[go: up one dir, main page]

JPS6331015A - thin film magnetic head - Google Patents

thin film magnetic head

Info

Publication number
JPS6331015A
JPS6331015A JP17363286A JP17363286A JPS6331015A JP S6331015 A JPS6331015 A JP S6331015A JP 17363286 A JP17363286 A JP 17363286A JP 17363286 A JP17363286 A JP 17363286A JP S6331015 A JPS6331015 A JP S6331015A
Authority
JP
Japan
Prior art keywords
magnetic
core
magnetic head
thin film
width
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17363286A
Other languages
Japanese (ja)
Inventor
Masaaki Kurebayashi
槫林 正明
Masamichi Yamada
雅通 山田
Masakatsu Saito
斉藤 正勝
Hitoshi Yanagihara
仁 柳原
Katsuo Konishi
小西 捷雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP17363286A priority Critical patent/JPS6331015A/en
Publication of JPS6331015A publication Critical patent/JPS6331015A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/31Structure or manufacture of heads, e.g. inductive using thin films
    • G11B5/3109Details
    • G11B5/3116Shaping of layers, poles or gaps for improving the form of the electrical signal transduced, e.g. for shielding, contour effect, equalizing, side flux fringing, cross talk reduction between heads or between heads and information tracks

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Magnetic Heads (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Abstract] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は磁気ヘッドに係り、特にUTR等に好的な薄膜
磁気ヘッドに関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a magnetic head, and particularly to a thin film magnetic head suitable for UTR and the like.

〔従来の技術〕[Conventional technology]

従来の薄膜磁気ヘッドの例として特開昭55−−840
19号公報に記載の薄膜磁気ヘッドがある。この磁気ヘ
ッドでは、ヨーク構造において、磁極先端領域より後方
でその幅を漸進的に大きくし、かつ磁気層の厚さを約6
0X増加している。これによりヨーク#!J造の飽和に
対抗し、かつ効率ご高めでいる。
An example of a conventional thin film magnetic head is JP-A-55-840.
There is a thin film magnetic head described in Japanese Patent No. 19. In this magnetic head, the width of the yoke structure is gradually increased behind the magnetic pole tip region, and the thickness of the magnetic layer is approximately 6 mm.
It has increased by 0X. This makes York #! It counters the saturation of J-build construction and is highly efficient.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかし一般に、磁速漏洩を考慮した単位インダクタンス
あたりの出力という点については配慮されておらず、上
記発明に於てもその点が考慮されていない。
However, in general, no consideration is given to the output per unit inductance in consideration of magnetic velocity leakage, and this point is not taken into consideration in the above invention either.

また従来例ではヨーク構造を形成する磁気層の幅につい
ては検討されていない。磁気層の幅が大きくなれば磁気
ヘッドの効率は増加するが、これと同時に上下磁気層間
での漏洩も増え、またインダクタンスも増加する。通常
磁気ヘッドの性能はある決められたインダクタンスにお
ける再生出力が要求されるため、磁気層の幅を必要以上
に大きくするとインダクタンスが大きくなり丁ぎ、その
結果インダクタンスを規定値にするため信号コイ−ルの
巻数を減らす必要があり、結果として単位インダクタン
スあたりの出力の向上が望めないという問題点があった
Further, in the conventional example, no consideration has been given to the width of the magnetic layer forming the yoke structure. As the width of the magnetic layer increases, the efficiency of the magnetic head increases, but at the same time leakage between the upper and lower magnetic layers increases, and inductance also increases. Normally, the performance of a magnetic head requires reproduction output at a certain inductance, so if the width of the magnetic layer is made larger than necessary, the inductance will become too large. It is necessary to reduce the number of turns, and as a result, there is a problem that an improvement in output per unit inductance cannot be expected.

更に従来例ではフロント作動バヤップ形成部から信号コ
イル上部へ至る斜面部の傾斜角度、及び上、下磁気層間
の間隔についても触れていない。
Furthermore, the conventional example does not mention the inclination angle of the sloped portion from the front actuation bayup forming portion to the upper part of the signal coil, and the spacing between the upper and lower magnetic layers.

傾斜角度、及び間隔により磁気漏洩が大きく変化し、最
適形状としなければ、その部分のり一ケージによるイン
ダクタンスの増加及び出力の低下がおこり性能の向上は
望めないという問題点があった。
Magnetic leakage varies greatly depending on the angle of inclination and spacing, and unless the shape is optimized, the inductance increases and the output decreases due to the glue cage in that part, resulting in no improvement in performance.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の目的は、単位インダクタンスあたりの出力を最
大にする磁気コア形状を提供することにある。
An object of the present invention is to provide a magnetic core shape that maximizes the output per unit inductance.

上記目的を達成するために、磁気ヘッドの再生効率、イ
ンダクタンスが、磁気コアの磁気抵抗と磁気コア間の磁
束漏洩により決定することに注目し、最適形状を求めた
In order to achieve the above object, we focused on the fact that the reproduction efficiency and inductance of a magnetic head are determined by the magnetic resistance of the magnetic core and the magnetic flux leakage between the magnetic cores, and searched for an optimal shape.

本発明は、非磁性基板上に形成した下部磁気コーアと、
ギャップスペーサ材、信号コイル、絶縁材等を介して形
成した上部磁気コアより成る磁気コアと、上下部磁気コ
ア接続部のギャップスペーサ材により形成される作動ギ
ャップと、信号検出用の信号コイルとから成る磁気ヘッ
ドにおいて、トラック幅をa作動ギャップ形成部以外の
コア幅を、bとしたとき、少なくとも一部のコア幅が、
3 < b / a <8であることを特徴としたもの
である0 〔作用〕 コアの磁気抵抗と、磁束漏洩を考慮することによってイ
ンダクタンスな小さく、効率を大キくテきるので、単位
インダクタンスあたりの出力を大きくできる。
The present invention includes a lower magnetic core formed on a non-magnetic substrate,
A magnetic core consisting of an upper magnetic core formed through a gap spacer material, a signal coil, an insulating material, etc., an operating gap formed by a gap spacer material at the connection part of the upper and lower magnetic cores, and a signal coil for signal detection. In the magnetic head, at least part of the core width is
3 < b / a < 8 [Operation] By considering the magnetic resistance of the core and magnetic flux leakage, the inductance can be small and the efficiency can be greatly increased, so the per unit inductance output can be increased.

〔実施例〕〔Example〕

以下本発明の一実施例を第1図及び第2図により説明す
る。第1図は本実施例に示す薄腹磁気ヘッドの断面図で
ある。本実施例における磁気ヘッドの構造は、ガラス、
セラミック等の非磁性基板1上に形成された磁性膜2を
下部磁気コアとし、−その上に形成されたギャップ材4
と信号コイル6及び絶縁材5を介し、磁性膜3を上部磁
気コアとして用い、磁性膜2,3により磁気回路ご形成
している。
An embodiment of the present invention will be described below with reference to FIGS. 1 and 2. FIG. 1 is a cross-sectional view of the thin-belly magnetic head shown in this embodiment. The structure of the magnetic head in this example includes glass,
A magnetic film 2 formed on a non-magnetic substrate 1 such as a ceramic is used as a lower magnetic core, and a gap material 4 is formed on the lower magnetic core.
A magnetic circuit is formed by the magnetic films 2 and 3 via the signal coil 6 and the insulating material 5, using the magnetic film 3 as an upper magnetic core.

磁t[2,3は、センダスト、パーマロイ、非晶質合金
等を用いる。本実施例ではCoをベースにしたCo −
Nb −Zr合金膜を用い、RFスパッタリングにより
形成した。
For the magnets t[2, 3, sendust, permalloy, amorphous alloy, etc. are used. In this example, Co-based Co-
A Nb-Zr alloy film was used and formed by RF sputtering.

ギャップ材4は、5i02. At20s等の非磁性絶
縁材またはCr、 Zr等の非磁性導体を用いることが
できる。本実施例ではCrをスパッタにより03μm形
成した。信号コイル6はCuにより形成しその周囲は8
102等の絶縁材で囲まれている。
The gap material 4 is 5i02. A non-magnetic insulating material such as At20s or a non-magnetic conductor such as Cr or Zr can be used. In this example, Cr was formed to a thickness of 03 μm by sputtering. The signal coil 6 is formed of Cu, and the surrounding area is 8.
It is surrounded by an insulating material such as 102.

第2図に本実施例の平面図2示す。第2図は上部磁気コ
ア3である。
FIG. 2 shows a plan view 2 of this embodiment. FIG. 2 shows the upper magnetic core 3.

第1図、第2図より、ヘッド形状パラメータを次の様に
設定する。上下コア間の間隔t、作動ギャップ後端での
下部コア、上部コアのなす角、θ、フロントコア幅、a
l リアコアll11bまただしフロントコア幅aはト
ラック幅に等しい。
From FIGS. 1 and 2, head shape parameters are set as follows. Distance t between the upper and lower cores, angle formed by the lower core and upper core at the rear end of the working gap, θ, front core width, a
l Rear core 11b However, the front core width a is equal to the track width.

−本実施例においては、t=20μm、θ=60°、a
=20μ” % b= 100μmとした。これらの形
状パラメータとヘッド性能の間には以下に示すような関
係がある。ただしヘッド性能として5MHzの出力Cと
4MHzのインダクタンスLとした場合の単位インダク
タンスあたりの出力C/7LE用い評価した。
- In this example, t=20μm, θ=60°, a
= 20μ"% b = 100μm. There is a relationship between these shape parameters and head performance as shown below. However, when the head performance is 5MHz output C and 4MHz inductance L, per unit inductance Evaluation was made using the output C/7LE.

第3図にフロントコア幅とりコア幅の比、b/aとC/
y’Lの関係な示す。b/az5で最大値となる。最大
値に対し−0,5dBまでご許容値とすると、3≦b 
/ a≦8となる。この様にC/(Lが最大値2とる理
由は、冬に対するCとLの変化が異なるためである。即
ち、冬が小さい領域では効率が低く、Cが小さいためC
/y’Lが小さく、b/aが大きい領域では効率はほぼ
飽和に近づくが、Lは一様に増加し続けるためC/y’
Lが減少する。
Figure 3 shows the ratio of front core width to core width, b/a and C/
Indicates the relationship between y'L. The maximum value is b/az5. If the allowable value is -0.5dB from the maximum value, 3≦b
/ a≦8. The reason why C/(L takes the maximum value 2 in this way is that the changes in C and L with respect to winter are different. In other words, in the region where winter is small, efficiency is low, and because C is small, C
In the region where /y'L is small and b/a is large, the efficiency approaches saturation, but since L continues to increase uniformly, C/y'
L decreases.

第4図にθに対するC/F’Lの変化を示す。θ=π/
2で最大値であり、今以上、πまで変化しない。また許
容値を−0,5dBとすればπくθ≦子  である。
FIG. 4 shows the change in C/F'L with respect to θ. θ=π/
2 is the maximum value, and it will not change any further up to π. Also, if the allowable value is -0.5 dB, π θ≦.

第5図にフロントコア幅と上下コイル間隔の比L / 
aと出力C/rLの関係を示す。a CCtで最大値を
とり、−0,5dBを許容値とすると0.5 り’−≦
25   である。
Figure 5 shows the ratio of front core width to upper and lower coil spacing L/
The relationship between a and output C/rL is shown. If the maximum value is taken at a CCt and the allowable value is -0.5dB, then 0.5'-≦
It is 25.

本発明に於ては出力の許容値を最大値−0,5dBとし
た。これは出力の低下が画質等の製品の品質に問題をお
よぼさない限度である。
In the present invention, the allowable output value is set to the maximum value -0.5 dB. This is the limit within which a reduction in output does not cause problems with product quality such as image quality.

本発明の他の実施例を第6図に示す。非磁性基板1上に
凹部を設け、磁性膜2を形成し、ギャップ材4、絶縁材
5、信号コイル6を形成し、磁性膜3を形成し、磁性膜
2,6により磁気コアご形成する。
Another embodiment of the invention is shown in FIG. A recess is provided on a non-magnetic substrate 1, a magnetic film 2 is formed, a gap material 4, an insulating material 5, and a signal coil 6 are formed, a magnetic film 3 is formed, and a magnetic core is formed by the magnetic films 2 and 6. .

作動バヤップ面と、上部磁気コアの傾斜面とな下角をα
1、下部磁気コアの斜面となT角をα2とするとα1+
 α2は、前記実施例のθに対応する。
α is the lower angle between the operating bayup surface and the inclined surface of the upper magnetic core.
1. If the T angle of the lower magnetic core is α2, then α1+
α2 corresponds to θ in the above embodiment.

本実施例では、α1+α2≧π/4とし、かつα1くα
2とした。この様な構造とすることにより、上部磁気コ
アの精度を向上できる。
In this example, α1+α2≧π/4, and α1×α
It was set as 2. With such a structure, the accuracy of the upper magnetic core can be improved.

また、下部磁気コア2に凹部を加工することにより、傾
斜角α2を得ることが可能であり、この方法では、下部
磁性膜は、斜面部の膜を用いる必要がなく、特性向上を
図ることができる。
Furthermore, it is possible to obtain the inclination angle α2 by machining a concave portion in the lower magnetic core 2. With this method, it is not necessary to use a film on the sloped portion of the lower magnetic film, and the characteristics can be improved. can.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、コアの磁気抵抗と、磁束漏洩を考慮す
ることにより、できるだけインダクタンスを小さくし・
効率を大きくする形状が得られ、単位インダクタンスあ
たりの出力を大きくする効果がある。
According to the present invention, the inductance is minimized by considering the magnetic resistance of the core and magnetic flux leakage.
A shape that increases efficiency can be obtained, which has the effect of increasing output per unit inductance.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の薄膜磁気ヘッドの旧 断面図、第2図は同じく平面図、第〆妃第5図は、形状
と性能の関係を示したグラフ、第6図は薄漠磁気ヘッド
の断面図である。 1・・・非磁性基板、  2・・・磁性膜(下部磁気コ
ア)、3・・・磁性膜(上部磁気コア)、6・・・信号
コイル。 あ!巴 第フ 図 〆 θ (yo−d、) 第5閃 仏 第6区
Figure 1 is an old sectional view of a thin film magnetic head according to an embodiment of the present invention, Figure 2 is a plan view of the same, Figure 5 is a graph showing the relationship between shape and performance, and Figure 6 is a thin film magnetic head. FIG. 3 is a cross-sectional view of a magnetic head. DESCRIPTION OF SYMBOLS 1...Nonmagnetic substrate, 2...Magnetic film (lower magnetic core), 3...Magnetic film (upper magnetic core), 6...Signal coil. a! Tomoe Daifu Figure 〆θ (yo-d,) 5th Senbutsu 6th Ward

Claims (1)

【特許請求の範囲】[Claims] 1、非磁性基板上に形成した下部磁気コアと、ギャップ
スペーサ材、信号コイル、絶縁材等を介して形成した上
部磁気コアより成る磁気コアと、上下部磁気コア接続部
のギャップスペーサ材により形成される作動ギャップと
、信号検出用の信号コイルとから成る磁気ヘッドにおい
て、トラック幅をa作動ギャップ形成部以外のコア幅を
、bとしたとき、少なくとも一部のコア幅が、3≦b/
a≦8であることを特徴とした薄膜磁気ヘッド。
1. A magnetic core consisting of a lower magnetic core formed on a non-magnetic substrate, an upper magnetic core formed via a gap spacer material, a signal coil, an insulating material, etc., and a gap spacer material at the connection part of the upper and lower magnetic cores. In a magnetic head consisting of a working gap formed by a working gap and a signal coil for signal detection, when the track width is a and the core width other than the working gap forming part is b, at least a part of the core width satisfies 3≦b/
A thin film magnetic head characterized in that a≦8.
JP17363286A 1986-07-25 1986-07-25 thin film magnetic head Pending JPS6331015A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17363286A JPS6331015A (en) 1986-07-25 1986-07-25 thin film magnetic head

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17363286A JPS6331015A (en) 1986-07-25 1986-07-25 thin film magnetic head

Publications (1)

Publication Number Publication Date
JPS6331015A true JPS6331015A (en) 1988-02-09

Family

ID=15964208

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17363286A Pending JPS6331015A (en) 1986-07-25 1986-07-25 thin film magnetic head

Country Status (1)

Country Link
JP (1) JPS6331015A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04111212A (en) * 1990-08-31 1992-04-13 Hitachi Ltd Thin-film magnetic head
US6330127B1 (en) 1998-07-30 2001-12-11 Tdk Corporation Thin film magnetic head and method of manufacturing same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04111212A (en) * 1990-08-31 1992-04-13 Hitachi Ltd Thin-film magnetic head
US6330127B1 (en) 1998-07-30 2001-12-11 Tdk Corporation Thin film magnetic head and method of manufacturing same

Similar Documents

Publication Publication Date Title
EP0071489B1 (en) A perpendicular magnetic recording and reproducing head
US7154707B2 (en) Thin film magnetic head and magnetic recording apparatus
JP2728487B2 (en) Recording / playback separation type magnetic head
US4873599A (en) Magnetic head assembly for perpendicular magnetic recording
EP0881627A2 (en) Thin film magnetic head
JPH07176014A (en) Magnetic head with improved pole tip and its manufacture
US4652956A (en) Thin-film magnetic head for perpendicular magnetization having a ring shaped magnetic read/write conducting body and write coil winding arranged outside the conducting body
US4438471A (en) Magnetic head for perpendicular magnetic recording system
Bajorek et al. An integrated magnetoresistive read, inductive write high density recording head
JP2971538B2 (en) Thin film magnetic head
US4745507A (en) Composite type magnetic head with non-magnetic member in coil mounting portion
JP2701796B2 (en) Thin film magnetic head and method of manufacturing the same
JPS6331015A (en) thin film magnetic head
JPH11250416A (en) Thin film magnetic head
JPS6257111A (en) Magnetic head
CA1179771A (en) Perpendicular mode magnetic transducer head
KR20010075105A (en) Thin film magnetic head with tip sub-magnetic pole and method of manufacturing the same
JP2636539B2 (en) Thin film magnetic head
JPS60256907A (en) Thin film magnetic head
JPS62114113A (en) Thin film magnetic head
JP2747216B2 (en) Thin film magnetic head
JP2576536B2 (en) Thin film magnetic head
JPS5897118A (en) Magnetic head
JPH07129927A (en) Thin film magnetic head
JPH0830920A (en) Thin film magnetic head for perpendicular magnetic recording and method of manufacturing the same