[go: up one dir, main page]

JPS6336444B2 - - Google Patents

Info

Publication number
JPS6336444B2
JPS6336444B2 JP55079545A JP7954580A JPS6336444B2 JP S6336444 B2 JPS6336444 B2 JP S6336444B2 JP 55079545 A JP55079545 A JP 55079545A JP 7954580 A JP7954580 A JP 7954580A JP S6336444 B2 JPS6336444 B2 JP S6336444B2
Authority
JP
Japan
Prior art keywords
plane
thermocouple
furnace
temperature distribution
disk
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55079545A
Other languages
Japanese (ja)
Other versions
JPS574527A (en
Inventor
Nobuyasu Hase
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP7954580A priority Critical patent/JPS574527A/en
Publication of JPS574527A publication Critical patent/JPS574527A/en
Publication of JPS6336444B2 publication Critical patent/JPS6336444B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K1/00Details of thermometers not specially adapted for particular types of thermometer
    • G01K1/14Supports; Fastening devices; Arrangements for mounting thermometers in particular locations
    • G01K1/146Supports; Fastening devices; Arrangements for mounting thermometers in particular locations arrangements for moving thermometers to or from a measuring position

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Temperature Or Quantity Of Heat (AREA)

Description

【発明の詳細な説明】 本発明は温度測定装置に関し、特に電気炉内部
の断面方向の正確な温度分布の計測手段を容易な
らしむるとともに、半導体試料等の熱処理時にお
ける歩留り向上への一助となすことを目的とす
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a temperature measuring device, and in particular, facilitates the measurement of accurate temperature distribution in the cross-sectional direction inside an electric furnace, and also helps improve yield during heat treatment of semiconductor samples, etc. The purpose is to do something.

電気炉内部の温度分布の測定は一般に第1図に
示すように電気炉1の長さ相当の熱電対3を炉心
管2中へ挿入することによつて電気炉内部の長さ
方向における温度分布を測定している。この場
合、電気炉内部(炉心管内部)の任意点の断面内
の温度計測は面内の特定点に熱電対設定が困難で
あるため殆ど測定されることがなく、現実の温度
分布測定は第1図の点線で示したような地点のも
ので、A−A′面内については一点の温度を知る
のみで、A−A′面内の任意点の測温は極めて困
難であつた。
Generally, the temperature distribution inside the electric furnace is measured by inserting a thermocouple 3 corresponding to the length of the electric furnace 1 into the core tube 2, as shown in FIG. are being measured. In this case, temperature measurement within the cross section at any point inside the electric furnace (inside the furnace core tube) is almost never done because it is difficult to set a thermocouple at a specific point within the plane, and actual temperature distribution measurement is difficult. At the point shown by the dotted line in Figure 1, the temperature at only one point within the A-A' plane was known, and it was extremely difficult to measure the temperature at any point within the A-A' plane.

一方、例えば最近の半導体産業にみられるよう
に、温度処理すべきウエハ等の試料は益々大口径
化し、それに伴つて電気炉自体の口径も次第に大
型化されてくると、電気炉の長さ方向の温度分布
のみでは不充分であり、断面内の温度分布の正確
な把握、制御が必要である。
On the other hand, as seen in the recent semiconductor industry, samples such as wafers to be temperature-treated are becoming increasingly larger in diameter, and along with this, the diameter of the electric furnace itself is also gradually increasing. Merely knowing the temperature distribution in the cross section is insufficient, and it is necessary to accurately understand and control the temperature distribution within the cross section.

本発明は電気炉(炉心管)断面内の任意の点に
熱電対を容易に設置し得る装置を提供するもの
で、基本的には第2図aに示したように円板4に
溝6を設けた面内軸方向指定用円板と、同bに示
す円板にS字状またはらせん状の溝7,8を設け
た位置指定用円板9,10から構成されている。
The present invention provides a device that allows thermocouples to be easily installed at any point within the cross section of an electric furnace (furnace core tube).Basically, as shown in FIG. It consists of a disk for specifying an in-plane axial direction, and position specifying disks 9 and 10, each of which is provided with S-shaped or spiral grooves 7 and 8, as shown in FIG.

軸方向指定用円板4、位置指定用円板9,10
はいずれも高温に耐え且つ炉心管内部に汚染を起
さないような材質例えば石英板等で作られ、斜視
図である第3図および炉中断面図である第4図に
示すような構成で電気炉炉心管2中に熱電対3と
共に設置する。熱電対3は保護管内に挿入されて
いる。
Axial direction designation disc 4, position designation disc 9, 10
Both are made of a material that can withstand high temperatures and do not cause contamination inside the furnace tube, such as quartz plate, and have the configuration shown in Figure 3, which is a perspective view, and Figure 4, which is a cross-sectional view of the furnace. It is installed together with a thermocouple 3 in a core tube 2 of an electric furnace. The thermocouple 3 is inserted into the protection tube.

第3図は面内軸方向指定用円板4とS字状の位
置指定用円板10とを用いたもので、対向する2
枚の一対の円板10は支持棒11で連結され、同
2枚の一対の円板4は支持棒12にて連結されて
いる。そして熱電対は円板4の直線状の溝6およ
び円板10のS字状の溝7に挿入され、第3図の
状態でたとえば全体が電気炉1の炉心管2内に挿
入される。すなわち、熱電対3は溝6,7内を自
由に動き得る構成となつている。
FIG. 3 shows an example using an in-plane axial direction designating disc 4 and an S-shaped position designating disc 10, which are opposed to each other.
A pair of discs 10 are connected by a support rod 11, and a pair of discs 4 are connected by a support rod 12. The thermocouple is then inserted into the linear groove 6 of the disc 4 and the S-shaped groove 7 of the disc 10, and the entire thermocouple is inserted, for example, into the core tube 2 of the electric furnace 1 in the state shown in FIG. That is, the thermocouple 3 is configured to be able to move freely within the grooves 6 and 7.

まず電気炉1中の測定したい地点たとえば第1
図A−A′面の断面中心部に熱電対3の先端部を
設置しておく。次いで断面内の測定したい方向に
面内軸方向指定用円板4を回転して合わせる。例
えば面内水平方向の温度分布測定に際しては面内
軸方向指定用円板4および位置指定用円板10を
夫々第5図の如く設置する。この場合、熱電対3
は面内中心部に位置する。
First, the point to be measured in the electric furnace 1, for example, the first
The tip of the thermocouple 3 is installed at the center of the cross section of the plane A-A' in FIG. Next, the in-plane axial direction specifying disk 4 is rotated to align with the direction in the cross section that is desired to be measured. For example, when measuring the temperature distribution in the in-plane horizontal direction, the in-plane axial direction specifying disk 4 and the position specifying disk 10 are respectively installed as shown in FIG. In this case, thermocouple 3
is located at the center of the plane.

次に、熱電対を第5図のC−A又はC−A′方
向へ僅かにずらした後、位置指定用円板4を徐々
に回転させると熱電対位置をC→A,C→A′の
方向へずらすことができ、したがつてS字状の溝
7に応じて熱電対3が炉2内を移動し、面内水平
方向の任意の点の温度分布が容易に測定し得る。
面内の他の方向についても軸方向指定用円板4,
10を適当な方向に設定することにより容易に測
定できる。
Next, after slightly shifting the thermocouple in the direction of C-A or C-A' in FIG. Therefore, the thermocouple 3 moves within the furnace 2 according to the S-shaped groove 7, and the temperature distribution at any point in the horizontal direction within the plane can be easily measured.
Also for other directions within the plane, the axial direction designating disk 4,
10 in an appropriate direction, measurement can be easily performed.

なお、円板10に代えてらせん状の溝8を有す
る円板9を用いても、より一層炉2内において広
範囲に温度分布を測定することができる。
Note that even if a disk 9 having a spiral groove 8 is used instead of the disk 10, the temperature distribution within the furnace 2 can be measured over a wider range.

以上のように、本発明によれば電気炉の長さ方
向の温度分布状態は勿論のことながら、近年益々
大口径化しつつある半導体等の試料の熱処理に際
して面内の温度分布の正確な把握をすることがで
きる。炉内の温度分布を広範囲に測定して把握す
ることは製造デバイスの特性上のバラツキ要因の
究明、歩溜り向上等に関して極めて重要な関心事
であり、炉の改善または均熱な使用可能範囲の設
定等が容易に可能となる。なお、本発明は半導体
製造用に限らず広く熱処理用の装置に使用するこ
とができる。
As described above, according to the present invention, it is possible to accurately grasp not only the temperature distribution state in the longitudinal direction of an electric furnace, but also the in-plane temperature distribution during heat treatment of samples such as semiconductors, which have become increasingly large in diameter in recent years. can do. Measuring and understanding the temperature distribution in the furnace over a wide range is extremely important for investigating the causes of variations in the characteristics of manufacturing devices and improving yields. Settings etc. can be easily made. Note that the present invention can be used not only for semiconductor manufacturing but also for a wide variety of heat treatment devices.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来法によつて炉内温度分布測定を行
なう場合の構造図、第2図a,b,cは面内軸方
向指定円板および位置指定用円板の概略図、第3
図は本考案の一実施例にかかる温度測定装置の概
略図、第4図は第3図の装置を挿入した炉の構造
図、第5図は面内温度分布測定に際して水平方向
の測定を行なう場合の夫々の円板の位置を示す図
である。 1……電気炉、2……炉心管、3……熱電対、
4……面内軸方向指定用円板、6,7,8……
溝、9,10……位置指定用円板。
Figure 1 is a structural diagram when measuring the temperature distribution in the furnace using the conventional method; Figures 2a, b, and c are schematic diagrams of the in-plane axial direction designation disk and the position designation disk;
The figure is a schematic diagram of a temperature measuring device according to an embodiment of the present invention, FIG. 4 is a structural diagram of a furnace into which the device of FIG. 3 is inserted, and FIG. 5 is a horizontal direction measurement when measuring in-plane temperature distribution. It is a figure which shows the position of each disk in case. 1... Electric furnace, 2... Furnace tube, 3... Thermocouple,
4... Disk for specifying in-plane axial direction, 6, 7, 8...
Groove, 9, 10... Disc for position designation.

Claims (1)

【特許請求の範囲】[Claims] 1 異つた形状に第1、第2溝をそれぞれ有する
第1、第2の板状体と、熱処理装置内に設置され
るとともに前記第1、第2の溝にて前記熱処理装
置内の位置が制御される熱電対とを備え、前記板
状体はそれぞれ所定間隔を有して対になつている
とともに一方に対して他方が回転可能であり、か
つ前記熱電対は2対の板状体のそれぞれの溝を挿
通してなる温度測定装置。
1. First and second plate-shaped bodies having first and second grooves in different shapes, respectively, are installed in a heat treatment apparatus, and the positions in the heat treatment apparatus are determined by the first and second grooves. a thermocouple to be controlled, the plate-like bodies are arranged in pairs with a predetermined interval between each other, and one of the plate-like bodies is rotatable with respect to the other; Temperature measuring device inserted through each groove.
JP7954580A 1980-06-11 1980-06-11 Measuring apparatus for temperature Granted JPS574527A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7954580A JPS574527A (en) 1980-06-11 1980-06-11 Measuring apparatus for temperature

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7954580A JPS574527A (en) 1980-06-11 1980-06-11 Measuring apparatus for temperature

Publications (2)

Publication Number Publication Date
JPS574527A JPS574527A (en) 1982-01-11
JPS6336444B2 true JPS6336444B2 (en) 1988-07-20

Family

ID=13692961

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7954580A Granted JPS574527A (en) 1980-06-11 1980-06-11 Measuring apparatus for temperature

Country Status (1)

Country Link
JP (1) JPS574527A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6218304A (en) * 1985-07-17 1987-01-27 Bridgestone Corp Pneumatic tire
DE3710721A1 (en) * 1987-03-31 1988-10-13 Ernst Schlessmann METHOD FOR MEASURING THE TEMPERATURE PROFILE OF A CHAMBER AND TEMPERATURE CHAMBER FOR CARRYING OUT THIS METHOD
JP2788398B2 (en) * 1992-10-08 1998-08-20 住友ゴム工業株式会社 tire
CN103868609A (en) * 2014-03-13 2014-06-18 浙江泰索科技有限公司 Leading-in type free transferring positioning flange

Also Published As

Publication number Publication date
JPS574527A (en) 1982-01-11

Similar Documents

Publication Publication Date Title
JP4168468B2 (en) Low power consumption gas chromatograph system
JPS6336444B2 (en)
Mazieres Micro and Semimicro Differential Thermal Analysis (μ. DTA).
CN204718702U (en) A kind of burner hearth temperature field measurement device
CN104864974A (en) Furnace temperature field measurement device
US3857284A (en) Device and method for measuring the water-vapor content of a liquid or gaseous medium
US3805589A (en) Quenching dilatometer
Weeks et al. Apparatus for the Measurement of the Thermal Conductivity of Solids
DE1948711A1 (en) Electrical temperature measurement arrangement
KR100844199B1 (en) Micro Moving Temperature Measuring Device Using Thermocouple
JPS6047981B2 (en) Jig for detecting internal temperature of horizontal heat treatment furnace
KR100413646B1 (en) Temperature-detecting element
Xumo et al. A new high-temperature platinum resistance thermometer
JPH09113372A (en) Multi-point temperature measuring element
US4411859A (en) Gamma sensor having combined thermal bridge and centering means
JPH1026594A (en) Thermal analysis element and its manufacture
Hebbard et al. Meaurement of Tube Wall Temperatures in Heat Transfer Experiments
SU1469411A1 (en) Device for determining heat conduction of solid materials
Clem Jr Development of a special thermocouple for measuring transient temperatures within a solid body
Basinski et al. Furnace construction and thermocouple arrangements for a high temperature X-ray camera
JPS586136A (en) Heat treatment method for semiconductor wafer
Beattie et al. An Experimental Study of the Absolute Temperature Scale. I. The Construction of Several Types of Platinum Resistance Thermometers
JPH0541386Y2 (en)
KR200206000Y1 (en) Optical pyrometer and thermocouple combined calibration tube
Boston et al. Furnaces with low thermal gradients for molten salt spectrophotometry