[go: up one dir, main page]

JPS6332858A - Fuel cell - Google Patents

Fuel cell

Info

Publication number
JPS6332858A
JPS6332858A JP61176145A JP17614586A JPS6332858A JP S6332858 A JPS6332858 A JP S6332858A JP 61176145 A JP61176145 A JP 61176145A JP 17614586 A JP17614586 A JP 17614586A JP S6332858 A JPS6332858 A JP S6332858A
Authority
JP
Japan
Prior art keywords
pair
electrode
base material
electrode base
catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61176145A
Other languages
Japanese (ja)
Inventor
Masaaki Matsumoto
正昭 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP61176145A priority Critical patent/JPS6332858A/en
Publication of JPS6332858A publication Critical patent/JPS6332858A/en
Priority to US07/299,110 priority patent/US4975342A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/08Fuel cells with aqueous electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)

Abstract

PURPOSE:To obtain electrodes of uniform thickness and uniform composition by forming a pair of electrode catalyst layers in a structure independent of a pair of electrode base material to prevent the catalyst from soaking the electrode base material. CONSTITUTION:An electrode catalyst layer 7 of cell reaction and a compound layer 13 of an electrolyte matrix 1 and an electrode catalyst layer 6 are laminated and interposed between a pair of electrode base material layers 4, 5 which are further interposed between gas separator plates 10. Fuel and oxidizing agent gas supplied to gas passages 11,12 diffuse through a pair of porous electrode base material 4, 5 to reach the entire surfaces of a pair of electrode catalyst layers 6, 7, thereupon both gasses eract through the electrolyte matrix 1 to generate electricity. Thus soaking of the electrode base material 4, 5 by the catalyst is eliminated resulting in uniform catalyst layers. Moreover, in an electrode base material which is provided with an inner reservoir, the whr capacity namely the filling amo amount of the electrolytic solution can be accurately estimated and stable cell characteristics can be obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、積層形燃料電池のセル構成に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a cell configuration of a stacked fuel cell.

〔従来の技術〕[Conventional technology]

第4図は例えば、特公昭58−152号公報に示された
従来の、最も代表的なセル構成を示す断面図であり、図
において(1)は電解質マトリックス、(2)および(
3)は一対の電極、(4)および(5)は一対の電極基
材、(6)および(7)は一対の電極触媒層、(8)お
よび(9)は湿潤ガスシール部、0口はガス分離板(セ
パレータ、インタコネクタとも呼ばれる。)αDおよび
(2)は互いに直交する燃料と酸化剤ガスのガス流路で
ある。ここで、電極触媒層(61,+71は電極基材(
4)。
FIG. 4 is a cross-sectional view showing the most typical conventional cell configuration shown in, for example, Japanese Patent Publication No. 58-152. In the figure, (1) is an electrolyte matrix, (2) and (
3) is a pair of electrodes, (4) and (5) are a pair of electrode base materials, (6) and (7) are a pair of electrode catalyst layers, (8) and (9) are a wet gas seal part, and 0 ports. is a gas separation plate (also called a separator or interconnector) αD and (2) are gas flow paths for fuel and oxidizing gas that are orthogonal to each other. Here, the electrode catalyst layer (61, +71 is the electrode base material (
4).

(5)上に塗布されているのが通常で、この種の製法の
一例は時開57−168473号公報にも記されている
(5) is usually coated on top, and an example of this type of manufacturing method is also described in Jikai No. 57-168473.

次に動作について説明する。ガス分離板αのは不遇気性
の例えば緻密な炭素の板でその両面に互いに直交するガ
ス流路αυ、ajを形成している。一方、電極基材(4
1,+51は、ポーラスな例えば炭素繊維で構成されて
おり、電極製造においては電極触媒層+61. +71
を支持形成すると共に、実動時においてはガス流路αD
、側へ供給された燃料および酸化剤ガスをこの中を拡散
させて電極触媒層+61. +71の全面に供給する。
Next, the operation will be explained. The gas separation plate α is a plate made of, for example, dense carbon, and has gas passages αυ and aj orthogonal to each other formed on both sides thereof. On the other hand, the electrode base material (4
1, +51 is made of porous carbon fiber, for example, and in electrode production, it is used as an electrode catalyst layer +61. +71
At the same time, during actual operation, the gas flow path αD
, the fuel and oxidant gas supplied to the electrode catalyst layer +61. Supply to the entire surface of +71.

電極触媒層(61,+?)に達した両ガスは、電解質マ
トリックス+11を通して反応し、発電する。
Both gases that have reached the electrode catalyst layer (61, +?) react through the electrolyte matrix +11 to generate electricity.

ここで、反応に使われなかった余剰ガスや反応生成物は
、ガス流路αD、(2)を通して外部へ排出される、湿
潤ガスシール(81,(9)は燃料および酸化剤ガスが
ポーラスな電極基材f41. (51から外部へ漏洩す
るのを防いでいる。
Here, excess gas and reaction products not used in the reaction are discharged to the outside through the gas flow path αD, (2), and the wet gas seal (81, (9) Electrode base material f41. (Prevents leakage from 51 to the outside.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

従来の燃料電池は以上のように構成されているので、電
極基材f41. filへのしみ込みが発生し、一枚の
電極の平面内でのしみ込み量の違いや、あるいは一枚一
枚の電橋面でのしみ込み量の違いが生じるため触媒の塗
工量や電極厚さが不均一となっていた。また、触媒量の
低減に対して上記、しみ込み量が存在するため制約があ
った。
Since the conventional fuel cell is constructed as described above, the electrode base material f41. The coating amount of the catalyst and The electrode thickness was non-uniform. In addition, there is a restriction on reducing the amount of catalyst due to the amount of penetration described above.

更に、リブ付電極で内部リザーバを設ける場合には基材
中への触媒しみ込みの為内部リザーバのボア体積の見積
りを誤り期待したセル特性が得られない等の問題があっ
た。
Further, when an internal reservoir is provided using a ribbed electrode, there is a problem that the bore volume of the internal reservoir is incorrectly estimated due to the catalyst seeping into the base material, making it impossible to obtain the expected cell characteristics.

生産性から見た場合、一枚一枚の電極基材に電極触媒お
よび電解質マトリックスを個々のプロセスを通して製造
するため不良率が積算され高くなると同時に生産性に欠
けていた。
From the viewpoint of productivity, since the electrode catalyst and electrolyte matrix are manufactured through individual processes for each electrode base material, the defective rate is accumulated and high, and at the same time, productivity is lacking.

この発明は上記のような問題点を解消するためになされ
たもので、電極基材への触媒のしみ込みをなくすととも
に均一な厚さ、均一な組成の電極を高い生産性で製造し
使用できる構成の燃料電池を得ることを目的としている
This invention was made to solve the above problems, and it eliminates the penetration of catalyst into the electrode base material, and makes it possible to manufacture and use electrodes with uniform thickness and composition with high productivity. The aim is to obtain a fuel cell with this configuration.

〔問題点を解決するための手段〕[Means for solving problems]

この発明に係る燃料電池は、一対の電極触媒層を一対の
電極基材と独立した構造としたものである。
The fuel cell according to the present invention has a structure in which a pair of electrode catalyst layers are independent of a pair of electrode base materials.

〔作用〕[Effect]

この発明における燃料電池は、一対の電極触媒層を一対
の電極基材から独立させて設けたことにより、電極基材
への触媒のしみ込みが無くなり均一な触媒層になると共
に触媒量低減に対するしみ込みによる制約が回避される
In the fuel cell according to the present invention, by providing a pair of electrode catalyst layers independently from a pair of electrode base materials, the catalyst does not seep into the electrode base material, resulting in a uniform catalyst layer, and also prevents staining due to reduction in the amount of catalyst. Inclusion constraints are avoided.

〔実施例〕〔Example〕

以下、この発明の一実施例を図について説明する。第1
図において、(11は電解質マトリックス。
An embodiment of the present invention will be described below with reference to the drawings. 1st
In the figure, (11 is an electrolyte matrix.

(61)、および(71)は一対の電極基材(41,+
51と独立して設けられた一対の電極触媒層、 Q3は
電解質マトリックス(11と一対の電極触媒層+61.
f?lの何れか一方、例えば電極触媒層(6)を一体化
成形したシート状の一体化層であり、電極触媒層(ηも
シート状に成形されている。 01はガス分離板、αD
および(2)は互いに直交する燃料と酸化剤ガスのガス
流路である0次に動作について説明する。電池反応の電
極触媒層(7)、電解質マトリックス(1)/電極触媒
層(6)の一体化層0は、その両側に一対の電極基材(
4+。
(61) and (71) are a pair of electrode base materials (41, +
51 and a pair of electrode catalyst layers provided independently, Q3 is an electrolyte matrix (11 and a pair of electrode catalyst layers + 61.
f? 01 is a gas separation plate, αD
and (2) will explain the zero-order operation in which the fuel and oxidizing gas flow paths are perpendicular to each other. Electrode catalyst layer (7) for battery reaction, integrated layer 0 of electrolyte matrix (1)/electrode catalyst layer (6) has a pair of electrode base materials (
4+.

(5)を介し、さらにガス分離板(2)で挟むように積
層されている。ガス流路αυ、(2)へ供給された燃料
および酸化剤ガスはポーラスな一対の電極基材(4)。
(5) and further sandwiched between gas separation plates (2). The fuel and oxidant gas supplied to the gas flow path αυ (2) are supplied to a pair of porous electrode base materials (4).

(5)の中を拡散し、一対の電極触媒層(6)、(7)
の全面に達する。電極触媒層(6)、(7)に達した両
ガスは電解質マトリックス(1)を通して反応し発電さ
れる。
(5), and a pair of electrode catalyst layers (6) and (7).
reach the entire surface. Both gases that have reached the electrode catalyst layers (6) and (7) react through the electrolyte matrix (1) to generate electricity.

このような構造とすることにより、電極基材(4)。By having such a structure, the electrode base material (4).

(5)への触媒のしみ込みが無くなり均一な触媒層にな
る。また、内部リザーバを設ける電極基材では、そのボ
アボリウム、即ち電解液の充填量が正確に見積ることが
でき、安定したセル特性が得られる。
(5) The catalyst does not seep into the layer, resulting in a uniform catalyst layer. Furthermore, in an electrode base material provided with an internal reservoir, its bore volume, that is, the amount of electrolyte filled can be accurately estimated, and stable cell characteristics can be obtained.

また、電極触媒層(7)、一体化層α簿はシート状に成
形されるので、個々のプロセスを通らないので、不良率
の低減が図れ生産性が向上する。
In addition, since the electrode catalyst layer (7) and the integrated layer α are formed into a sheet, they do not go through individual processes, thereby reducing the defective rate and improving productivity.

なお、上記実施例では、ガス分離板O1がリブ付で、電
極基材+4+、ts+が平板のリブ付セパレータタイプ
の構造について説明したが、第2図に示すリブ付電極タ
イプや第3図に示すハイブリッドタイプの構造に適用し
てもよく、上記実施例と同様の効果が得られる。
In the above embodiment, the structure of the ribbed separator type in which the gas separation plate O1 is ribbed and the electrode base materials +4+ and ts+ are flat plates has been explained. The present invention may also be applied to the hybrid type structure shown, and the same effects as in the above embodiment can be obtained.

また、上記実施例では、電解質マトリックス(1)と電
極触媒層(6)とを一体化成形した場合について述べた
が、電解質マトリックス+11と電極触媒層(7)とを
一体化成形するようにしてもよく、上記実施例と同様の
効果を奏する。
Further, in the above embodiment, the case where the electrolyte matrix (1) and the electrode catalyst layer (6) are integrally molded is described, but the electrolyte matrix +11 and the electrode catalyst layer (7) are integrally molded. The same effect as in the above embodiment can be obtained.

〔発明の効果〕〔Effect of the invention〕

以上の様に、この発明によれば、一対の電極触媒層を一
対の電極基材から独立した構造としたので電極基材中へ
触媒がしみ込まなくなり、均一な厚さ、均一な組成の電
極が得られると共に、触媒量低減のしみ込み量に対する
制約が回避されるようになった。
As described above, according to the present invention, since the pair of electrode catalyst layers are structured independently from the pair of electrode base materials, the catalyst does not penetrate into the electrode base materials, and the electrodes have a uniform thickness and a uniform composition. At the same time, restrictions on the penetration amount due to reduction in the amount of catalyst can be avoided.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例による燃料電池を示す断面
図、第2図、第3図はそれぞれこの発明の他の実施例を
示す断面図、第4図は従来の燃料電池を示す断面図であ
る。 図において、(11は電解質マトリックス、(4)およ
び(5)は電極基材、(6)および(7)は電極触媒層
、 Qlはガス分離板、α簿は一体化層である。 尚、図中同一符号は同−又は相当部分を示す。
FIG. 1 is a sectional view showing a fuel cell according to one embodiment of the present invention, FIGS. 2 and 3 are sectional views showing other embodiments of the invention, and FIG. 4 is a sectional view showing a conventional fuel cell. It is a diagram. In the figure, (11 is the electrolyte matrix, (4) and (5) are the electrode base materials, (6) and (7) are the electrode catalyst layers, Ql is the gas separation plate, and α is the integrated layer. The same reference numerals in the figures indicate the same or corresponding parts.

Claims (2)

【特許請求の範囲】[Claims] (1)電解質マトリックスを挟む一対の電極触媒層およ
び電極基材を、ガス分離板を介して複数個積層するもの
において、前記一対の電極触媒層が前記一対の電極基材
から独立した構造としたことを特徴とする燃料電池。
(1) In a structure in which a plurality of a pair of electrode catalyst layers and an electrode base material sandwiching an electrolyte matrix are laminated with a gas separation plate in between, the pair of electrode catalyst layers is independent from the pair of electrode base materials. A fuel cell characterized by:
(2)一対の電極触媒層のうち、いずれか一方を電解質
マトリックスと一体化したことを特徴とする特許請求の
範囲第1項記載の燃料電池。
(2) The fuel cell according to claim 1, wherein one of the pair of electrode catalyst layers is integrated with an electrolyte matrix.
JP61176145A 1986-07-24 1986-07-24 Fuel cell Pending JPS6332858A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP61176145A JPS6332858A (en) 1986-07-24 1986-07-24 Fuel cell
US07/299,110 US4975342A (en) 1986-07-24 1989-01-19 Fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61176145A JPS6332858A (en) 1986-07-24 1986-07-24 Fuel cell

Publications (1)

Publication Number Publication Date
JPS6332858A true JPS6332858A (en) 1988-02-12

Family

ID=16008446

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61176145A Pending JPS6332858A (en) 1986-07-24 1986-07-24 Fuel cell

Country Status (1)

Country Link
JP (1) JPS6332858A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60208057A (en) * 1984-04-02 1985-10-19 Hitachi Ltd Fuel cell

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60208057A (en) * 1984-04-02 1985-10-19 Hitachi Ltd Fuel cell

Similar Documents

Publication Publication Date Title
US4129685A (en) Fuel cell structure
US5942348A (en) Fuel cell with ceramic-coated bipolar plates and a process for producing the fuel cell
JPH07220743A (en) Fuel cell, its bipolar plate and manufacture of bipolar plate
EP1117142A4 (en) FUEL CELL AND METHOD FOR THE PRODUCTION THEREOF
WO2004059043A1 (en) Channel-less proton exchange membrane fuel cell
JPH0560235B2 (en)
JPH041469B2 (en)
EP0085405A1 (en) Fuel cell
JPS61279068A (en) molten carbonate fuel cell
JP2768698B2 (en) Internal manifold type molten carbonate fuel cell
US20090286118A1 (en) Bipolar plate coating architecture for fuel cells and methods of making and using the same
CN107925108B (en) Membrane-electrode unit for a fuel cell and method for producing a membrane thereof
JPS6332858A (en) Fuel cell
JPH0355764A (en) Solid electrolytic type fuel cell
JP2010153093A (en) Polymer electrolyte fuel cell electrode and method of manufacturing the same
US3347708A (en) Fuel cell battery containing metal coated carbon electrodes
JPS6332862A (en) Fuel cell
US4975342A (en) Fuel cell
EP2417660B1 (en) Selectively sealing fuel cell porous plate
JPH04121967A (en) Solid electrolyte type fuel cell
JP2549463Y2 (en) Molten carbonate fuel cell
JPS63164174A (en) Manufacture of solid electrolyte fuel cell
CA1202070A (en) Fuel cell with multiple porosity electrolyte matrix assembly
JPS6139367A (en) Electrodes for matrix fuel cells
JPH033958Y2 (en)