JPH04121967A - Solid electrolyte type fuel cell - Google Patents
Solid electrolyte type fuel cellInfo
- Publication number
- JPH04121967A JPH04121967A JP2240729A JP24072990A JPH04121967A JP H04121967 A JPH04121967 A JP H04121967A JP 2240729 A JP2240729 A JP 2240729A JP 24072990 A JP24072990 A JP 24072990A JP H04121967 A JPH04121967 A JP H04121967A
- Authority
- JP
- Japan
- Prior art keywords
- electrode
- gas
- gas passage
- fuel
- separator
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/02—Details
- H01M8/0202—Collectors; Separators, e.g. bipolar separators; Interconnectors
- H01M8/023—Porous and characterised by the material
- H01M8/0241—Composites
- H01M8/0245—Composites in the form of layered or coated products
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/02—Details
- H01M8/0202—Collectors; Separators, e.g. bipolar separators; Interconnectors
- H01M8/0258—Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M8/12—Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
- H01M8/1213—Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the electrode/electrolyte combination or the supporting material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/24—Grouping of fuel cells, e.g. stacking of fuel cells
- H01M8/241—Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes
- H01M8/2418—Grouping by arranging unit cells in a plane
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/24—Grouping of fuel cells, e.g. stacking of fuel cells
- H01M8/241—Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes
- H01M8/2425—High-temperature cells with solid electrolytes
- H01M8/2432—Grouping of unit cells of planar configuration
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/24—Grouping of fuel cells, e.g. stacking of fuel cells
- H01M8/2457—Grouping of fuel cells, e.g. stacking of fuel cells with both reactants being gaseous or vaporised
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Composite Materials (AREA)
- Fuel Cell (AREA)
- Inert Electrodes (AREA)
Abstract
Description
【発明の詳細な説明】
[産業上の利用分野コ
本発明は燃料の有する化学エネルギーを直接電気エネル
ギーに変換させるエネルギ一部門で用いる燃料電池、特
に固体電解質型燃料電池に関するものである。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to fuel cells used in the energy sector, in particular to solid oxide fuel cells, which directly convert the chemical energy of fuel into electrical energy.
[従来の技術]
固体電解質型燃料電池は、第一世代のリン酸型燃料電池
、第二世代の溶融炭酸塩型燃料電池に代る第三世代の燃
料電池として、その開発に向は検討が進められている。[Prior art] Solid oxide fuel cells are a third-generation fuel cell that will replace the first-generation phosphoric acid fuel cells and the second-generation molten carbonate fuel cells. It is progressing.
現在検討が進められている固体電解質型燃料゛電池には
、平板型と円筒型等があるが、そのうち、平板型の固体
電解質型燃料電池は、第3図に一例を示す如く、たとえ
ば、イツトリア安定化ジルコニア系イオン導電体を適用
した電解質板1の両面側に、片面に凹凸によるガス通路
4を形成した酸素極2と、同じくガス通路5を形成した
燃料極3とを各々ガス通路4,5側が電解質板1を挟ん
で対向するように重ねて配置し、酸素極2のガス通路4
には空気(02ガス)を、又、燃料極3のガス通路5に
は燃料ガス(H2ガス)を流すようにして、酸素極2側
での反応により生じた酸素イオン0−を電解質板1を通
して燃料極3側へ到達させるようにし、一方、燃料極3
側では、上記燃料ガスH2と上記酸素イオン0−が反応
し、水H20として出されるようにしたものを1セルC
とし、かかるセルCをセパレータ6を介して多層に積層
した構成のものがある。There are two types of solid oxide fuel cells currently under study, such as flat plate type and cylindrical type. An oxygen electrode 2 having a gas passage 4 formed by unevenness on one side and a fuel electrode 3 having a gas passage 5 formed thereon on both sides of an electrolyte plate 1 made of a stabilized zirconia-based ionic conductor are connected to each other. The gas passage 4 of the oxygen electrode 2 is
By flowing air (02 gas) through the gas passage 5 of the fuel electrode 3, and flowing fuel gas (H2 gas) through the gas passage 5 of the fuel electrode 3, the oxygen ions 0- produced by the reaction on the oxygen electrode 2 side are transferred to the electrolyte plate 1. through the fuel electrode 3 side, and on the other hand, the fuel electrode 3
On the side, the fuel gas H2 and the oxygen ions 0- are reacted and released as water H20 in one cell C.
There is a structure in which such cells C are laminated in multiple layers with separators 6 in between.
上記の如き平板型の固体電解質型燃料電池は、狭い容積
で大電力が取り出せ、且つセルCの厚さを薄くすればす
るほど積層したときにコンパクトにでき、その上大電力
が得られるという特徴があり、特に、電解質板1は薄い
ほど酸素イオン0−の通りがよくなり、性能をアップさ
せることができる。The above-mentioned flat plate solid oxide fuel cell has the characteristics that a large amount of electric power can be extracted from a small volume, and that the thinner the cell C is, the more compact it can be when stacked, and that it can also obtain a large amount of electric power. In particular, the thinner the electrolyte plate 1 is, the better the passage of oxygen ions 0- is, and the performance can be improved.
又、従来の固体電解質型燃料電池には、上述した如き酸
素極2及び燃料極3の各片面に凹凸によるガス通路4及
び5を設ける型式のほかに、セパレータ6の両面側に凹
凸を設けてガス通路を形成した型式のものもある。Furthermore, in conventional solid oxide fuel cells, in addition to the above-described type in which the gas passages 4 and 5 are provided by unevenness on one side of each of the oxygen electrode 2 and the fuel electrode 3, the separator 6 is provided with unevenness on both sides. There are also types with gas passages formed.
[発明が解決しようとする課題]
ところが、従来の平板型の固体電解質型燃料電池では、
電極側あるいはセパレータ側に凹凸を設けることにより
電極とセパレータとの間にガス通路を形成するようにし
ているが、第3図に示される如き電極2.3の各片面に
ガス通路45を形成する場合、ガス通路形成用の凹凸を
薄肉の電極板上にどのようにして設けるかについて詳細
且つ具体的なものが示されていないのが実情である。[Problem to be solved by the invention] However, in the conventional flat plate solid oxide fuel cell,
Gas passages are formed between the electrodes and the separator by providing unevenness on the electrode side or the separator side, and gas passages 45 are formed on each side of the electrode 2.3 as shown in FIG. In this case, the actual situation is that there is no detailed and specific information on how to provide unevenness for forming gas passages on a thin electrode plate.
そこで、本発明は、ガス通路形成用の凹凸を簡単に設け
ることができて、しかも発電性能を向上することができ
るようにした平板型の固体電解質型燃料電池を提供しよ
うとするものである。SUMMARY OF THE INVENTION Therefore, the present invention aims to provide a flat solid oxide fuel cell in which unevenness for forming gas passages can be easily provided and power generation performance can be improved.
[課題を解決するための手段]
本発明は、上記課題を解決するために、電解質板を酸素
極と燃料極で両面から挟み、酸素極側には空気を、又、
燃料極側には燃料ガスをそれぞれ供給することができる
ように酸素極側と燃料極側にガス通路を形成したものを
1セルとし、各セルをセパレータを介して積層するよう
にしである構成において、上記ガス通路を形成するため
のガス通路構造体を上記酸素極及び燃料極の各表面に配
置し、且つ上記ガス通路構造体を多孔質体として、その
微細構造を、セパレータ付近を密、電極付近を粗となる
ようにしてなる構成とする。[Means for Solving the Problems] In order to solve the above problems, the present invention has an electrolyte plate sandwiched between an oxygen electrode and a fuel electrode from both sides, air on the oxygen electrode side, and
One cell has a gas passage formed on the oxygen electrode side and the fuel electrode side so that fuel gas can be supplied to the fuel electrode side, respectively, and each cell is stacked with a separator in between. , a gas passage structure for forming the gas passage is disposed on each surface of the oxygen electrode and the fuel electrode, and the gas passage structure is made of a porous body, and its fine structure is arranged such that the vicinity of the separator is dense and the electrode is dense. The structure is such that the vicinity is rough.
上記ガス通路構造体は、孔の径の異なるものを少なくと
も2層積層させて、微細構造を段階的に厚さ方向へ変化
させるようにしてもよく、又、ガス通路構造体を1層と
して、微細構造を厚さ方向に無段階的に変化させるよう
にしてもよい。The gas passage structure may be formed by laminating at least two layers with different hole diameters so that the fine structure changes stepwise in the thickness direction, or the gas passage structure may be made of one layer, The fine structure may be changed steplessly in the thickness direction.
[作 用]
酸素極側と燃料極側のガス通路を、ガス通路構造体で形
成し、このガス通路構造体の微細構造を厚さ方向(セル
の積層方向)に変化させて、セパレータ付近を比較的密
にすると、電気抵抗を小さくすることが可能となり、電
極付近を比較的粗にすると、ガス通路構造体のある部分
でもガスが流れて電極と接触させることができて、発電
性能を向上させることができる。[Function] The gas passages on the oxygen electrode side and the fuel electrode side are formed by a gas passage structure, and the fine structure of this gas passage structure is changed in the thickness direction (cell stacking direction), so that the vicinity of the separator is Making it relatively dense makes it possible to reduce electrical resistance, and making it relatively rough near the electrode allows gas to flow even in certain parts of the gas passage structure and come into contact with the electrode, improving power generation performance. can be done.
[実 施 例] 以下、本発明の実施例を図面を参照して説明する。[Example] Embodiments of the present invention will be described below with reference to the drawings.
第1図は本発明の一実施例を示すもので、薄膜構造とし
た電解質板1を、酸素極2と燃料極3で両面から挟み、
酸素極2側と燃料極3側に各々ガス通路4と5を形成し
て、酸素極2側に空気を供給するようにすると共に燃料
極3側に燃料ガスを供給するようにしであるものを1セ
ルCとし、各セルCをセパレータ6を介して多層に積層
するようにしである構成において、上記ガス通路4と5
を形成するための構造体を、上記各電極2,3の各表面
側に、ガス通路となる所定間隔を保持させて並置させる
ようにする。FIG. 1 shows an embodiment of the present invention, in which an electrolyte plate 1 having a thin film structure is sandwiched between an oxygen electrode 2 and a fuel electrode 3 from both sides.
Gas passages 4 and 5 are formed on the oxygen electrode 2 side and the fuel electrode 3 side, respectively, so that air is supplied to the oxygen electrode 2 side and fuel gas is supplied to the fuel electrode 3 side. In a configuration in which one cell C is formed and each cell C is stacked in multiple layers with a separator 6 in between, the gas passages 4 and 5 are
Structures for forming the electrodes 2 and 3 are arranged side by side on each surface side of each of the electrodes 2 and 3 with a predetermined interval therebetween to form a gas passage.
すなわち、酸素極2の表面及び燃料極3の表面に、多孔
質体のガス通路構造体7と8をそれぞれ所定間隔を置き
層状に重ねて配置して、隣接する各ガス通路構造体7.
8の間にガス通路4と5が形成されるようにし、且つ上
記層状に配置したガス通路構造体7.8の多孔の微細構
造を変化させ、酸素極2及び燃料極3側に位置するガス
通路構造体7には微細構造を粗にしたものを用いてガス
が通り易いようにし、又、セパレータ6側に位置するガ
ス通路構造体8には微細構造を密にしたものを用いるよ
うにする。That is, on the surface of the oxygen electrode 2 and the surface of the fuel electrode 3, the gas passage structures 7 and 8 made of porous materials are arranged in a layered manner at a predetermined interval, respectively, so that each adjacent gas passage structure 7.
The gas passages 4 and 5 are formed between the oxygen electrode 2 and the fuel electrode 3 by changing the fine structure of the pores of the gas passage structure 7.8 arranged in layers. The passage structure 7 is made to have a rough fine structure so that gas can pass through easily, and the gas passage structure 8 located on the separator 6 side is made to have a dense fine structure. .
平板型の固体電解質型燃料電池の酸素極2側のガス通路
4と燃料極3側のガス通路5を、多孔質体のガス通路構
造体7.8の積層で形成して、セパレータ6側のガス通
路構造体8を、微細構造が密のものを用いると、微細構
造が密であるほど電気抵抗が小さくてよいことから、セ
パレータ6付近では電気抵抗を小さくすることが可能と
なる。又、酸素極2及び燃料極3側では、微細構造が比
較的粗なガス通路構造体7を用いると、ガスが内部を通
り易くなるので、電極表面がガス通路構造体7で覆われ
ている部分ても矢印で示す如く酸素極2側ては空気02
が、又、燃料極3側では燃料ガスH2が供給されること
が可能となって、電極面に空気02や燃料ガスH2が当
る面積を増大でき、発電性能を向上させることが可能と
なる。The gas passage 4 on the oxygen electrode 2 side and the gas passage 5 on the fuel electrode 3 side of a flat solid oxide fuel cell are formed by laminating gas passage structures 7.8 made of porous materials, and the gas passage 4 on the side of the separator 6 When a gas passage structure 8 having a dense microstructure is used, the electrical resistance can be reduced in the vicinity of the separator 6 because the denser the microstructure is, the smaller the electrical resistance is. Furthermore, on the oxygen electrode 2 and fuel electrode 3 sides, if the gas passage structure 7 with a relatively rough microstructure is used, gas can easily pass through the inside, so the electrode surface is covered with the gas passage structure 7. As shown by the arrow, the oxygen electrode 2 side is filled with air 02.
However, since the fuel gas H2 can be supplied to the fuel electrode 3 side, it is possible to increase the area where the air 02 and the fuel gas H2 come into contact with the electrode surface, and it is possible to improve the power generation performance.
次に、第2図は本発明の他の実施例を示すもので、上記
実施例において微細構造の異なるガス通路構造体7.8
を重ねて配置し、ガス通路構造体の微細構造を厚さ方向
へ段階的に変化させるようにしたものに代えて、ガス通
路構造体9の一層のみとし、且つ微細構造が密の部分か
ら粗の部分へ無段階的に変化するようにして、セパレー
タ6側に比較的密な部分を、又、電極23側に比較的粗
な部分を配置するようにしたものである。Next, FIG. 2 shows another embodiment of the present invention, in which the gas passage structure 7.8 has a different microstructure in the above embodiment.
Instead of the structure in which the fine structure of the gas passage structure 9 is arranged one on top of the other and the fine structure of the gas passage structure changes stepwise in the thickness direction, only one layer of the gas passage structure 9 is used, and the fine structure changes from the dense part to the rough part. A relatively dense portion is arranged on the separator 6 side and a relatively coarse portion is arranged on the electrode 23 side so that the portion changes steplessly.
この実施例でも前記実施例の場合と同様に、セパレータ
付近では電気抵抗を小さくすることが可能で且つ電極付
近ではガス通路構造体を通して空気02や燃料ガスH2
が流れてこれらが電極面に当る面積を増大させることが
可能で、同様な作用効果を奏し得る。In this embodiment, as in the previous embodiment, it is possible to reduce the electrical resistance near the separator, and near the electrodes, air 02 and fuel gas H2 are passed through the gas passage structure.
It is possible to increase the area where these flow and come into contact with the electrode surface, and similar effects can be achieved.
なお、第1図の実施例では、ガス通路構造体7と8の2
層を積層させた場合を示したが、2層に限られるもので
はなく、3層、あるいはそれ以上としてもよいこと、そ
の他、本発明の要旨を逸脱しない範囲内で種々変更を加
え得ることは勿論である。In the embodiment shown in FIG. 1, two of the gas passage structures 7 and 8 are
Although the case where the layers are laminated is shown, the number of layers is not limited to two, and three or more layers may be used, and other various changes may be made within the scope of the gist of the present invention. Of course.
[発明の効果]
以上述べた如(、本発明の固体電解質型燃料電池によれ
ば、電解質板を挟んで配置した酸素極と燃料極の各表面
側に、ガス通路を形成するためのガス通路構造体を配置
してガス通路を形成させ、且つ上記ガス通路構造体の微
細構造を厚さ方向へ変化させて、セパレータ付近では比
較的密にして、電極近くを比較的粗にした構成としであ
るので、セパレータ付近では電気抵抗を小さくすること
ができ、又、電極付近ではガス通路構造体で覆われた部
分へも空気や燃料ガスを供給することが可能となって電
極面に空気や燃料ガスが当る面積を増大することができ
、これにより発電性能を向上させることができる、とい
う優れた効果を奏し得る。[Effects of the Invention] As described above (according to the solid oxide fuel cell of the present invention), a gas passage for forming a gas passage is provided on each surface side of the oxygen electrode and fuel electrode disposed with an electrolyte plate in between. A gas passage is formed by arranging the structure, and the fine structure of the gas passage structure is changed in the thickness direction so that the structure is relatively dense near the separator and relatively coarse near the electrode. Therefore, the electrical resistance can be reduced near the separator, and it is also possible to supply air and fuel gas to the part covered by the gas passage structure near the electrodes, so that air and fuel gas can be supplied to the electrode surface. It is possible to increase the area that the gas hits, thereby achieving an excellent effect of improving power generation performance.
【図面の簡単な説明】
第1図は本発明の固体電解質型燃料電池の一実施例を示
す断面図、第2図は本発明の他の実施例を示す断面図、
第3図は従来の固体電解質型燃料電池の一例を示す概略
斜視図である。
1・・・電解質板、2・・・酸素極、3・・・燃料極、
45・・・ガス通路、6・・・セパレータ、78.9・
・・ガス通路構造体、C・・・セル、0□・・・空気、
H2・・・燃料ガス。[BRIEF DESCRIPTION OF THE DRAWINGS] FIG. 1 is a sectional view showing one embodiment of the solid oxide fuel cell of the present invention, FIG. 2 is a sectional view showing another embodiment of the present invention,
FIG. 3 is a schematic perspective view showing an example of a conventional solid oxide fuel cell. 1... Electrolyte plate, 2... Oxygen electrode, 3... Fuel electrode,
45... Gas passage, 6... Separator, 78.9.
...Gas passage structure, C...Cell, 0□...Air,
H2...Fuel gas.
Claims (1)
セルをセパレータを介し積層して、酸素極には空気を供
給するようガス通路を形成すると共に燃料極には燃料ガ
スを供給するようガス通路を形成してなる平板型の固体
電解質型燃料電池において、上記酸素極側及び燃料極側
にガス通路を形成するためのガス通路構造体を配置して
、各電極側に上記ガス通路を形成し、且つ上記酸素極側
及び燃料極側のガス通路構造体の微細構造を、セパレー
タ付近を密に、電極付近を粗にするよう厚さ方向に変化
させてなることを特徴とする固体電解質型燃料電池。(1) Cells consisting of an electrolyte plate sandwiched between an oxygen electrode and a fuel electrode are stacked with a separator in between, forming a gas passage to supply air to the oxygen electrode and supplying fuel gas to the fuel electrode. In a flat plate type solid oxide fuel cell in which a gas passage is formed, a gas passage structure for forming a gas passage is arranged on the oxygen electrode side and the fuel electrode side, and the gas passage is formed on each electrode side. , and the fine structure of the gas passage structure on the oxygen electrode side and the fuel electrode side is changed in the thickness direction so that it is denser near the separator and rougher near the electrode. Electrolyte fuel cell.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2240729A JPH04121967A (en) | 1990-09-11 | 1990-09-11 | Solid electrolyte type fuel cell |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2240729A JPH04121967A (en) | 1990-09-11 | 1990-09-11 | Solid electrolyte type fuel cell |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH04121967A true JPH04121967A (en) | 1992-04-22 |
Family
ID=17063839
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2240729A Pending JPH04121967A (en) | 1990-09-11 | 1990-09-11 | Solid electrolyte type fuel cell |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH04121967A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0721675A1 (en) * | 1993-09-09 | 1996-07-17 | Technology Management, Inc. | Electrochemical apparatus |
EP0814528A2 (en) * | 1996-06-20 | 1997-12-29 | Osaka Gas Company Limited | Solid electrolyte fuel cell stack |
WO2005109556A1 (en) * | 2004-05-11 | 2005-11-17 | Toyota Jidosha Kabushiki Kaisha | Fuel cell and separator thereof |
JP2016009649A (en) * | 2014-06-26 | 2016-01-18 | 株式会社日本自動車部品総合研究所 | Solid-state electrolyte type fuel battery cell and manufacturing method for the same |
JP2016527670A (en) * | 2013-06-28 | 2016-09-08 | ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツングRobert Bosch Gmbh | High temperature unit cell with porous gas induction channel layer |
-
1990
- 1990-09-11 JP JP2240729A patent/JPH04121967A/en active Pending
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0721675A1 (en) * | 1993-09-09 | 1996-07-17 | Technology Management, Inc. | Electrochemical apparatus |
EP0721675A4 (en) * | 1993-09-09 | 1996-11-06 | Technology Management Inc | Electrochemical apparatus |
EP0814528A2 (en) * | 1996-06-20 | 1997-12-29 | Osaka Gas Company Limited | Solid electrolyte fuel cell stack |
EP0814528A3 (en) * | 1996-06-20 | 2004-05-19 | Osaka Gas Company Limited | Solid electrolyte fuel cell stack |
WO2005109556A1 (en) * | 2004-05-11 | 2005-11-17 | Toyota Jidosha Kabushiki Kaisha | Fuel cell and separator thereof |
JP2016527670A (en) * | 2013-06-28 | 2016-09-08 | ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツングRobert Bosch Gmbh | High temperature unit cell with porous gas induction channel layer |
JP2016009649A (en) * | 2014-06-26 | 2016-01-18 | 株式会社日本自動車部品総合研究所 | Solid-state electrolyte type fuel battery cell and manufacturing method for the same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4205774B2 (en) | Fuel cell | |
US5922485A (en) | Solid polymer electrolyte fuel cell | |
WO2002043177A3 (en) | Single cell for fuel cell and solid oxide fuel cell | |
JPH041469B2 (en) | ||
JP2004502281A (en) | Improved design of solid oxide fuel cell stack | |
KR20040016842A (en) | Fuel cell | |
JP3319609B2 (en) | Fuel cell | |
JP2004087311A (en) | Fuel cell stack and metallic separator for for fuel cell stack | |
JPH0443566A (en) | Solid electrolyte type fuel cell | |
JPH03266365A (en) | Separator of solid electrolytic type fuel cell | |
JPH03276569A (en) | Fuel cell | |
JPH04121967A (en) | Solid electrolyte type fuel cell | |
JPH0227670A (en) | Fuel cell | |
JPH0355764A (en) | Solid electrolytic type fuel cell | |
JP3266927B2 (en) | Solid oxide fuel cell | |
JPH04121968A (en) | Solid electrolyte type fuel cell | |
JPH04126365A (en) | Solid electrolye type fuel cell | |
JPH01151163A (en) | Fuel cell | |
JP2020009546A (en) | Fuel cell separator | |
JPH02197055A (en) | Cell structure of fuel cell | |
JPH06342664A (en) | Internal reforming method in flat plate type solid electrolyte fuel cell with internal manifold structure using composite separator of heat resistant metal plate and oxide plate | |
JPS59184463A (en) | Fuel cell | |
JPH04303566A (en) | Solid electrolyte fuel cell | |
JPH033958Y2 (en) | ||
JP2805001B2 (en) | Cell integration structure in fuel cells |