[go: up one dir, main page]

JPS63305915A - Separation of carbon dioxide contained in exhaust gas and recovering method thereof - Google Patents

Separation of carbon dioxide contained in exhaust gas and recovering method thereof

Info

Publication number
JPS63305915A
JPS63305915A JP62139680A JP13968087A JPS63305915A JP S63305915 A JPS63305915 A JP S63305915A JP 62139680 A JP62139680 A JP 62139680A JP 13968087 A JP13968087 A JP 13968087A JP S63305915 A JPS63305915 A JP S63305915A
Authority
JP
Japan
Prior art keywords
carbon dioxide
gas
exhaust gas
gaseous carbon
membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62139680A
Other languages
Japanese (ja)
Inventor
Mamoru Inoue
衞 井上
Hisaaki Kamiyama
久朗 神山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP62139680A priority Critical patent/JPS63305915A/en
Publication of JPS63305915A publication Critical patent/JPS63305915A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0228Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream
    • F25J3/0266Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of carbon dioxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/02Processes or apparatus using separation by rectification in a single pressure main column system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/40Processes or apparatus using other separation and/or other processing means using hybrid system, i.e. combining cryogenic and non-cryogenic separation techniques
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/80Processes or apparatus using other separation and/or other processing means using membrane, i.e. including a permeation step
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2210/00Processes characterised by the type or other details of the feed stream
    • F25J2210/04Mixing or blending of fluids with the feed stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2210/00Processes characterised by the type or other details of the feed stream
    • F25J2210/70Flue or combustion exhaust gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2220/00Processes or apparatus involving steps for the removal of impurities
    • F25J2220/80Separating impurities from carbon dioxide, e.g. H2O or water-soluble contaminants
    • F25J2220/82Separating low boiling, i.e. more volatile components, e.g. He, H2, CO, Air gases, CH4
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2230/00Processes or apparatus involving steps for increasing the pressure of gaseous process streams
    • F25J2230/30Compression of the feed stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2245/00Processes or apparatus involving steps for recycling of process streams
    • F25J2245/02Recycle of a stream in general, e.g. a by-pass stream
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Separation By Low-Temperature Treatments (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

PURPOSE:To efficiently recover high-purity carbon dioxide without largely modifying an existing installation by pressurizing exhaust gas subjected to dust removal and thereafter using a membrane for separating gas to selectively separate carbon dioxide and liquefying gaseous carbon dioxide. CONSTITUTION:In the case of installating a recovery equipment of gaseous carbon to a conventional lime kiln installation, both the exhaust gas of combustion gas generated from a rotary kiln 3 and the exhaust gas generated by decomposition of limestone are mixed and this mixture is sent to a dust collector 7 to remove dust and thereafter pressurized with a compressor 8. After subjecting this exhaust gas to temp. control in a cooler 9, gaseous carbon dioxide is selectively separated with a membrane 10 for separating gas. The separated gaseous carbon dioxide is liquefied wit the compressor 8 and a refrigerator 12 via a tank 11 of a crude gaseous carbon dioxide and highly purified in a purification tower 13 of gaseous carbon dioxide and filled into a tank 14 of liquid carbon dioxide.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、排ガス中の二酸化炭素分離回収方法、さらに
詳しくは、ガス分離膜を用いて排ガス中の二酸化炭素を
選択的に分離した後、二酸化炭素ガスを液化する二酸化
炭素分離回収方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a method for separating and recovering carbon dioxide in exhaust gas, and more specifically, after selectively separating carbon dioxide in exhaust gas using a gas separation membrane, carbon dioxide is recovered. This invention relates to a carbon dioxide separation and recovery method that liquefies gas.

従来の技術 二酸化炭素(以下炭酸ガスという)は、溶接の雰囲気ガ
ス、冷却、飲料用などに用いられる一方、製鉄所におい
ても複合吹錬転炉などの鋼浴の攪拌用ガスとして、また
、高炉羽口の保護冷却用ガスとして用いられ、その需要
は益々増加する傾向にある。
Conventional technology Carbon dioxide (hereinafter referred to as carbon dioxide gas) is used as an atmospheric gas for welding, cooling, and for drinking purposes, but it is also used in steel plants as a stirring gas for steel baths such as complex blowing converters, and in blast furnaces. It is used as a protective and cooling gas for tuyeres, and its demand is on the rise.

工業用炭酸ガスは、石油化学工業の各種工程で発生する
98%以上の高濃度炭酸ガスを含有する排ガスを分離精
製することにより製造されているが、その原料となる原
油などの価格が変動して割高な現状において炭酸ガスは
非常に高価であるので、その使用は自ずと制約されてい
る。
Industrial carbon dioxide gas is produced by separating and refining exhaust gas that contains over 98% carbon dioxide gas, which is generated in various processes in the petrochemical industry, but the price of crude oil, which is the raw material, fluctuates. At present, carbon dioxide is very expensive, so its use is naturally restricted.

そこで、石灰石、ドロマイト等の焼成炉より排出される
排ガス中の炭酸ガスを回収する提案、例′1 えば特開昭61−5408号公報、特開昭81−540
8号公報などがある。
Therefore, proposals have been made to recover carbon dioxide gas from exhaust gas discharged from calcining furnaces for limestone, dolomite, etc.
There are publications such as Publication No. 8.

前者は、流動層反応炉内で燃料を焼成して発生する燃焼
熱によって石灰石等を熱分解し、しかもこの分解によっ
て生成されるC02ガスの一部を流動化ガスとして容器
へ循環導入し、燃料の燃焼ガスとの混合ガスから高濃度
の002ガスを回収する方法であり、後者は、固体燃料
を使用して石灰石等を流動層反応炉内で焼成して高濃度
の002ガスを製造するC02ガス生成回収方法である
The former thermally decomposes limestone, etc. using the combustion heat generated by burning fuel in a fluidized bed reactor, and a part of the CO2 gas produced by this decomposition is circulated into a container as a fluidizing gas, and the fuel is The latter is a method of recovering high-concentration 002 gas from a mixed gas with combustion gas of CO2. This is a gas production and recovery method.

発明が解決しようとする問題点 しかしながら、これらの従来技術は専用の流動層反応炉
を用いなければならず、また得られるC02濃度は75
〜90%であり、そのまま各種の用途に使用できないば
かりでなく、石油化学工業の排ガスが98〜99%の高
濃度炭酸ガスを含有するものに比べて品質・コストなど
の点で競争できるものではない。
Problems to be Solved by the Invention However, these conventional techniques require the use of a dedicated fluidized bed reactor, and the resulting CO2 concentration is 75%.
~90%, and not only cannot it be used as is for various purposes, but also cannot compete in terms of quality and cost compared to petrochemical industry exhaust gas, which contains 98 to 99% carbon dioxide. do not have.

また、流動層反応炉を新規に建設する場合はよいが、第
2図に示すような製鉄所などにおいて稼動している石灰
キルンなどから排出される排ガスより炭酸ガスを回収す
る方法には適用はできない。
Although it is suitable for constructing a new fluidized bed reactor, it is not applicable to the method shown in Figure 2, which recovers carbon dioxide gas from exhaust gas emitted from lime kilns operating in steel plants, etc. Can not.

問題点を解決するための手段 本発明は、これらの従来技術の問題を解決することを目
的とするものであって、例えば既設の石灰キルンかも排
出される比較的高濃度の炭酸ガスをガス分離膜に導き、
炭酸ガスを選択的に分離し、この炭酸ガスを液化するこ
とによ′り炭酸ガスを経済的に回収する方法を提供する
ものである。
Means for Solving the Problems The present invention aims to solve the problems of these conventional techniques. lead to the membrane,
The present invention provides a method for economically recovering carbon dioxide gas by selectively separating carbon dioxide gas and liquefying the carbon dioxide gas.

すなわち、本発明は排ガス中の二酸化炭素を分離回収す
るに島り、除塵された排ガスを昇圧させてガス分離膜に
導き、二酸化炭素以外のガスと二酸化炭素を主成分とす
るガスに分離した後、二酸化炭素を主成分とするガスを
液化することを特徴とする排ガス中の二酸化炭素分離回
収方法である。
That is, the present invention focuses on separating and recovering carbon dioxide in exhaust gas, and after increasing the pressure of the dust-removed exhaust gas and introducing it to a gas separation membrane, separating it into gas other than carbon dioxide and gas mainly composed of carbon dioxide. , is a method for separating and recovering carbon dioxide in exhaust gas, which is characterized by liquefying a gas whose main component is carbon dioxide.

作用 本発明は、排ガス中の炭酸ガスをガス分gl膜により選
択的に分離し、得られた比較的高純度の炭酸ガスを深冷
分離により液化して高純度の炭酸ガスとして回収する方
法であって、本発明によれば、従来大気中に放出してい
た排ガスを既存の設備を大きく変更などすることなく、
簡単な改造によってその有効成分である炭酸ガスを効率
よく回収することができ、高純度の炭酸ガスを安価にし
かも大量に取得することができる。
Function The present invention is a method of selectively separating carbon dioxide gas in exhaust gas using a gas separation GL membrane, and liquefying the obtained relatively high-purity carbon dioxide gas by cryogenic separation and recovering it as high-purity carbon dioxide gas. Therefore, according to the present invention, exhaust gas that was conventionally released into the atmosphere can be removed without major changes to existing equipment.
By simple modification, the active ingredient carbon dioxide gas can be efficiently recovered, and high purity carbon dioxide gas can be obtained at low cost and in large quantities.

以下さらに本発明の詳細な説明する。The present invention will be further explained in detail below.

本発明は一般に排ガスに広く利用できるが、排ガス中の
炭酸ガス濃度が20%以上と高い場合に効果的であり、
製鉄所での例を取れば石灰キルンの排ガス、−酸化炭素
の多い燃料ガス(例えば転炉ガスなど)の燃焼排ガスな
どを用いると効率的である。
The present invention can be widely used for exhaust gas in general, but is effective when the carbon dioxide concentration in the exhaust gas is as high as 20% or more.
For example, in a steel mill, it is efficient to use exhaust gas from a lime kiln or combustion exhaust gas from a fuel gas containing a large amount of carbon oxide (for example, converter gas).

以下、石灰キルンの例により本発明を説明する。The invention will now be explained using the example of a lime kiln.

生石灰は石灰キルンによって主として製造されているが
、生石灰は石灰石(CaCO3)を次式で示すように熱
分解反応によって製造され、石灰石1tから炭酸ガスが
400 N m”程度発生する。
Quicklime is mainly produced in a lime kiln, and quicklime is produced by a thermal decomposition reaction of limestone (CaCO3) as shown in the following formula, and approximately 400 N m'' of carbon dioxide gas is generated from 1 ton of limestone.

CaC03−+CaO+ C02−42500kcal
/ kg−molこの反応は吸熱反応であるから、90
0〜1000℃の範囲の温度にキルン内を保持し石灰石
を分解する。このためには燃料を燃焼させるなどにより
熱量を補給する必要がある。
CaC03-+CaO+ C02-42500kcal
/ kg-mol This reaction is endothermic, so 90
The inside of the kiln is maintained at a temperature in the range of 0 to 1000°C to decompose limestone. For this purpose, it is necessary to replenish heat by burning fuel.

この燃料としては、例えばコークス炉ガス、転炉ガスな
どの気体燃料や石炭などの固体燃料などがあげられる。
Examples of this fuel include gaseous fuels such as coke oven gas and converter gas, and solid fuels such as coal.

これらの中、転炉ガスのような一酸化炭素濃度の高い気
体燃料が好ましい。この理由は、転炉ガスを専焼すると
、排ガス中の炭酸ガス濃度は36%となるが、コークス
炉ガスを専焼しても、排ガス中の炭酸ガス濃度は8%で
あり、炭酸ガス濃度の高い排ガスが得られないからであ
る。
Among these, gaseous fuels with high carbon monoxide concentration, such as converter gas, are preferred. The reason for this is that when converter gas is exclusively fired, the concentration of carbon dioxide in the exhaust gas is 36%, but even when coke oven gas is exclusively fired, the concentration of carbon dioxide in the exhaust gas is only 8%. This is because exhaust gas cannot be obtained.

石灰石を石灰キルンによって焼成した排ガスは、石灰石
分解による炭酸ガスと燃料の燃焼ガスと混合されキルン
外に排出されるため炭酸ガス濃度が低く、そのままでは
高純度の炭酸ガスを安価に得ることはできない。
The exhaust gas produced when limestone is burned in a lime kiln is mixed with carbon dioxide gas from limestone decomposition and combustion gas from the fuel, and is discharged outside the kiln, so the concentration of carbon dioxide gas is low, and it is not possible to obtain high-purity carbon dioxide gas as it is at a low price. .

そこで、本発明は、石灰キルンから排出される500℃
程度の高温の排ガスを除塵機に導き、ダストを除去した
後、圧縮機により加圧すると共にクーラーによって温度
50〜80℃、好ましくは60〜70℃の温度によるよ
うに冷却し、次いでこの排ガスをガス分離膜に導き、炭
酸ガスのみ選択的に分5番し、分診された炭酸ガスを圧
縮、冷却、膨張させて液化し、ざらに精留塔などの分離
装置で沸点差を利用して含有する不純物ガスを分離する
深冷分離により精製して、純度99.99%程度の高純
度の炭酸ガスとして回収する方法である。
Therefore, the present invention aims to improve the temperature of 500°C discharged from a lime kiln.
The exhaust gas is introduced into a dust remover to remove dust, then pressurized by a compressor and cooled by a cooler to a temperature of 50 to 80°C, preferably 60 to 70°C. The carbon dioxide gas is introduced into a separation membrane, where only carbon dioxide gas is selectively separated, and the separated carbon dioxide gas is compressed, cooled, and expanded to liquefy, and then contained using a separation device such as a rectification tower using the boiling point difference. In this method, impurity gas is purified by cryogenic separation, and recovered as highly pure carbon dioxide gas with a purity of about 99.99%.

本発明において、特に重要なことは、排ガス中の炭酸ガ
スをガス分離膜によって選択的に濃縮分離本場し、高濃
度の炭酸ガスを取得することにある。
What is particularly important in the present invention is to selectively concentrate and separate carbon dioxide in exhaust gas using a gas separation membrane to obtain highly concentrated carbon dioxide.

従来から混合ガスの分離精製技術として、ガス分離膜を
用いる方法が知られており、ガス分離膜としては多孔質
膜と非多孔質膜とがある。
BACKGROUND ART A method using a gas separation membrane is conventionally known as a separation and purification technique for mixed gas, and gas separation membranes include porous membranes and non-porous membranes.

一般に多孔質膜による気体の分離は、気体の澄れが粘性
流の領域では期待できないが、孔径が気体の平均自由行
程より十分小さい時には、(1)クヌーセン流(分子流
) 、 (2)表面流、(3)毛管凝縮、(4)分子ふ
るいなどの機構によって分離することができるが、本発
明においてはこの技術は分離効率が悪く実用的ではない
In general, gas separation by porous membranes cannot be expected in the region of viscous flow, but when the pore diameter is sufficiently smaller than the mean free path of the gas, (1) Knudsen flow (molecular flow), (2) surface Separation can be performed by mechanisms such as flow, (3) capillary condensation, and (4) molecular sieving, but in the present invention, this technique has poor separation efficiency and is not practical.

非多孔質膜による気体の分離は、ゴム状高分子域の膜を
用い、各気体の高分子への溶解度係数と膜中の拡散係数
の差を利用するものであるので、本発明のように混合ガ
スを一段で効率よく分離するには好適である。
Gas separation using a non-porous membrane uses a rubber-like polymeric membrane and utilizes the difference between the solubility coefficient of each gas in the polymer and the diffusion coefficient in the membrane. This is suitable for efficiently separating mixed gas in one stage.

カスが非多孔質膜を透過するのは高圧側(分圧の高い側
)からガスが膜に溶解し、膜の中を拡散して反対側に移
動す°るからであるが、各ガス成分の膜に対する透過の
しやすさく透過速度)は高分子素材によって異なるが、
その使用条件下で耐性(熱、圧力、化学的安定)があり
、かつ薄膜のものであれば使用可能である。
The reason why debris permeates through a non-porous membrane is because gas dissolves in the membrane from the high-pressure side (the side with high partial pressure), diffuses through the membrane, and moves to the opposite side, but each gas component The ease of permeation through the membrane (permeation rate) differs depending on the polymer material, but
It can be used as long as it is resistant (heat, pressure, chemically stable) under the conditions of use and has a thin film.

本発明に用いられる膜としては公知のものが使用できる
。その具体例としてはポリイミド系高分子化合物、セル
ローズアセテート、ポリスルホンなどがあげられる。
As the membrane used in the present invention, known membranes can be used. Specific examples include polyimide polymer compounds, cellulose acetate, polysulfone, and the like.

−たとえば下記式で示される芳香族ポリイミドは50〜
150℃の温度に対しても使用可能である。
-For example, the aromatic polyimide represented by the following formula is 50~
It can also be used at temperatures of 150°C.

式 (但し式中のArは芳香族化合物を示す。)またその構
造は平板、チューブ、中空ファイバー、フィルムなどの
ものをそのまま、または組合せて用いることができる。
(However, Ar in the formula represents an aromatic compound.) Also, the structure thereof may be a flat plate, a tube, a hollow fiber, a film, etc., and it may be used as it is or in combination.

また、膜形状としては、均質膜、非対称膜、複合膜(非
多孔質膜同士あるいは非多孔質体と多孔質体をコンポジ
ットさせた多層構造)などのものを用いることができる
Further, as the membrane shape, homogeneous membranes, asymmetric membranes, composite membranes (multilayer structure in which non-porous membranes or a non-porous material and a porous material are composited) can be used.

次に本発明を図面に従って説明する。Next, the present invention will be explained with reference to the drawings.

第1図は、本発明の詳細な説明する図面であって、従来
の石灰キルン設備に炭酸ガス回収装置を設置したフロー
図である。
FIG. 1 is a drawing explaining the present invention in detail, and is a flow diagram in which a carbon dioxide recovery device is installed in a conventional lime kiln facility.

第1図に示すように、石灰キルン設備は予熱炉2、ロー
タリーキルン3、冷却機5とからなり、予熱炉には原料
供給口1、冷却機5には、ロータリーキルン3に熱を供
給するバーナー4と二次燃焼空気用ブロア6が配設され
たものである。
As shown in FIG. 1, the lime kiln equipment consists of a preheating furnace 2, a rotary kiln 3, and a cooler 5. The preheating furnace has a raw material supply port 1, and the cooler 5 has a burner 4 that supplies heat to the rotary kiln 3. A blower 6 for secondary combustion air is provided.

また、炭酸ガス回収装置は除塵機7、圧縮機8、クーラ
ー9、ガス分離膜10、タンク(バッファ)11、圧縮
機8、冷凍機12、炭酸ガス精製器13とからなり、こ
れらはいずれも順に配管で接続され、さらに炭酸ガス精
製器13からクーラー9とガス分離膜10との間の配管
に炭酸ガスの一部を戻すことができるように接続されて
いる。
In addition, the carbon dioxide recovery device consists of a dust remover 7, a compressor 8, a cooler 9, a gas separation membrane 10, a tank (buffer) 11, a compressor 8, a refrigerator 12, and a carbon dioxide purifier 13, all of which are They are connected in order by piping, and are further connected so that a part of carbon dioxide gas can be returned from the carbon dioxide purifier 13 to the piping between the cooler 9 and the gas separation membrane 10.

原料の石灰石は供給口1から予熱炉2を通して予熱され
、ロータリーキルン3で焼成される。
Raw material limestone is preheated from a supply port 1 through a preheating furnace 2 and fired in a rotary kiln 3.

石灰石分解に必要な熱量はバーナー4で転炉ガスなどを
燃焼させて補給する。焼成された生石灰は冷却機5で燃
焼用二次空気と熱交換し排出される。燃焼ガスの排ガス
と石灰石分解で発生した排ガス(炭酸ガス20〜50%
、残ガス主として窒素、温度300〜500℃)は除塵
機7に送られダストが除去される。ダストを除去された
排ガスは圧縮機8で5〜30kg/crrfに昇圧され
、約200℃程度の温度となる。
The amount of heat required for limestone decomposition is supplied by burning converter gas or the like in the burner 4. The calcined quicklime exchanges heat with secondary combustion air in the cooler 5 and is discharged. Exhaust gas from combustion gas and exhaust gas generated from limestone decomposition (20-50% carbon dioxide)
The remaining gas (mainly nitrogen, temperature 300-500°C) is sent to a dust remover 7 to remove dust. The exhaust gas from which dust has been removed is pressurized to 5 to 30 kg/crrf by the compressor 8, and has a temperature of about 200°C.

この排ガスをクーラー9により温度調節され80〜70
℃の温度とした後、ガス分離膜により炭酸ガスが選択的
に分離され炭酸ガス80〜90%のものとなる。なおガ
ス分離膜に導入される炭酸ガス濃度が高い程圧損が少な
く有利である。
The temperature of this exhaust gas is adjusted by a cooler 9 to 80 to 70
After bringing the temperature to 10°C, carbon dioxide is selectively separated by a gas separation membrane, resulting in a carbon dioxide content of 80 to 90%. Note that the higher the concentration of carbon dioxide gas introduced into the gas separation membrane, the smaller the pressure loss, which is advantageous.

さらに純度を上げるのと運搬の便宜を考慮して粗炭酸ガ
スタンク11を経て圧縮機8と冷凍機12によって液化
され、炭酸ガス精製塔13で純度99.99%まで高純
化され、その1部はガス中分離膜10の前に循環され、
大部分はタンク液体炭酸ガスタンク14に充填される。
In order to further increase the purity and to facilitate transportation, the crude carbon dioxide gas is passed through the crude carbon dioxide tank 11 and liquefied by the compressor 8 and refrigerator 12, and highly purified to a purity of 99.99% in the carbon dioxide gas purification tower 13. circulated before the gas separation membrane 10,
Most of the liquid carbon dioxide tank 14 is filled with the liquid carbon dioxide gas.

以上本発明を石灰キルンの例によって説明したが、本発
明はこれに限られるものではなく、炭酸ガスを約20%
以上含有するガス混合物の分離に好適に適用することが
でき、安価な設備で効率よく高純度の炭酸ガスが得られ
る。
Although the present invention has been explained above using the example of a lime kiln, the present invention is not limited to this.
It can be suitably applied to the separation of gas mixtures containing the above, and high purity carbon dioxide can be efficiently obtained with inexpensive equipment.

実施例 石灰キルンを改造して炭酸ガス回収装置を設置した例に
ついて以下に説明する。
EXAMPLE An example in which a lime kiln was modified and a carbon dioxide gas recovery device was installed will be described below.

石灰キルンは製鉄所内の精練用に使用する生石灰を製造
するための設備で、従来は燃焼ガスとしてコークスガス
を使用しており、排ガスも除塵して大気に放散していた
。第2図には従来の石灰キルン設備フロー図を示したが
、排ガスは空冷塔15、プレダスタ−16、バグフィル
タ−17を通るので、その途中の漏れが大きいために排
ガスとして大気に放散される前の煙突19の炭酸ガス濃
度は約15%とかなり低いものであった。
Lime kilns are equipment used to produce quicklime used for scouring within steel mills. Conventionally, coke gas was used as the combustion gas, and the exhaust gas was also removed and released into the atmosphere. Fig. 2 shows a flow diagram of conventional lime kiln equipment. Since the exhaust gas passes through the air cooling tower 15, the pre-duster 16, and the bag filter 17, there is a large leakage along the way, so it is released into the atmosphere as exhaust gas. The carbon dioxide concentration in the previous chimney 19 was approximately 15%, which was quite low.

そこで第1図に示すような改造を実施し、燃焼用ガスと
して一酸化炭素濃度約57%の転炉ガスを19ONm″
/v1in使用した。冷却用の二次空気も燃焼に必要な
最低限の量に止め、排ガス中の炭酸ガス濃度の低下を防
止した。生石灰は20t/hrの速度で焼成され、その
とき分解発生する炭酸ガスは約13ONrn’/win
で燃焼排ガス約40ONrn’/win中に約15ON
rn”/winの炭酸ガスが発生した。すなわち石灰石
1を製造するときに84ONm3の炭酸ガスが発生する
ことになる。
Therefore, the modification shown in Figure 1 was carried out, and the converter gas with a carbon monoxide concentration of approximately 57% was used as combustion gas at 19 ONm''.
/v1in was used. The amount of secondary air used for cooling was also kept to the minimum required for combustion, preventing a drop in the carbon dioxide concentration in the exhaust gas. Quicklime is fired at a rate of 20t/hr, and the carbon dioxide gas decomposed at that time is approximately 13ONrn'/win.
The combustion exhaust gas is about 40ONrn'/win, while the combustion exhaust gas is about 15ON.
Carbon dioxide gas of rn''/win was generated. That is, when producing limestone 1, carbon dioxide gas of 84 ONm3 was generated.

予熱炉2から排出される排ガス中の炭酸ガス濃度は約5
3%であり、ダスト濃度は20g/Nm3、温度は約・
300℃であった。除塵機は湿式のペンチユリ−スフラ
ッパ方式を採用し、ダスト濃度を0.3mg/Nrn’
まで低下させた。これをブロアーで8 kg/crn’
まで昇圧しガス分離膜に通して窒素を分離し、98%の
炭酸ガス濃度に精製した。次に深冷分離装置によって液
化し、沸点の差を利用して純度を89.99%まで高め
た。
The carbon dioxide concentration in the exhaust gas discharged from the preheating furnace 2 is approximately 5
3%, the dust concentration is 20g/Nm3, and the temperature is approx.
The temperature was 300°C. The dust remover uses a wet pentillary flapper method, and the dust concentration is reduced to 0.3mg/Nrn'.
It was lowered to. This is 8 kg/crn' with a blower.
The pressure was increased to 98%, and nitrogen was separated by passing through a gas separation membrane to purify it to a carbon dioxide concentration of 98%. Next, it was liquefied using a cryogenic separator, and the purity was increased to 89.99% by utilizing the difference in boiling points.

発明の効果 本発明は従来には大気に捨てられていた排ガスを、既存
の設備を大きく変更することなく簡単な改造によって、
その有用成分である炭酸ガスをガス分離膜により選択的
に分離回収する経済的な炭酸ガス製造方法を提案するも
のである。
Effects of the Invention The present invention allows exhaust gas, which was conventionally discarded into the atmosphere, to be removed by simple modification without major changes to existing equipment.
This paper proposes an economical method for producing carbon dioxide gas in which the useful component carbon dioxide gas is selectively separated and recovered using a gas separation membrane.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明を石灰キルン設備に適用した場合の全体
フロー図、第2図は従来の石灰キルン設備のフロー図で
ある。
FIG. 1 is an overall flow diagram when the present invention is applied to lime kiln equipment, and FIG. 2 is a flow diagram of conventional lime kiln equipment.

Claims (1)

【特許請求の範囲】[Claims] 排ガス中の二酸化炭素を分離回収するに当り、除塵され
た排ガスを昇圧させてガス分離膜に導き、二酸化炭素以
外のガスと二酸化炭素を主成分とするガスに分離した後
、二酸化炭素を主成分とするガスを液化することを特徴
とする排ガス中の二酸化炭素分離回収方法。
In separating and recovering carbon dioxide in exhaust gas, the pressure of the dust-removed exhaust gas is increased and guided to a gas separation membrane, where it is separated into gases other than carbon dioxide and gas whose main component is carbon dioxide. A method for separating and recovering carbon dioxide in exhaust gas, characterized by liquefying the gas.
JP62139680A 1987-06-05 1987-06-05 Separation of carbon dioxide contained in exhaust gas and recovering method thereof Pending JPS63305915A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62139680A JPS63305915A (en) 1987-06-05 1987-06-05 Separation of carbon dioxide contained in exhaust gas and recovering method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62139680A JPS63305915A (en) 1987-06-05 1987-06-05 Separation of carbon dioxide contained in exhaust gas and recovering method thereof

Publications (1)

Publication Number Publication Date
JPS63305915A true JPS63305915A (en) 1988-12-13

Family

ID=15250924

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62139680A Pending JPS63305915A (en) 1987-06-05 1987-06-05 Separation of carbon dioxide contained in exhaust gas and recovering method thereof

Country Status (1)

Country Link
JP (1) JPS63305915A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03267109A (en) * 1990-03-15 1991-11-28 Ube Ind Ltd Method for recovering carbon dioxide in waste combustion gas from power plant
US5693121A (en) * 1994-11-17 1997-12-02 Enerfex, Inc. Semi-permeable membrane separation process for the production of very high purity nitrogen
US6085549A (en) * 1998-04-08 2000-07-11 Messer Griesheim Industries, Inc. Membrane process for producing carbon dioxide
US6128919A (en) * 1998-04-08 2000-10-10 Messer Griesheim Industries, Inc. Process for separating natural gas and carbon dioxide
JP2011251859A (en) * 2010-05-31 2011-12-15 Toyo Eng Works Ltd Carbon dioxide gas recovery apparatus in dry ice manufacturing process
CN113908659A (en) * 2021-11-30 2022-01-11 安徽华塑股份有限公司 A CO2 sequestration device and sequestration method in waste gas discharge during lime production in a lime kiln

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03267109A (en) * 1990-03-15 1991-11-28 Ube Ind Ltd Method for recovering carbon dioxide in waste combustion gas from power plant
US5693121A (en) * 1994-11-17 1997-12-02 Enerfex, Inc. Semi-permeable membrane separation process for the production of very high purity nitrogen
US6085549A (en) * 1998-04-08 2000-07-11 Messer Griesheim Industries, Inc. Membrane process for producing carbon dioxide
US6128919A (en) * 1998-04-08 2000-10-10 Messer Griesheim Industries, Inc. Process for separating natural gas and carbon dioxide
JP2011251859A (en) * 2010-05-31 2011-12-15 Toyo Eng Works Ltd Carbon dioxide gas recovery apparatus in dry ice manufacturing process
CN113908659A (en) * 2021-11-30 2022-01-11 安徽华塑股份有限公司 A CO2 sequestration device and sequestration method in waste gas discharge during lime production in a lime kiln

Similar Documents

Publication Publication Date Title
EP1142628A2 (en) Treatment of gas streams containing hydrogen sulphide
CN101016490B (en) A method of treating a gaseous mixture comprising hydrogen and carbon dioxide
RU2166546C1 (en) Method of combination of blast furnace and direct reduction reactor with use of cryogenic rectification
AU622091B2 (en) Recovery of carbon dioxide from a carbon dioxide plant vent gas using membranes
KR20220005074A (en) Systems and methods for carbon capture
US5714132A (en) Production of hydrogen and carbon monoxide from oxyfuel furnace off-gas
JPH0617213B2 (en) Method for recovering sulfur from hydrogen sulfide-containing gas stream
CA2101631C (en) Method for manufacture of high purity carbon monoxide
GB2150856A (en) Method and apparatus for purifying hot gases with heat recovery
US2413714A (en) Process of producing elemental sulphur
US4046866A (en) Production of liquid sulfur trioxide
US4117100A (en) Process for reduction of sulfur dioxide to sulfur
JPH05141265A (en) Method and apparatus for producing medium
KR19990072759A (en) Process and plant for the combined production of an ammonia synthesis mixture and carbon monoxide
JPH01501139A (en) Dual combustion oxygen-enriched Claus sulfur plant
US3418082A (en) Process for the preparation of a hydrogen-containing gas mixture
JPS63305915A (en) Separation of carbon dioxide contained in exhaust gas and recovering method thereof
JPS62230604A (en) Collection of sulfur from hydrogen sulfide equipped with washing column by high concentration oxygen and circulation process
US20240254043A1 (en) Decarbonation process of carbonated materials in a multi-shaft vertical kiln
AU666525B2 (en) Air separation
AU2014274405A1 (en) Purification, recovery, and recycle of vent gas
GB2151597A (en) Recovery of carbon dioxide from gas mixtures
US2449359A (en) Manufacture of carbon monoxide and hydrogen from methane
GB1403996A (en) Oxidation process and installation therefor
JPH06287001A (en) Production of hydrogen and carbon dioxide