[go: up one dir, main page]

JPS6335532A - Method for producing isovaleraldehyde and/or isoamyl alcohol - Google Patents

Method for producing isovaleraldehyde and/or isoamyl alcohol

Info

Publication number
JPS6335532A
JPS6335532A JP61181251A JP18125186A JPS6335532A JP S6335532 A JPS6335532 A JP S6335532A JP 61181251 A JP61181251 A JP 61181251A JP 18125186 A JP18125186 A JP 18125186A JP S6335532 A JPS6335532 A JP S6335532A
Authority
JP
Japan
Prior art keywords
isobutylene
methanol
hydrogen
catalyst
methyl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61181251A
Other languages
Japanese (ja)
Other versions
JPH0660113B2 (en
Inventor
Takashi Deguchi
隆 出口
Masaru Ishino
石野 勝
Shoichi Sago
正一 佐合
Mitsuhisa Tamura
田村 光久
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP61181251A priority Critical patent/JPH0660113B2/en
Publication of JPS6335532A publication Critical patent/JPS6335532A/en
Publication of JPH0660113B2 publication Critical patent/JPH0660113B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

PURPOSE:To obtain the titled compound useful as a raw material for perfume, etc., industrially advantageously without requiring complicated operation and device, by using methyl-t-butyl ether as a starting raw material and passing through a third process to convert methyl-t-butyl ether into isobutylene and methanol in the presence of a catalyst. CONSTITUTION:Methyl-t-butyl ether is used as a raw material and converted into isobutylene and methanol in the presence of a solid acid catalyst (e.g. silica or zinc oxide). The reaction temperature is 70-500 deg.C, preferably 100-400 deg.C and the pressure is preferably normal pressure-40atm. Then reaction is carried out in the presence of a metal and/or a metallic oxide at 150-450 deg.C, methanol is selectively converted into carbon monoxide and hydrogen, then converted carbon monoxide and hydrogen are reacted with isobutylene in the presence of an oxo synthesis catalyst preferably at 100-200 deg.C at 70-350atm. to give the aimed compound.

Description

【発明の詳細な説明】 〈産業上の利用分骨〉 本発明は出発原料としてメチル−t−ブチルエーテルを
用いるイソパレルアルデヒドおよび/またはイソアミル
アルコールの製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Applications> The present invention relates to a method for producing isoparealdehyde and/or isoamyl alcohol using methyl-t-butyl ether as a starting material.

〈従来の技術〉 イソパレルアルデヒド、イソアミルアルコール(以下、
それぞれIVA、IAAと略記する。)は香料、医薬品
、各種溶剤等の原料として重要な化合物であり、天然油
から抽出することにより得られることも良く知られてい
る。
<Conventional technology> Isoparealdehyde, isoamyl alcohol (hereinafter referred to as
Abbreviated as IVA and IAA, respectively. ) is an important compound as a raw material for perfumes, medicines, various solvents, etc., and it is well known that it can be obtained by extraction from natural oils.

することも提案されている(例えば特開昭58−206
587号公報)。
It has also been proposed to
Publication No. 587).

〈発明が解決しようとする問題点〉 天然油から抽出による方法では得られた目的物の純度が
低いという欠点、更には原料が天然物であるためその供
給量が天候等に大きく左右されるという欠点があった。
<Problems to be solved by the invention> The method of extracting from natural oil has the disadvantage that the purity of the target product obtained is low, and furthermore, since the raw material is a natural product, the supply amount is greatly affected by weather etc. There were drawbacks.

一方、オキソ反応による方法を工業的に実施する場合は
原料オレフィンとして、ナフサの分鎗 解で得られるC4  留分からブタジェンを分縮除去し
たいわゆるスペントBB(イソブチレン、1−ブテン、
2−ブテン等を含有する)、もしくは該スペントBBを
さらに精製分離することによって得られるイソブチレン
が用いられる。
On the other hand, when carrying out the oxo reaction method industrially, the raw material olefin is so-called spent BB (isobutylene, 1-butene,
(containing 2-butene, etc.) or isobutylene obtained by further purifying and separating the spent BB.

しかしながら前者の場合は生成物が物性の近似した異性
体混合物となり、後者の場合はスペン1− B B自体
が物性の極めて近似した異性体混合物であるため、I!
rI者の場合は目的物の、後者のネルギーを消費すると
いう大きな欠点があった。
However, in the former case, the product is a mixture of isomers with similar physical properties, and in the latter case, the product is an isomer mixture with very similar physical properties, so I!
In the case of rI, there was a major drawback in that the energy of the latter was consumed.

更に、従来のオキソ法では一酸化炭素源、水素源として
、石炭、石油あるいは天然ガス等の部分酸化もしくは水
蒸気改質により製造されるいわゆる合成ガスが用いられ
ており、該合成ガスの製造設備も別途必要とするという
欠点があった。
Furthermore, in the conventional oxo method, so-called synthesis gas produced by partial oxidation or steam reforming of coal, oil, or natural gas is used as a carbon monoxide source and hydrogen source, and the synthesis gas production equipment is also limited. It has the disadvantage that it requires a separate service.

く問題を解決するための手段、発明の効果〉このような
状況下で、本発明者らはより工業的に有利なIVAおよ
び/またはIAAの製造方法を開発すべく鋭意検討を重
ねた結果、出発原料としてメチル−t−ブチルエーテル
を用いるという従来とは全く異なる新規方経路に基づく
方法で、かつ従来法の前述の欠点を一挙に解決し、しか
も各工程も工業的に実施し易い極めて有利な方法を見出
し、本発明を完成するに至った。
Means for Solving the Problems and Effects of the Invention> Under these circumstances, the present inventors have conducted intensive studies to develop a more industrially advantageous method for producing IVA and/or IAA. This method is based on a new route that is completely different from the conventional method by using methyl t-butyl ether as a starting material, and it solves all the above-mentioned drawbacks of the conventional method at once, and is extremely advantageous because each step is easy to implement industrially. They discovered a method and completed the present invention.

すなわち本発明は ■ 固体酸触媒の存在下にメチル−t−ブチルエーテル
をイソブチレンとメタノールに変換せしめ(第1工程)
、 ■ 次で、金属触媒および/または金属酸化物触媒の存
在下にメタノールを一酸化炭素”と水素に変換せしめ(
第1工程)、 ■ しかる後に、オキソ合成触媒の存在下にイソブチレ
ンと一酸化炭素と水素とを反応せしめる(第■工程) ことを特徴とする工業的に極めて優れたIVAおよび/
またはIAAの製造方法を提供するものである。
That is, the present invention consists of (1) converting methyl-t-butyl ether into isobutylene and methanol in the presence of a solid acid catalyst (first step);
, ■ The methanol is then converted to carbon monoxide and hydrogen in the presence of a metal catalyst and/or a metal oxide catalyst (
(1st step), (1) Thereafter, isobutylene, carbon monoxide, and hydrogen are reacted in the presence of an oxo synthesis catalyst (step (2)).
Alternatively, the present invention provides a method for producing IAA.

以下、本発明について詳細に説明する。The present invention will be explained in detail below.

■ メチル−t−ブチルエーテルをイソブチレンとメタ
ノールに変換せしめる工程(第1工程)。
(1) Step of converting methyl-t-butyl ether into isobutylene and methanol (first step).

CH,QC(CHs )s−→(C山)、CwC式+C
山OH本工程で使用される触媒としては、例えばシリカ
、アルミナ、チタニア、酸化亜鉛、酸化バナジウム、酸
化ホウ素、酸化スズ、酸化ランタン、酸化ニオブ等の酸
化物系触媒、リン酸アルミニウム、リン酸ジルコニウム
、リン酸チタニウム、リン酸亜鉛、リン酸ホウ素、リン
酸バナジウム等のリン酸塩系触媒、硫酸ニッケル、硫酸
亜鉛、硫酸アルミニウム、硫酸マンガン、硫酸銅、硫酸
ストロンチウム、硫酸マグネシウム、硫酸バリウム、硫
酸鉄、硫酸クロム等の硫酸塩系触媒、酸性白土、クラリ
ット、ベントナイト、カオリン、モンモリロナイト等の
天然粘土鉱物系触媒、A、X。
CH, QC (CHs)s-→(C mountain), CwC formula +C
Examples of catalysts used in the YamaOH main process include oxide catalysts such as silica, alumina, titania, zinc oxide, vanadium oxide, boron oxide, tin oxide, lanthanum oxide, and niobium oxide, aluminum phosphate, and zirconium phosphate. , phosphate catalysts such as titanium phosphate, zinc phosphate, boron phosphate, vanadium phosphate, nickel sulfate, zinc sulfate, aluminum sulfate, manganese sulfate, copper sulfate, strontium sulfate, magnesium sulfate, barium sulfate, iron sulfate , sulfate-based catalysts such as chromium sulfate, natural clay mineral-based catalysts such as acid clay, clarite, bentonite, kaolin, montmorillonite, A, X.

挙げられる。Can be mentioned.

これ等は2種以上を組合わせて用いても良いし、担体に
担持して用いることもでき、通常300°C以上の温度
で焼成した後、反応に使用されろ。
These may be used in combination of two or more, or supported on a carrier, and are usually used in the reaction after being fired at a temperature of 300°C or higher.

原料メチル−t−ブチルエーテルとしては特うζ制限は
なく、工業的に入手容易なガソリンぶ加削用のものでも
十分使用できる。その供給速度は反応温度、反応圧力等
によるが通常、空塔速度(SV)が1×10〜1×10
 hrの範囲である。
There are no particular restrictions on the raw material methyl t-butyl ether, and gasoline machining materials that are easily available industrially can also be used. The feeding rate depends on the reaction temperature, reaction pressure, etc., but usually the superficial velocity (SV) is 1 x 10 to 1 x 10
The range is hr.

反応温度は通常70〜500°C1好ましくは100〜
400 ’Cである。反応圧力は特に制限はないが、通
°帛常圧〜100気圧、好ましくは常圧〜40気圧であ
る。
The reaction temperature is usually 70-500°C, preferably 100-500°C.
It is 400'C. The reaction pressure is not particularly limited, but is generally from normal pressure to 100 atm, preferably from normal pressure to 40 atm.

かくしてメチル−t−ブチルエーテルからメタノールと
イソブチレンの混合物が製造される。メタノールとイソ
ブチレンは通常混合物のまま次工粗の原料として用いら
れるが、両者を分際した後メタノールを次工程の、イソ
ブチlノンを次、々工程の原料とすることもできる。
A mixture of methanol and isobutylene is thus produced from methyl t-butyl ether. Methanol and isobutylene are usually used as a mixture as a raw material for the next step, but after separating the two, methanol can be used as a raw material for the next step, and isobutylene can be used as a raw material for the next step.

■ メタノールを一酸化炭素と水素に変換せしめる工程
(第1工程) CH,OH−一→CO+2山 本工程において使用される触媒としては、例えばクロム
、マンガン、鉄、コバルト、ニッケル、パラジウム、ロ
ジウム、白金等の金属およびその酸化物触媒等が挙げら
れる。これ等は2皿以上の組合わせであっても良いし、
シリカ、アルミナ、チタニア、マグネシア等の担体に担
持して用いることもできる。
■ Process of converting methanol into carbon monoxide and hydrogen (first step) CH, OH-1→CO+2 Catalysts used in the Yamamoto process include, for example, chromium, manganese, iron, cobalt, nickel, palladium, rhodium, and platinum. Examples include metals such as and oxide catalysts thereof. These may be a combination of two or more dishes,
It can also be used by being supported on a carrier such as silica, alumina, titania, magnesia, or the like.

イソブチレンの共存下にメタノールを一酸化炭素と水素
に変換せしめる場合は、イソブチレンは全く変化させず
メタノールのみを選択的に変換せしめることが重要であ
る。この場合は触媒として銅亜鉛系、銅クロマイト系、
亜鉛クロマイト系等の銅または亜鉛を含有する複合酸化
物系触媒を用いることが特に好ましく、かかる触媒を用
いることによりイソブチレンの水素化が防止でき、しか
もメタノールを選択的に一酸化炭素と水素に変換するこ
とができる。
When methanol is converted into carbon monoxide and hydrogen in the presence of isobutylene, it is important to selectively convert only methanol without changing isobutylene at all. In this case, the catalyst is copper zinc type, copper chromite type,
It is particularly preferable to use a composite oxide catalyst containing copper or zinc, such as zinc chromite, which can prevent hydrogenation of isobutylene and selectively convert methanol into carbon monoxide and hydrogen. can do.

またメタノールとイソブチレンの混合物を原料とする場
合は、同一の反応器にjII工程の触媒と第■工程の触
媒を充填することにより、メチル−t−ブチルエーテル
から第■工程の原料すなわちイソブチレン、−酸化炭素
および水素を一挙に製造することもできる。
In addition, when a mixture of methanol and isobutylene is used as a raw material, by filling the same reactor with the catalyst for step jII and the catalyst for step Carbon and hydrogen can also be produced all at once.

また場合によっては前工程で得られた原料に追加的に少
量のメタノールを添加することにより次工程における原
料使用比率すなわちイソブチレンに対する一酸化炭素と
水素の比率を変化させることもできる。
Further, in some cases, by additionally adding a small amount of methanol to the raw material obtained in the previous step, the raw material usage ratio in the next step, that is, the ratio of carbon monoxide and hydrogen to isobutylene, can be changed.

本工程の反応温度は通常100〜600″C1好ましく
は150〜450 ”Cである。原料供給速度は反応温
度、反応圧力等によるが通常、SVがlXIO3〜IX
IQ’hr ”の範囲であり、反応圧力は特に制限され
ないが、通常常圧〜100気圧であり、好ましくは常圧
〜40気圧である。
The reaction temperature in this step is usually 100 to 600''C, preferably 150 to 450''C. The raw material supply rate depends on the reaction temperature, reaction pressure, etc., but usually the SV is 1XIO3~IX
The reaction pressure is not particularly limited, but is usually from normal pressure to 100 atm, preferably from normal pressure to 40 atm.

かくして、メタノールは一酸化炭素と水素に変換される
が、イソブチレンが共存している場合は通常、冷却され
、さらに場合によっでは圧縮された後、気液分離器に導
かれて水素と一酸化炭素の混合ガス(Co/H1モル比
約1/2)および波状のイソブチレンに分離され、それ
ぞれ次工程の原料として用いられる。
Thus, methanol is converted to carbon monoxide and hydrogen, but if isobutylene is present, it is usually cooled and possibly compressed before being led to a gas-liquid separator to convert hydrogen and monoxide. It is separated into a carbon mixed gas (Co/H molar ratio of about 1/2) and corrugated isobutylene, each of which is used as a raw material for the next step.

■ イソブチレンと一酸化炭素と水素とを反応せしめる
工程(第■工程)。
■ A step of reacting isobutylene, carbon monoxide, and hydrogen (step ■).

H。H.

(CHs)zc=cH,+CO−−→CCHa)、CH
CH,CHll・。
(CHs)zc=cH, +CO--→CCHa), CH
CH, CHll・.

(IVA) H鵞 一→(C山)、CHCH,C迅0H CIAA) 本工程における触媒としてはコバルト系化合物、ロジウ
ム系化合物等のオキソ合成触媒として知られている化合
物が用いられる。これ等は反応条件でカルボニル化合物
を形成するものであれば良く、例えばコバルト、ロジウ
ムのカルボニル化合物の他にアセチルアセトン塩、カル
ボン酸塩、炭酸塩、ハロゲン化物等が例示できる。その
使用量はイソブチレン1モル当り通常、金属換算でI×
10 〜txto  r原子である。
(IVA) H Kenichi → (C Mountain), CHCH, C Xun 0H CIAA) As the catalyst in this step, compounds known as oxo synthesis catalysts such as cobalt compounds and rhodium compounds are used. Any of these may be used as long as it forms a carbonyl compound under the reaction conditions, and examples thereof include carbonyl compounds of cobalt and rhodium, as well as acetylacetone salts, carboxylates, carbonates, and halides. The amount used is usually I× per mole of isobutylene in terms of metal.
10 to txtor atoms.

上記の触媒を単独で用いた場合は、通常IVAが選択的
に得られるが、8級ホスフィンを併用することにより、
イソブチレンから一挙IAAを製造することもできる。
When the above catalyst is used alone, IVA is normally obtained selectively, but when used in combination with octagrade phosphine,
IAA can also be produced all at once from isobutylene.

かかる8級ホスフィンとしては例えばトリエチルホスフ
ィン、トリーn−プロピルホスフィン、トリーミープロ
ピルホスフィン、トリーn−ブチルホスフィン、トリシ
クロへキシルホスフィン、トリフェニルホスフィン等が
挙げられ、その使用量は触媒金属11原子当り通常0.
1〜100モルである。
Examples of such 8th class phosphine include triethylphosphine, tri-n-propylphosphine, tri-n-butylphosphine, tri-n-butylphosphine, tricyclohexylphosphine, triphenylphosphine, etc., and the amount used is usually in the amount per 11 atoms of the catalyst metal. 0.
It is 1 to 100 moles.

またイソブチレンに一酸化炭素と水素の混合ガスを反応
せしめるに当り、該混合ガスは予め所定の圧力に加圧さ
れて使用される。−酸化炭素と水素の比率は前工程で得
られたままの比率(Co/H,モル比的172)で用い
ても良いが、通常10/1〜1/10の範囲で使用する
こともできる。かかる比率は吸着剤あるいは分離膜等を
用いることにより調節することができる。また反応に使
用する混合ガスは、メタン、炭酸ガス、窒素等の不活性
ガスが存在していても使用できる。
Further, when reacting a mixed gas of carbon monoxide and hydrogen with isobutylene, the mixed gas is pressurized to a predetermined pressure beforehand. -The ratio of carbon oxide to hydrogen may be used as it was obtained in the previous step (Co/H, molar ratio 172), but it can also be used in the range of usually 10/1 to 1/10. . This ratio can be adjusted by using an adsorbent or a separation membrane. Furthermore, the mixed gas used in the reaction can be used even if an inert gas such as methane, carbon dioxide, or nitrogen is present.

本工程における反応温度は通常50〜800℃、好まし
くは100〜200°Cであり、反応圧力は通常50〜
500気圧、好ましくは70〜850気圧である。反応
時間は特に制限はないが通常0.1〜10時間である。
The reaction temperature in this step is usually 50-800°C, preferably 100-200°C, and the reaction pressure is usually 50-800°C.
The pressure is 500 atmospheres, preferably 70 to 850 atmospheres. The reaction time is not particularly limited, but is usually 0.1 to 10 hours.

本工程においては、溶媒は特に必要ではないが、場合に
よっては脂肪族炭化水素、芳香族炭化水素、アルコール
、アルデヒド、ケトン、エーテル等を用いることもでき
る。また過剰に使用した一酸化炭素と水素の混合ガスは
反応後リサイクル流として前工程で得られたフレッシュ
の混合ガス流に混入され有効に使用し得る。本工程はバ
ッチ、連続いずれの方法でも実施し得る。
In this step, a solvent is not particularly required, but aliphatic hydrocarbons, aromatic hydrocarbons, alcohols, aldehydes, ketones, ethers, etc. may be used depending on the case. Moreover, the mixed gas of carbon monoxide and hydrogen used in excess can be mixed into the fresh mixed gas stream obtained in the previous step as a recycled stream after the reaction, and can be used effectively. This step can be carried out either batchwise or continuously.

かくしてIVAおよび/またはIAAが選択的に得られ
るが、これ等は蒸留等により工業的に容易に精製単離す
ることができ、高純度のものが製造し得る。
In this way, IVA and/or IAA can be selectively obtained, and these can be easily purified and isolated industrially by distillation or the like, and highly pure products can be produced.

また得られたIVAは公知方法により水素化せしめIA
Aに誘導することもできる。この際、使用する水素ガス
は第1または第■工程で得られる一酸化炭素と水素の混
合ガスから吸着剤あるいは分離膜等を用いて分離したも
のを使用することができる。この場合は出発原料メチル
−t−ブチルエーテルからのIAA収率が著しく高り、
シかもメチル−t−ブチルエーテルからメタノールを経
て生成した水素を無駄なく有効に利用し得るので工業的
に極めて有利である。
In addition, the obtained IVA was hydrogenated by a known method.
It is also possible to lead to A. At this time, the hydrogen gas used can be one separated from the mixed gas of carbon monoxide and hydrogen obtained in the first or second step using an adsorbent or a separation membrane. In this case, the IAA yield from the starting material methyl t-butyl ether is significantly increased,
This method is extremely advantageous industrially because the hydrogen produced from methyl t-butyl ether via methanol can be used effectively without waste.

〈実施例〉 以下、本発明を実施例によりさらに詳細に説明するが、
本発明はこれらに限定されるものではない。
<Examples> Hereinafter, the present invention will be explained in more detail with reference to Examples.
The present invention is not limited to these.

実施例1 原料フィードポンプ、予熱器、反応器および生成物の補
集器を備えた気相流通反応装置を用い、反応を行っt:
Example 1 A reaction was carried out using a gas phase flow reactor equipped with a raw material feed pump, a preheater, a reactor, and a product collector.
.

触媒として硫酸ニッケル3.Ofを用いた。Nickel sulfate as catalyst3. Of was used.

メチル−t−ブチルエーテルを10 y/h rでフィ
ードし、常圧下、297°Cで反応を行った。生成物を
ガスクロマトグラフィーで分析して以下の納采を得た。
Methyl-t-butyl ether was fed at a rate of 10 y/hr, and the reaction was carried out at 297°C under normal pressure. The product was analyzed by gas chromatography and the following results were obtained.

メチル−t−ブチルエーテルの転化率は99.5%であ
り、イソブチレンおよびメタノールの収率は転化したメ
チル−t−ブチルエーテルに対しほは定量的であった。
The conversion rate of methyl-t-butyl ether was 99.5%, and the yields of isobutylene and methanol were almost quantitative based on the converted methyl-t-butyl ether.

(i−2) 1−1で使用したと同様の気相流通反応装置を用い、触
媒としてCuOを45wt%、ZnOを45wt%、C
r、O,を79wt9/、含有する複合酸タノールをそ
れぞれ5.2 f/hrx s、t f/hrcモル比
1/1)でフィードし、常圧下、286°Cで反応させ
、以下の結果を得た。収率および転化率はフィードした
メタノール基準で示した。
(i-2) Using a gas phase flow reactor similar to that used in 1-1, 45 wt% of CuO, 45 wt% of ZnO, and C
The complex acid tanol containing r, O, and 79wt9/ were fed at a rate of 5.2 f/hrx s, tf/hrc molar ratio 1/1), and the reaction was carried out at 286°C under normal pressure, and the following results were obtained. I got it. The yield and conversion rate are shown based on the methanol fed.

メタノールの転化率は99.8%、−酸化炭素の収率は
97.1%、水素の収率は189.6あり、イソブチレ
ンは定量的に回収された。
The conversion rate of methanol was 99.8%, the yield of -carbon oxide was 97.1%, the yield of hydrogen was 189.6, and isobutylene was quantitatively recovered.

50 mlのステンレス製オートクレーブにエチルベン
ゼン5 ml 1前工程で得られたイソブチレン1.3
1およびコバルトカルボニル(Co2(Co)s)をC
o換算で0.1 If−atomを仕込み、次で前工程
で得られた一酸化炭素と水素の混合ガス(モル比1/2
)を120kq/dまで圧入した後、150℃で2時間
反応させた。
In a 50 ml stainless steel autoclave, add 5 ml of ethylbenzene and 1.3 ml of isobutylene obtained in the previous step.
1 and cobalt carbonyl (Co2(Co)s)
0.1 If-atom in terms of
) was injected under pressure up to 120 kq/d, and then reacted at 150°C for 2 hours.

得られた結果を表1に示した。The results obtained are shown in Table 1.

実施例1−8において触媒としてコバルトカルボニルを
Co換算でQJlIIg−atomおよびトリn−ブチ
ルホスフィン9.3mmolを用い、混合ガスを60に
9/c4まで圧入、反応温度190°Cとする以外は実
施例1−8と同様に反応させた。結果を表1に示した。
In Example 1-8, cobalt carbonyl was used as a catalyst in terms of Co, QJlIIg-atom and tri-n-butylphosphine 9.3 mmol, the mixed gas was pressurized to 60:9/c4, and the reaction temperature was 190°C. The reaction was carried out in the same manner as in Example 1-8. The results are shown in Table 1.

実施例8 CB−1) 原料のフィードポンプ、予熱器、直列につながった2個
の反応器および生成物の捕集器を備えた気相流通反応装
置を使用して反応を行った。
Example 8 CB-1) A reaction was carried out using a gas phase flow reactor equipped with a raw material feed pump, a preheater, two reactors connected in series, and a product collector.

一段目の反応器には空気中、550°Cで焼成したシリ
カ−アルミナ触媒を2.Of、二段目の反応器にはCu
Oを45wt%、ZnOを45wt%、Cr、03を1
0wt%含有する複合酸化物触媒をa、oyを充填し、
一段目、二段目の反応温度がそれぞれ147°Cおよび
285°Cになるように設定した。
In the first stage reactor, a silica-alumina catalyst calcined at 550°C in air was used. Of, the second stage reactor contains Cu
45 wt% O, 45 wt% ZnO, 1 Cr, 03
A, oy is filled with a composite oxide catalyst containing 0 wt%,
The reaction temperatures of the first and second stages were set to 147°C and 285°C, respectively.

メチル−t−ブチルエーテルを10y/hrでフィード
して反応を行った。得られた結果を以下に示す。収率、
転化率はメチル−1−ブチルエーテルのフィードモル数
基準で示した。
The reaction was carried out by feeding methyl-t-butyl ether at a rate of 10 y/hr. The results obtained are shown below. yield,
The conversion rate was expressed based on the number of feed moles of methyl-1-butyl ether.

メチル−t−ブチルエーテルの転化率は98.9%、−
酸化炭素の収率は98.7%、水素の収率は187.1
%、メタノールの収率は2.5%、メタンの収率は0.
6%、炭酸ガスの収率は1.5%であり、イソブチレン
の収率は98.7%であった。
The conversion rate of methyl-t-butyl ether was 98.9%, -
The yield of carbon oxide is 98.7%, the yield of hydrogen is 187.1
%, methanol yield is 2.5%, methane yield is 0.
The yield of carbon dioxide was 1.5%, and the yield of isobutylene was 98.7%.

上記で得られた生成物を用い、触媒としてロジウムカル
ボニル(Rh4(co)、□)をRh換算で0.001
1−a tom用い、反応温度を180℃とする以外は
実施例1−8と同様に反応を行った。得られた結果を表
1に示した。
Using the product obtained above, rhodium carbonyl (Rh4(co), □) was added as a catalyst at 0.001 in terms of Rh.
The reaction was carried out in the same manner as in Example 1-8 except that 1-a atom was used and the reaction temperature was 180°C. The results obtained are shown in Table 1.

表  1Table 1

Claims (1)

【特許請求の範囲】[Claims] 固体酸触媒の存在下にメチル−t−ブチルエーテルをイ
ソブチレンとメタノールに変換せしめ、次で金属触媒お
よび/または金属酸化物触媒の存在下にメタノールを一
酸化炭素と水素に変換せしめ、しかる後にオキソ合成触
媒の存在下にイソブチレンと一酸化炭素と水素とを反応
せしめることを特徴とするイソパレルアルデヒドおよび
/またはイソアミルアルコールの製造方法。
Conversion of methyl-tert-butyl ether to isobutylene and methanol in the presence of a solid acid catalyst, then conversion of methanol to carbon monoxide and hydrogen in the presence of a metal catalyst and/or metal oxide catalyst, followed by oxo synthesis. A method for producing isopallelaldehyde and/or isoamyl alcohol, which comprises reacting isobutylene, carbon monoxide, and hydrogen in the presence of a catalyst.
JP61181251A 1986-07-31 1986-07-31 Method for producing isovaleraldehyde and / or isoamyl alcohol Expired - Lifetime JPH0660113B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61181251A JPH0660113B2 (en) 1986-07-31 1986-07-31 Method for producing isovaleraldehyde and / or isoamyl alcohol

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61181251A JPH0660113B2 (en) 1986-07-31 1986-07-31 Method for producing isovaleraldehyde and / or isoamyl alcohol

Publications (2)

Publication Number Publication Date
JPS6335532A true JPS6335532A (en) 1988-02-16
JPH0660113B2 JPH0660113B2 (en) 1994-08-10

Family

ID=16097435

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61181251A Expired - Lifetime JPH0660113B2 (en) 1986-07-31 1986-07-31 Method for producing isovaleraldehyde and / or isoamyl alcohol

Country Status (1)

Country Link
JP (1) JPH0660113B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63252902A (en) * 1987-04-07 1988-10-20 Sumitomo Chem Co Ltd Method for producing a mixture of isobutylene and synthesis gas
WO2003031383A1 (en) * 2001-10-06 2003-04-17 Oxeno Olefinchemie Gmbh Method for producing 6-methylheptane-2-one and the use thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63252902A (en) * 1987-04-07 1988-10-20 Sumitomo Chem Co Ltd Method for producing a mixture of isobutylene and synthesis gas
JPH089481B2 (en) * 1987-04-07 1996-01-31 住友化学工業株式会社 Process for producing a mixture of isobutylene and synthesis gas
WO2003031383A1 (en) * 2001-10-06 2003-04-17 Oxeno Olefinchemie Gmbh Method for producing 6-methylheptane-2-one and the use thereof

Also Published As

Publication number Publication date
JPH0660113B2 (en) 1994-08-10

Similar Documents

Publication Publication Date Title
US7355083B2 (en) Process
US20140275619A1 (en) Process for Producing Acetic Acid and/or Ethanol By Methane Oxidation
US9695097B2 (en) Ethanol production via dimethylether recycle
MXPA97005957A (en) Procedure for the preparation of combusti quality etherdimethylene
EP0021444A1 (en) Process for producing two-carbon atom oxygenated compounds from synthesis gas with minimal production of methane
CA1137519A (en) Heterogeneous vapor phase process for the catalytic hydrogenation of aldehydes to alcohols
EP3628653A1 (en) Circular economy methods of preparing unsaturated compounds
AU602438B2 (en) One-step process for dimethyl ether synthesis utilizing a liquid phase reactor system
EP0253540A1 (en) Synthesis gas conversion process
JPH0625031A (en) Method of synthesizing oxygenated acetyl compound
EP0891316B1 (en) Processes for the manufacture of methylmercaptopropanal
KR20160063124A (en) Process for production of unsaturated alcohol
CN108976183B (en) Method for preparing gamma-valerolactone by furfural gas phase hydrogenation
EP0113709B1 (en) Method in the production of methyl formate and methanol in a liquid phase
JPS6335532A (en) Method for producing isovaleraldehyde and/or isoamyl alcohol
JPS6228081B2 (en)
US6147263A (en) Formaldehyde production
CA1081714A (en) Process for the manufacture of styrene
EP0021443B1 (en) Process for producing two-carbon atom oxygenated compounds from synthesis gas with minimal production of methane
US4914136A (en) Process for the production of methanol and catalyst composition for said process
JPH0454659B2 (en)
CN115279719A (en) Process and apparatus for producing target compound
JP4344846B2 (en) Method and apparatus for producing dimethyl ether
JPS60169471A (en) Preparation of piperidine
Green et al. High yield synthesis of propanal from methane and air