical class 0.000 claims 1
- 150000002484 inorganic compounds Chemical class 0.000 claims 1
- 229910010272 inorganic material Inorganic materials 0.000 claims 1
- 229910052745 lead Inorganic materials 0.000 claims 1
- 239000000243 solution Substances 0.000 description 52
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 12
- 230000000694 effects Effects 0.000 description 12
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 9
- 150000003377 silicon compounds Chemical class 0.000 description 9
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 8
- 238000006243 chemical reaction Methods 0.000 description 7
- 150000001875 compounds Chemical class 0.000 description 7
- 239000007788 liquid Substances 0.000 description 7
- -1 hydroxide ions Chemical class 0.000 description 6
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 4
- 238000005342 ion exchange Methods 0.000 description 4
- 229910052710 silicon Inorganic materials 0.000 description 4
- 239000010703 silicon Substances 0.000 description 4
- JPVYNHNXODAKFH-UHFFFAOYSA-N Cu2+ Chemical compound [Cu+2] JPVYNHNXODAKFH-UHFFFAOYSA-N 0.000 description 3
- 239000004115 Sodium Silicate Substances 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- 229910001431 copper ion Inorganic materials 0.000 description 3
- 229910000365 copper sulfate Inorganic materials 0.000 description 3
- ARUVKPQLZAKDPS-UHFFFAOYSA-L copper(II) sulfate Chemical compound [Cu+2].[O-][S+2]([O-])([O-])[O-] ARUVKPQLZAKDPS-UHFFFAOYSA-L 0.000 description 3
- 238000001514 detection method Methods 0.000 description 3
- 239000002932 luster Substances 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 230000035945 sensitivity Effects 0.000 description 3
- 235000019795 sodium metasilicate Nutrition 0.000 description 3
- NTHWMYGWWRZVTN-UHFFFAOYSA-N sodium silicate Chemical compound [Na+].[Na+].[O-][Si]([O-])=O NTHWMYGWWRZVTN-UHFFFAOYSA-N 0.000 description 3
- 229910052911 sodium silicate Inorganic materials 0.000 description 3
- YXIWHUQXZSMYRE-UHFFFAOYSA-N 1,3-benzothiazole-2-thiol Chemical compound C1=CC=C2SC(S)=NC2=C1 YXIWHUQXZSMYRE-UHFFFAOYSA-N 0.000 description 2
- 229910004298 SiO 2 Inorganic materials 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- YBMRDBCBODYGJE-UHFFFAOYSA-N germanium oxide Inorganic materials O=[Ge]=O YBMRDBCBODYGJE-UHFFFAOYSA-N 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 239000003317 industrial substance Substances 0.000 description 2
- 229910021331 inorganic silicon compound Inorganic materials 0.000 description 2
- 239000011734 sodium Substances 0.000 description 2
- 229910001220 stainless steel Inorganic materials 0.000 description 2
- 239000010935 stainless steel Substances 0.000 description 2
- POWFTOSLLWLEBN-UHFFFAOYSA-N tetrasodium;silicate Chemical compound [Na+].[Na+].[Na+].[Na+].[O-][Si]([O-])([O-])[O-] POWFTOSLLWLEBN-UHFFFAOYSA-N 0.000 description 2
- NSMJMUQZRGZMQC-UHFFFAOYSA-N 2-naphthalen-1-yl-1H-imidazo[4,5-f][1,10]phenanthroline Chemical compound C12=CC=CN=C2C2=NC=CC=C2C2=C1NC(C=1C3=CC=CC=C3C=CC=1)=N2 NSMJMUQZRGZMQC-UHFFFAOYSA-N 0.000 description 1
- ZGTMUACCHSMWAC-UHFFFAOYSA-L EDTA disodium salt (anhydrous) Chemical compound [Na+].[Na+].OC(=O)CN(CC([O-])=O)CCN(CC(O)=O)CC([O-])=O ZGTMUACCHSMWAC-UHFFFAOYSA-L 0.000 description 1
- 229910005793 GeO 2 Inorganic materials 0.000 description 1
- 239000002202 Polyethylene glycol Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 1
- 229910000004 White lead Inorganic materials 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 239000000538 analytical sample Substances 0.000 description 1
- 150000001450 anions Chemical class 0.000 description 1
- 238000001479 atomic absorption spectroscopy Methods 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- AILBCCGVXOHXQM-UHFFFAOYSA-K copper sodium hydroxide sulfate Chemical compound S(=O)(=O)([O-])[O-].[Cu+2].[OH-].[Na+] AILBCCGVXOHXQM-UHFFFAOYSA-K 0.000 description 1
- PEVJCYPAFCUXEZ-UHFFFAOYSA-J dicopper;phosphonato phosphate Chemical compound [Cu+2].[Cu+2].[O-]P([O-])(=O)OP([O-])([O-])=O PEVJCYPAFCUXEZ-UHFFFAOYSA-J 0.000 description 1
- XPPKVPWEQAFLFU-UHFFFAOYSA-J diphosphate(4-) Chemical compound [O-]P([O-])(=O)OP([O-])([O-])=O XPPKVPWEQAFLFU-UHFFFAOYSA-J 0.000 description 1
- 235000011180 diphosphates Nutrition 0.000 description 1
- IOUCSUBTZWXKTA-UHFFFAOYSA-N dipotassium;dioxido(oxo)tin Chemical compound [K+].[K+].[O-][Sn]([O-])=O IOUCSUBTZWXKTA-UHFFFAOYSA-N 0.000 description 1
- 238000004821 distillation Methods 0.000 description 1
- 239000012153 distilled water Substances 0.000 description 1
- 238000010410 dusting Methods 0.000 description 1
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 1
- 150000002291 germanium compounds Chemical class 0.000 description 1
- 150000002611 lead compounds Chemical class 0.000 description 1
- RYZCLUQMCYZBJQ-UHFFFAOYSA-H lead(2+);dicarbonate;dihydroxide Chemical compound [OH-].[OH-].[Pb+2].[Pb+2].[Pb+2].[O-]C([O-])=O.[O-]C([O-])=O RYZCLUQMCYZBJQ-UHFFFAOYSA-H 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- WSFSSNUMVMOOMR-NJFSPNSNSA-N methanone Chemical compound O=[14CH2] WSFSSNUMVMOOMR-NJFSPNSNSA-N 0.000 description 1
- IYRGXJIJGHOCFS-UHFFFAOYSA-N neocuproine Chemical compound C1=C(C)N=C2C3=NC(C)=CC=C3C=CC2=C1 IYRGXJIJGHOCFS-UHFFFAOYSA-N 0.000 description 1
- PVADDRMAFCOOPC-UHFFFAOYSA-N oxogermanium Chemical compound [Ge]=O PVADDRMAFCOOPC-UHFFFAOYSA-N 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 150000003014 phosphoric acid esters Chemical class 0.000 description 1
- 229920001223 polyethylene glycol Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 238000003908 quality control method Methods 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 239000008399 tap water Substances 0.000 description 1
- 235000020679 tap water Nutrition 0.000 description 1
- 238000009864 tensile test Methods 0.000 description 1
- 230000008646 thermal stress Effects 0.000 description 1
- 150000003606 tin compounds Chemical class 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K3/00—Apparatus or processes for manufacturing printed circuits
- H05K3/10—Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
- H05K3/18—Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using precipitation techniques to apply the conductive material
- H05K3/181—Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using precipitation techniques to apply the conductive material by electroless plating
- H05K3/187—Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using precipitation techniques to apply the conductive material by electroless plating means therefor, e.g. baths, apparatus
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C18/00—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
- C23C18/16—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
- C23C18/31—Coating with metals
- C23C18/38—Coating with copper
- C23C18/40—Coating with copper using reducing agents
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Manufacturing Of Printed Wiring (AREA)
- Chemically Coating (AREA)
Description
〔発明の利用分野〕
本発明は、高強度な銅皮膜を得ることができる
化学銅めつき液に関するものである。
〔従来技術〕
化学銅めつき液には通常主成分として銅()
イオン、銅()イオンの還元剤、銅()イオ
ンの錯化剤、水酸イオンなどを含む。このような
化学銅めつき液から得られる銅めつき皮膜は、強
度、伸び等の機械的性質が十分でない。従つて、
熱衝撃、くり返し熱応力などでプリント回路板の
導体が破断する問題が生じる。この問題を解決す
るため、化学銅めつきで得る銅めつき皮膜の機械
的性質を改善する方法が公表されている。その例
は、特開昭54−19430のように、上記主成分と2,
2′―ジピリジル、ポリエチレングリコール、アル
カリ可溶性無機ケイ素化合物を含む化学銅めつき
液である。該化学銅めつき液ではアルカリ可溶性
無機ケイ素化合物を二酸化ケイ素に換算し5〜
100mg/l(Siとして0.08〜1.7mmol/)含む
と、化学銅めつき皮膜の引張り強さ50〜58Kgw/
mm2、伸び4.4〜6.7%のものが得られるとしてい
る。しかし、該化学銅めつき液を使用するときに
は次の欠点によつて、使用不能であつた。
化学銅めつき液を調製するには、上水道をイオ
ン交換処理したイオン交換水が用いられる。上水
道には多量のケイ素化合物が含まれ、これが上水
道中、イオン交換し難い非イオン性ケイ素化合物
もしくは重合陰イオンとして存在する。このた
め、イオン交換処理しても、ケイ素化合物は完全
に除去し得ず、イオン交換水中に含まれる。発明
者らの測定によれば、イオン交換水中のケイ素含
有量はSiとして、0.04〜0.43mmol/(平均
0.2mmol/)含まれる。ケイ素を含まぬ水は蒸
留によつて得ることができる。しかし、化学銅め
つき液は数100〜数1000lの規模で用いられるの
で、高価な蒸留水は使用できない。
化学銅めつきは繰り返して使用されるので、こ
れによつてめつき液中にケイ素が持ち込まれる。
めつきを繰り返して使用するとき、めつき液の主
成分(銅イオン、水酸イオン、ホルムアルデヒド
など)の濃度を一定とするために、硫酸銅水酸化
ナトリウム、ホルマリンを溶解した水溶液として
補給する。これら化合物の補給量は、めつき1回
を100cm3の面積にCuとして35μmめつきするとす
る場合、硫酸銅:0.05mol/、水酸化ナトリウ
ム:0.2mol/、ホルムアルデヒド:0.1mol/
、全水溶液量:めつき液1当り、0.1とな
る。例えば水酸化ナトリウムのJIS規格(1級)
によれば、水酸化ナトリウム中のSiO2含有量は
0.04%以下とされているが、その他の化合物では
規格化されておらず、SiO2は強熱残分もしくは
硫化物で沈殿しない物質として規制され、硫酸
銅:0.3%、ホルマリン:0.01%である。よつて、
補給によつて、Siは約0.3mmol/持ち込まれる
可能性がある。
一方、めつき液の建浴は、主成分として、硫酸
銅:0.04mol/、水酸化ナトリウム:0.4mol/
、ホルマリン:0.04mol/、銅イオンの錯化
剤:0.12mol/を、前記イオン交換水に溶かす
ことによつてなされる。
銅イオンの錯化剤としてEDTA―2Naを代表
するとJIS規格(特級)の強熱成分は3.8%であ
る。よつて、建浴したのみで、めつき液中のSiの
最大含有量は5.1mmol/となる。よつて、めつ
きを繰り返すと、Siのめつき液中の含有量は次式
に従つて増加する。
めつき液1中のSi(mmol/)=5.1+0.3n―
(1)(ただし、nはめつき回数)
以上から明らかなように、めつき液中へ不純物
としてSiが含有される要素は極めて多い。特開昭
54−19430によれば、式(1)より、めつき1回目
(n=1)から、その最適量(Siとして0.08〜
1.7mmol/)を越える可能性があり、その確率
も極めて大きい。純度の良い薬品を用いることは
めつきコストを著しく高くすることになるので、
JIS規格以下の工業薬品が用いられる。よつて、
不純物としてのSiの含有は式(1)より、大幅に増大
する。よつて、従来技術によれば、極めて高価な
水と薬品を用い、かつ厳密なる液成分濃度の管理
を行なわないと、めつき初回から目的を達成でき
るものではなかつた。また、偶然めつき可能とな
つたとしても、Si濃度によつてめつき皮膜の特性
が鋭敏に影響されるので、品質管理上、工業的に
最も重要な特性の安定化を得ることができなかつ
た。
さらに、手段を選ばず高価な最純粋の水と薬品
を用いてめつきする場合でも、次なる問題が生じ
た。従来技術によれば、めつき液中のSi濃度は鋭
敏にめつき皮膜の特性に影響するので厳密にSi濃
度を管理する必要がある。Siの分析は極めて難し
く、特に化学銅めつきのようにNaが共存(液中
NaはSiの235倍)すると、Siの分析は難しいと言
われる。原子吸光法によつても、その検出感度は
約2mmol/と言われる。よつて、Si含有量が、
検出感度以下のとき、精度の悪い分析試料の濃縮
操作を併用することになり、厳密な分析が不可能
となつた。この点からも、Si含有量の低いめつき
液は工業的に実現できるものではなかつた。
〔発明の目的〕
本発明の目的は、工業薬品を用いても、化学銅
めつきで析出した金属銅の強度、伸びを著しく向
上して、常に50Kg/mm2以上、3%以上の特性が安
定に得られ、かつ、めつき液管理が容易で実用的
な化学銅めつき液を提供することにある。
〔発明の概要〕
かかる目的を達成するのに、発明者等はアミン
系エトキシ界面活性剤と4B族元素の化合物の作
用効果に着目し、容易に管理できる濃度範囲で高
強度なめつき皮膜を得る液組成を広汎に探索し
た。この結果、アルカリ性のめつき液中で酸素酸
イオンとなる元素のなかで、ケイ素、ゲルマニウ
ム、スズ、鉛の4B族元素化合物と、アミン系エ
トキシ界面活性剤と、αα′―ジピリジル、O―フ
エナントロリンもしくはそれらの誘導体とを含ん
でなる化学銅めつき液を用いることにより本発明
の目的が達成できることを見出した。
本発明の化学銅めつき液は、アミン系エトキシ
界面活性剤とαα′―ジピリジルもしくはO―フエ
ナントロリンもしくはそれらの誘導体を含んでな
る公知の化学銅めつき液に、4B族元素化合物を
添加した組成である。ここにアミン系エトキシ界
面活性剤とは、一般に
[Field of Application of the Invention] The present invention relates to a chemical copper plating solution capable of obtaining a high-strength copper coating. [Prior art] Chemical copper plating solutions usually contain copper as the main component.
ions, reducing agents for copper() ions, complexing agents for copper() ions, hydroxide ions, etc. Copper plating films obtained from such chemical copper plating solutions do not have sufficient mechanical properties such as strength and elongation. Therefore,
A problem arises in which conductors on printed circuit boards break due to thermal shock, repeated thermal stress, etc. In order to solve this problem, methods have been published to improve the mechanical properties of copper plating films obtained by chemical copper plating. Examples include the above principal components and 2,
A chemical copper plating solution containing 2'-dipyridyl, polyethylene glycol, and an alkali-soluble inorganic silicon compound. In this chemical copper plating solution, the alkali-soluble inorganic silicon compound is converted to silicon dioxide and is 5~
If 100mg/l (0.08~1.7mmol/ as Si) is included, the tensile strength of the chemical copper plating film will be 50~58Kgw/
mm 2 and elongation of 4.4 to 6.7%. However, when using this chemical copper plating solution, it was impossible to use it due to the following drawbacks. To prepare a chemical copper plating solution, ion-exchanged water obtained by ion-exchanging tap water is used. Waterworks contain a large amount of silicon compounds, which exist as nonionic silicon compounds or polymerized anions that are difficult to ion exchange. Therefore, even with ion exchange treatment, silicon compounds cannot be completely removed and are contained in ion exchange water. According to measurements by the inventors, the silicon content in ion-exchanged water is 0.04 to 0.43 mmol/(Si) on average.
Contains 0.2mmol/). Silicon-free water can be obtained by distillation. However, since chemical copper plating solutions are used on a scale of several hundred to several thousand liters, expensive distilled water cannot be used. Since chemical copper plating is used repeatedly, it introduces silicon into the plating solution.
When plating is used repeatedly, in order to maintain a constant concentration of the main components of the plating solution (copper ions, hydroxide ions, formaldehyde, etc.), an aqueous solution containing sodium copper sulfate hydroxide and formalin is replenished. The replenishment amounts of these compounds are: copper sulfate: 0.05 mol/, sodium hydroxide: 0.2 mol/, formaldehyde: 0.1 mol/, when plating 35 μm of Cu on an area of 100 cm 3 in one plating.
, Total amount of aqueous solution: 0.1 per plating solution. For example, JIS standard for sodium hydroxide (grade 1)
According to, the SiO 2 content in sodium hydroxide is
It is set at 0.04% or less, but it has not been standardized for other compounds, and SiO 2 is regulated as a substance that does not precipitate as an ignition residue or sulfide. Copper sulfate: 0.3%, formalin: 0.01% . Then,
Approximately 0.3 mmol/Si may be introduced through replenishment. On the other hand, the main components of the plating solution are copper sulfate: 0.04mol/, sodium hydroxide: 0.4mol/
, formalin: 0.04 mol/copper ion complexing agent: 0.12 mol/dissolved in the ion-exchanged water. As a representative copper ion complexing agent, EDTA-2Na has a ignition content of 3.8% according to the JIS standard (special grade). Therefore, the maximum Si content in the plating solution is 5.1 mmol/by just preparing the bath. Therefore, when plating is repeated, the content of Si in the plating solution increases according to the following formula. Si (mmol/) in plating solution 1 = 5.1 + 0.3n-
(1) (where n is the number of times of plating) As is clear from the above, there are many factors in which Si is contained as an impurity in the plating solution. Tokukai Akira
54-19430, from the first plating (n=1), from the first plating (n=1), the optimum amount (Si: 0.08~
There is a possibility that the amount exceeds 1.7 mmol/), and the probability is extremely high. Using chemicals with high purity will significantly increase plating costs, so
Industrial chemicals below JIS standards are used. Then,
According to formula (1), the content of Si as an impurity increases significantly. Therefore, according to the prior art, the objective could not be achieved from the first time of plating unless very expensive water and chemicals were used and the concentrations of liquid components were strictly controlled. Furthermore, even if plating becomes possible by chance, the characteristics of the plating film are sensitively affected by the Si concentration, so it may not be possible to stabilize the properties, which are the most important industrially for quality control. Ta. Furthermore, even when plating is performed using the most expensive expensive water and chemicals, the following problem occurs. According to the prior art, the Si concentration in the plating solution has a sensitive effect on the properties of the plating film, so it is necessary to strictly control the Si concentration. Analysis of Si is extremely difficult, especially when Na coexists (in liquid), such as in chemical copper plating.
(Na is 235 times as much as Si), so analyzing Si is said to be difficult. Even with atomic absorption spectrometry, the detection sensitivity is said to be about 2 mmol/. Therefore, the Si content is
When the detection sensitivity was lower than the detection sensitivity, a concentration operation of the analytical sample with poor accuracy was also used, making a rigorous analysis impossible. From this point of view as well, a plating solution with a low Si content has not been commercially viable. [Object of the Invention] The object of the present invention is to significantly improve the strength and elongation of metallic copper deposited by chemical copper plating, even if industrial chemicals are used, so that the properties are always 50 Kg/mm 2 or more and 3% or more. To provide a chemical copper plating solution that is stably obtained, easy to manage, and practical. [Summary of the Invention] To achieve the above object, the inventors focused on the effects of an amine-based ethoxy surfactant and a compound of group 4B elements, and obtained a high-strength matte film within an easily controllable concentration range. The liquid composition was extensively explored. As a result, among the elements that form oxygen acid ions in an alkaline plating solution, group 4B element compounds of silicon, germanium, tin, and lead, amine-based ethoxy surfactants, αα′-dipyridyl, and O-phenylene It has been found that the objects of the present invention can be achieved by using a chemical copper plating solution containing nanthroline or a derivative thereof. The chemical copper plating solution of the present invention is a known chemical copper plating solution containing an amine-based ethoxy surfactant and αα′-dipyridyl or O-phenanthroline or a derivative thereof, to which a group 4B element compound is added. The composition is as follows. Here, amine-based ethoxy surfactants are generally
本発明をさらに具体的に説明するために、以下
に実施例、比較例を挙げ説明する。実施例、比較
例に用いた化学銅めつきのめつき方法は共通して
次のとおりである。
化学銅めつき液を所定の組成に調整し、70℃で
めつきを行なつた。めつき負荷は1dm2/の一
定である。化学銅めつきを施すステンレススチー
ル板には、ピロリン酸電気銅めつきを瞬間的に施
し、めつき核を形成した後、化学銅めつきを行な
つた。長時間のめつき中には、めつき反応によつ
て銅()イオン他の成分が消費されるので、成
分濃度を自動的に検出し、不足分を自動補給し
た。かかる操作で成分濃度を常に一定に保ちなが
らめつきを行ない、析出金属銅の厚さが約50μm
に至つたときステンレススチール板よりめつき皮
膜を剥離して引張試験に供した。
実施例 1
第1表のNo.1〜10に示す化学銅めつき液を用い
て、めつき皮膜の特性を求めた。この化学銅めつ
き液には、本発明に関するケイ素化合物としてメ
タケイ酸ソーダを0.3〜300ミリモル/含んでい
る。No.1〜9はめつき速度約0.5〜3.0μm/hであ
り、めつき中の液は極めて安定であつた。さら
に、化学銅めつき特有の、液の分解傾向は全く認
められなかつた。析出した銅皮膜は金属銅光沢を
有する優れたものであつた。No.10では、反応面に
吸着するケイ酸イオンが過剰なため、めつき反応
が停止してしまい、めつき皮膜を得ることができ
なかつた。本例で得られためつき皮膜の特性は、
No.3〜8で強度50Kg/mm2以上、伸び4%以上であ
ることがわかつた。この特性は、電気銅めつき、
特にピロリン酸銅浴から得られる皮膜特性(50〜
65Kg/mm2、4〜6%)に匹敵するものである。
このように優れた特性を得るに必要なメタケイ
酸ソーダの添加量は、3〜30ミリモル/(Siと
して85〜850mg/)が良いことがわかつた。その
下限値は、皮膜特性向上に有効な濃度であり、上
限値は、それ以上加えるとめつき反応が停止する
か、伸びを著しく低下することから定めたもので
ある。
以上のように、本発明の化学銅めつきでは、ケ
イ素化合物の添加濃度が実用的な濃度で、めつき
皮膜特性を向上できる。したがつて、極めて実用
的めつき液であることがわかつた。
さらに、第1表に示すように、各種のアミン系
エトキシ界面活性剤を用いても、本発明の効果は
変らないことがわかつた。またαα′―ジピリジル
のかわりにネオクプロイン(2,9―ジメチル―
1、10―フエナントロリン)のようなフエナント
ロリン誘導体を用いても、その効果は同じである
こともわかつた。
In order to explain the present invention more specifically, Examples and Comparative Examples will be given below. The plating method of chemical copper plating used in Examples and Comparative Examples is as follows. A chemical copper plating solution was adjusted to a predetermined composition, and plating was performed at 70°C. The plating load is constant at 1 dm 2 /. The stainless steel plate to which chemical copper plating was applied was instantaneously applied with pyrophosphate electrolytic copper plating to form plating nuclei, and then chemical copper plating was performed. During long plating, copper () ions and other components are consumed by the plating reaction, so the concentration of the components was automatically detected and the shortage was automatically replenished. Through this operation, plating is performed while keeping the component concentration constant, and the thickness of the deposited metallic copper is approximately 50 μm.
When this was reached, the plating film was peeled off from the stainless steel plate and subjected to a tensile test. Example 1 Using the chemical copper plating solutions shown in Nos. 1 to 10 in Table 1, the characteristics of the plating film were determined. This chemical copper plating solution contains 0.3 to 300 mmol of sodium metasilicate as a silicon compound related to the present invention. Nos. 1 to 9 had a plating speed of approximately 0.5 to 3.0 μm/h, and the liquid during plating was extremely stable. Furthermore, there was no tendency for the liquid to decompose, which is characteristic of chemical copper plating. The deposited copper film had an excellent metallic copper luster. In No. 10, the plating reaction stopped due to excessive silicate ions adsorbed on the reaction surface, making it impossible to obtain a plating film. The properties of the dusting film obtained in this example are as follows:
It was found that Nos. 3 to 8 had a strength of 50 Kg/mm 2 or more and an elongation of 4% or more. This characteristic is due to electrolytic copper plating,
In particular, the film properties obtained from copper pyrophosphate baths (50~
65Kg/mm 2 , 4-6%). It has been found that the amount of sodium metasilicate necessary to obtain such excellent properties is 3 to 30 mmol/(85 to 850 mg/as Si). The lower limit value is a concentration effective for improving film properties, and the upper limit value is determined because adding more than that concentration will stop the plating reaction or significantly reduce elongation. As described above, in the chemical copper plating of the present invention, the properties of the plating film can be improved at a practical concentration of the silicon compound added. Therefore, it was found to be an extremely practical plating solution. Furthermore, as shown in Table 1, it was found that the effects of the present invention did not change even when various amine-based ethoxy surfactants were used. Also, instead of αα′-dipyridyl, neocuproine (2,9-dimethyl-
It was also found that the effect was the same even when a phenanthroline derivative such as phenanthroline (1,10-phenanthroline) was used.
【表】【table】
【表】
\
R3
実施例 2
第2表のNo.11〜20に示す化学銅めつき液を用い
てめつき皮膜特性を求めた。この化学銅めつき液
には本発明に関するケイ素化合物としてオルソケ
イ酸ソーダを0.3〜100ミリモル/を含んでい
る。この化学銅めつき液より得られためつき皮膜
は、いずれも金属光沢を有し、特にNo.13〜19では
電気めつき皮膜に匹敵するものであつた。このと
きのオルトケイ酸ソーダの添加量は3〜30ミリモ
ル/であり、実施例1と同じであつた。さら
に、αα′―ジピリジル、フエナントロリンおよび
その誘導体とアミン系エトキシ界面活性剤との組
合せは、いずれもめつき皮膜の伸びと強度の向上
に効果があることがわかつた。したがつて、No.13
〜19のような化学銅めつき液は、実用的な極めて
優れためつき液であることがわかつた。【table】 \
R 3
Example 2 The properties of the plating film were determined using the chemical copper plating solutions shown in Nos. 11 to 20 of Table 2. This chemical copper plating solution contains 0.3 to 100 mmol of sodium orthosilicate as a silicon compound related to the present invention. All of the matted films obtained from this chemical copper plating solution had metallic luster, and in particular, Nos. 13 to 19 were comparable to electroplated films. The amount of sodium orthosilicate added at this time was 3 to 30 mmol/, which was the same as in Example 1. Furthermore, it has been found that combinations of αα'-dipyridyl, phenanthroline, and their derivatives with amine-based ethoxy surfactants are all effective in improving the elongation and strength of the plated film. Therefore, No.13
It has been found that chemical copper plating solutions such as ~19 are extremely excellent practical plating solutions.
【表】【table】
【表】
\ /
EPE〓1… NCH2CH2N R〓−(C2H4O−)1
20−(C3H6O−)4−(C2H4O−)120H
/ \
R R
実施例 3
化学銅めつき液に対し急速に溶解しないSi源を
それぞれ10g/加えた化学銅めつき液を用いて、
第3表のようにめつき皮膜の特性を求めた。な
お、この検討にはSiをめつき液に溶解するため次
の手段をとつた。めつき液をポンプで循環する系
路に設置したポリプロピレン製フイルタに表記の
ケイ素化合物を所定量入れた。その後めつきを行
なうことなく70℃の温度で5〜50時間、液を循環
して溶解した。検討後、めつき液中のSiを原子吸
光々度計にて分析した結果、4〜15ミリモル/
のSiが溶解していることがわかつた。すなわち、
表3に示す化合物は、除々にめつき液に溶解し、
Siの有効濃度に達したことは明らかである。【table】 \ /
EPE〓1… NCH 2 CH 2 NR〓−(C 2 H 4 O−) 1
20 −(C 3 H 6 O−) 4 −(C 2 H 4 O−) 120 H
/ \
RR
Example 3 Using a chemical copper plating solution to which 10 g/each of a Si source that does not dissolve rapidly was added,
The properties of the plating film were determined as shown in Table 3. In this study, the following method was used to dissolve Si in the plating solution. A predetermined amount of the listed silicon compound was placed in a polypropylene filter installed in a system in which the plating solution was circulated by a pump. Thereafter, the solution was circulated and dissolved at a temperature of 70° C. for 5 to 50 hours without plating. After consideration, Si in the plating solution was analyzed using an atomic absorption spectrophotometer, and the result was 4 to 15 mmol/
It was found that some Si was dissolved. That is,
The compounds shown in Table 3 are gradually dissolved in the plating solution,
It is clear that the effective concentration of Si has been reached.
【表】
実施例 4
第4表のNo.25〜29に示す化学銅めつき液を用い
て析出金属銅の特性を求めた。この化学銅めつき
液には、本発明にかかわるゲルマニウム化合物と
して酸化ゲルマニウムを1〜100ミリモル/含
んでいる。この化学銅めつき液から得た皮膜は、
優れた金属光沢を有し、その強度、伸びは実施例
1〜3と同様であつた。めつき液に添加した酸化
ゲルマニウムは、アルカリ性のめつき液に容易に
溶解し、〔GeO(OH)3〕-、〔GeO2(OH)2〕2-、
{〔Ge(OH)4〕8(OH)3}3-などのゲルマニウム酸イ
オンとなると推定された。これらのイオンがケイ
酸イオンと同様の作用でめつき皮膜の特性向上に
有効であることも推定された。また、有効な添加
濃度は3〜30ミリモル/であり、ケイ素化合物
と同じであることも明らかとなつた。[Table] Example 4 The properties of deposited metallic copper were determined using the chemical copper plating solutions shown in Nos. 25 to 29 of Table 4. This chemical copper plating solution contains 1 to 100 mmol/germanium oxide as the germanium compound related to the present invention. The film obtained from this chemical copper plating solution is
It had excellent metallic luster, and its strength and elongation were similar to Examples 1 to 3. Germanium oxide added to the plating solution easily dissolves in the alkaline plating solution, resulting in [GeO(OH) 3 ] - , [GeO 2 (OH) 2 ] 2- ,
It was estimated that it would become a germanate ion such as {[Ge(OH) 4 ] 8 (OH) 3 } 3- . It was also presumed that these ions were effective in improving the properties of the plating film due to the same effect as silicate ions. It has also been revealed that the effective concentration of addition is 3 to 30 mmol/m, which is the same as that of silicon compounds.
【表】
実施例 5
第5表のNo.30〜34に示す化学銅めつき液を用い
て、析出金属銅の特性を求めた。この化学銅めつ
き液には、本発明に関するスズ化合物としてスズ
酸カリを1〜100ミリモル/含んでいる。スズ
の添加濃度が3〜30ミリモル/の範囲で、実施
例1〜4と同様の著しい特性向上効果が認められ
た。このことから、本発明が極めて実用的な、優
れためつき液であることがわかつた。[Table] Example 5 Using the chemical copper plating solutions shown in Nos. 30 to 34 in Table 5, the characteristics of deposited metallic copper were determined. This chemical copper plating solution contains 1 to 100 mmol/potassium stannate as a tin compound related to the present invention. When the concentration of tin added was in the range of 3 to 30 mmol/m, the same remarkable property improvement effect as in Examples 1 to 4 was observed. From this, it was found that the present invention is an extremely practical and excellent tamping liquid.
【表】
実施例 6
第6表のNo.35〜39に示すめつき液で析出金属銅
の特性を求めた。このめつき液には、本発明に関
する鉛化合物として塩基性炭酸鉛を1〜100ミリ
モル/含んでいる。鉛の添加濃度が3〜30ミリ
モル/の範囲で、実施例1〜5と同様の著しい
特性向上効果が認められた。このことから、本発
明が極めて実用的な、優れためつき液であること
がわかつた。[Table] Example 6 The properties of deposited metallic copper were determined using the plating solutions shown in Nos. 35 to 39 of Table 6. This plating solution contains 1 to 100 mmol of basic lead carbonate as a lead compound related to the present invention. When the concentration of lead added was in the range of 3 to 30 mmol/min, remarkable property improvement effects similar to those of Examples 1 to 5 were observed. From this, it was found that the present invention is an extremely practical and excellent tamping liquid.
【表】
比較例
本発明の効果をさらに明らかにするために、第
7表に示す化学銅めつき液を用いて、めつき皮膜
特性を比較した。No.40〜44のめつき液には、メタ
ケイ酸ソーダを3〜10ミリモル/含んでいる。
また、めつき液の安定化に必要な界面活性剤と、
銅()イオンの錯化剤が実施例とは異なつてい
る。
No.40に示すように界面活性剤が本発明とは異な
る場合には、実用的なケイ素の濃度範囲でめつき
皮膜の伸びが不足する。このような傾向はNo.41に
示すように、分子内にアミンを含まない界面活性
剤を用いたとき共通して明らかである。また、No.
42のように、銅()イオンの錯化剤が2―メル
カプトベンゾチアゾールである場合には、めつき
反応が停止するために本発明の効果はない。さら
に、No.43に示すポリオキシエチレン基を有するリ
ン酸エステル系界面活性剤を用いた場合にも、め
つき反応が停止してしまう。めつき反応が停止す
るのは、添加成分の吸着力が過剰なためと考えら
れる。No.44に示す例は、界面活性剤にSH―192を
用いた場合で、このときも、本発明の効果は現わ
れなかつた。さらにケイ素化合物を含まないNo.45
では、強度向上効果は全くなかつた。
以上の例で明らかなごとく、アミン系エトキシ
界面活性剤と、αα′―ジピリジルもしくはO―フ
エナントロリンもしくはそれらの誘導体と4B族
元素化合物の組合せのみが、管理しやすい適切な
濃度領域で電気銅めつきに匹敵する特性となるの
である。[Table] Comparative Example In order to further clarify the effects of the present invention, the properties of the plating film were compared using the chemical copper plating solutions shown in Table 7. The plating solutions No. 40 to 44 contain 3 to 10 mmol of sodium metasilicate.
In addition, surfactants necessary for stabilizing the plating solution,
The complexing agent for copper() ions is different from the example. As shown in No. 40, when the surfactant is different from that of the present invention, the elongation of the plated film is insufficient within the practical silicon concentration range. As shown in No. 41, this tendency is common when using surfactants that do not contain amines in their molecules. Also, No.
When the complexing agent for copper () ions is 2-mercaptobenzothiazole as in No. 42, the present invention has no effect because the plating reaction stops. Furthermore, even when a phosphoric acid ester surfactant having a polyoxyethylene group shown in No. 43 is used, the plating reaction stops. It is thought that the plating reaction stops because the adsorption power of the added component is excessive. In the example shown in No. 44, SH-192 was used as the surfactant, and the effect of the present invention was not exhibited in this case as well. Furthermore, No.45 does not contain silicon compounds.
In this case, there was no strength improvement effect at all. As is clear from the above examples, only the combination of an amine-based ethoxy surfactant, αα′-dipyridyl or O-phenanthroline or their derivatives, and a Group 4B element compound can be used in electrolytic copper in an appropriate concentration range that is easy to manage. It has properties comparable to plating.
【表】【table】
本発明により、従来の化学銅めつき液では達成
できなかつた実用的なめつき液が得られた。すな
わち容易に管理できる濃度範囲で、電気銅めつき
に匹敵する皮膜特性を安定に得ることができると
いう効果を奏することができる。
The present invention provides a practical plating solution that could not be achieved with conventional chemical copper plating solutions. In other words, it is possible to stably obtain film properties comparable to electrolytic copper plating within a concentration range that can be easily controlled.
Claims (1)
銅()イオンの還元剤、アルカリ金属の水酸化
物、アミン系エトキシ界面活性剤、αα′―ジピリ
ジルもしくはO―フエナントロリンもしくはそれ
らの誘導体を含んでなる化学銅めつき液であつ
て、Si、Ge、Sn若しくはPbの無機化合物のうち
いづれかを含んでなることを特徴とする化学銅め
つき液。1 copper() ion, copper() ion complexing agent,
A chemical copper plating solution containing a reducing agent for copper () ions, an alkali metal hydroxide, an amine-based ethoxy surfactant, αα′-dipyridyl or O-phenanthroline, or a derivative thereof, A chemical copper plating solution characterized by containing any one of the following inorganic compounds: , Ge, Sn or Pb.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP22601882A JPS59116366A (en) | 1982-12-24 | 1982-12-24 | chemical copper plating liquid |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP22601882A JPS59116366A (en) | 1982-12-24 | 1982-12-24 | chemical copper plating liquid |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS59116366A JPS59116366A (en) | 1984-07-05 |
JPS6337187B2 true JPS6337187B2 (en) | 1988-07-25 |
Family
ID=16838492
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP22601882A Granted JPS59116366A (en) | 1982-12-24 | 1982-12-24 | chemical copper plating liquid |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS59116366A (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5255015B2 (en) * | 2010-04-28 | 2013-08-07 | 名古屋メッキ工業株式会社 | Electroless copper plating method for polymer fiber |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5220339A (en) * | 1975-08-08 | 1977-02-16 | Hitachi Ltd | Chemical copper plating solution |
JPS5419430A (en) * | 1977-07-13 | 1979-02-14 | Hitachi Ltd | Chemical copper plating solution |
JPS56271A (en) * | 1979-06-15 | 1981-01-06 | Hitachi Ltd | Non-electrolytic copper plating solution |
JPS579865A (en) * | 1980-06-20 | 1982-01-19 | Hitachi Ltd | Electroless copper plating solution |
-
1982
- 1982-12-24 JP JP22601882A patent/JPS59116366A/en active Granted
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5220339A (en) * | 1975-08-08 | 1977-02-16 | Hitachi Ltd | Chemical copper plating solution |
JPS5419430A (en) * | 1977-07-13 | 1979-02-14 | Hitachi Ltd | Chemical copper plating solution |
JPS56271A (en) * | 1979-06-15 | 1981-01-06 | Hitachi Ltd | Non-electrolytic copper plating solution |
JPS579865A (en) * | 1980-06-20 | 1982-01-19 | Hitachi Ltd | Electroless copper plating solution |
Also Published As
Publication number | Publication date |
---|---|
JPS59116366A (en) | 1984-07-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1716949B1 (en) | Immersion method | |
KR102286510B1 (en) | Pretreating agent for electroless plating, and method for pretreating the printed circuit board substrate by using said pretreating agent for electroless plating, and method for preparing the same | |
US20020084002A1 (en) | Process and solution for providing a conversion coating on a metallic surface I | |
US20100044341A1 (en) | Method of surface treatment for aluminum or aluminum alloy | |
EP0132594A1 (en) | Electroless copper plating solution | |
US5460694A (en) | Process for the treatment of aluminum based substrates for the purpose of anodic oxidation, bath used in said process and concentrate to prepare the bath | |
US4849124A (en) | Copper etching solution | |
US5320737A (en) | Treatment to reduce solder plating whisker formation | |
WO2011147448A1 (en) | Composition and method for micro etching of copper and copper alloys | |
US4873122A (en) | Treating laminates with a wetting/reducing solution after desmearing with permanganate | |
US3216835A (en) | Synergistic chelate combinations in dilute immersion zincate solutions for treatment of aluminum and aluminum alloys | |
KR920002710B1 (en) | Chemical copper plating method | |
KR100647148B1 (en) | High-purity alkali etching solution for silicon wafer and alkali etching method of silicon wafer | |
JPS6337187B2 (en) | ||
EP0101820B1 (en) | Process for the protective sealing of anodized aluminium and its alloys | |
NO131083B (en) | ||
US20160108254A1 (en) | Zinc immersion coating solutions, double-zincate method, method of forming a metal plating film, and semiconductor device | |
JP2007308796A (en) | Electroless gold plating liquid and electroless gold plating method | |
US20240191361A1 (en) | Chemical solution for removing precious metal, method for manufacturing chemical solution, method for treating substrate, method for manufacturing semiconductor device | |
CN109338343A (en) | A kind of chemical silver plating solution and silver plating method | |
JPS619578A (en) | Chemical copper plating method | |
JPS612386A (en) | Method of producing printed circuit board | |
JPS60255979A (en) | Chemical copper plating solution | |
JP3033455B2 (en) | Electroless nickel plating of aluminum | |
EP1555335B1 (en) | Additive for plating bath |