[go: up one dir, main page]

JPS63302356A - Apparatus of measuring oxygen concentration - Google Patents

Apparatus of measuring oxygen concentration

Info

Publication number
JPS63302356A
JPS63302356A JP62112727A JP11272787A JPS63302356A JP S63302356 A JPS63302356 A JP S63302356A JP 62112727 A JP62112727 A JP 62112727A JP 11272787 A JP11272787 A JP 11272787A JP S63302356 A JPS63302356 A JP S63302356A
Authority
JP
Japan
Prior art keywords
oxygen concentration
measuring device
resistance value
oxygen
heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62112727A
Other languages
Japanese (ja)
Other versions
JP2505459B2 (en
Inventor
Takao Murase
隆生 村瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP62112727A priority Critical patent/JP2505459B2/en
Priority to DE19883802051 priority patent/DE3802051A1/en
Publication of JPS63302356A publication Critical patent/JPS63302356A/en
Application granted granted Critical
Publication of JP2505459B2 publication Critical patent/JP2505459B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/406Cells and probes with solid electrolytes
    • G01N27/4067Means for heating or controlling the temperature of the solid electrolyte
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/406Cells and probes with solid electrolytes
    • G01N27/4065Circuit arrangements specially adapted therefor

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Molecular Biology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Measuring Oxygen Concentration In Cells (AREA)

Abstract

PURPOSE:To enable the highly precise measurement of the concentration of oxygen by a method wherein a voltage supplied to a heater is controlled on the basis of an electric resistance value of the heater itself heating an oxygen concentration detecting member, for the purpose of keeping the temperature of the member stable. CONSTITUTION:In an oxygen detecting element 2, the part of a measuring electrode 12, a reference electrode 14 and a solid electrolyte body 4 constituting an oxygen concentration detecting member is heated to a prescribed temperature by heating members 18a and 20a. When an electric resistance value of heater elements 18 and 20 is denoted by gamma and resistance values of resistors 22, 24 and 26 by A, B and R in a resistance bridge circuit of a power supply circuit 21, a potential difference between a point (a) and a point (b) in the circuit 21 becomes zero when gamma.B=R.A. In this construction, a voltage difference between the points (a) and (b) is detected by a comparator 36 and a transistor 38 is controlled on the basis of the detection so that gamma=R.A/B, i.e. the voltage difference between the points (a) and (b) be zero. Thereby a voltage at a point (c) is controlled. Accordingly, the circuit 21 can be controlled so that the resistance value gamma, i.e. the resistance value of the elements 18 and 20 be fixed, and thus the implementation of highly precise measurement is enabled.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、酸素濃度測定装置、特に自動車用エンジンの
燃焼制御系或いは各種の工業炉の燃焼制御系に用いて好
適な、排気ガスの酸素濃度測定装置に係り、更に詳しく
は使用される温度環境によらず、酸素濃度測定素子(酸
素検知素子)の温度を安定に保ち、高精度の測定が出来
ると共に、耐久性にも優れた酸素濃度測定装置に関する
ものである。
Detailed Description of the Invention (Field of Industrial Application) The present invention is an oxygen concentration measuring device suitable for use in an oxygen concentration measuring device, particularly a combustion control system of an automobile engine or a combustion control system of various industrial furnaces. Regarding the concentration measuring device, more specifically, it is an oxygen concentration device that maintains the temperature of the oxygen concentration measuring element (oxygen detection element) stably regardless of the temperature environment in which it is used, enables highly accurate measurement, and has excellent durability. This relates to a measuring device.

(従来の技術) 従来より、自動車用内燃機関の排気ガス中の酸素濃度や
、工業炉、ボイラー等から排出される燃焼排ガス中の酸
素濃度を検知する酸素センサ(酸素濃度測定装置)とし
て、酸素イオン伝導性の固体電解質であるジルコニア磁
器を用いた、酸素濃淡電池の原理を利用して酸素濃度を
求めるセンサ等が知られている。そして、内燃機関等に
おいては、一般に、空気と燃料とから構成される混合気
の空燃比を、高精度に目標値に制御するために、前記の
如きセンサを用いて、空燃比と相関関係を有する排気ガ
ス中の酸素濃度を検知することにより、混合気の空燃比
を検知して、内燃機関等に供給される燃料供給量をフィ
ードバック制御するようにしているのである。
(Prior art) Oxygen sensors (oxygen concentration measuring devices) have been used as oxygen sensors (oxygen concentration measurement devices) to detect the oxygen concentration in the exhaust gas of automobile internal combustion engines and the oxygen concentration in the combustion exhaust gas discharged from industrial furnaces, boilers, etc. 2. Description of the Related Art Sensors that use zirconia porcelain, which is an ion-conducting solid electrolyte, to determine oxygen concentration using the principle of an oxygen concentration battery are known. In internal combustion engines, etc., in order to control the air-fuel ratio of the air-fuel mixture composed of air and fuel to a target value with high precision, the above-mentioned sensors are generally used to measure the correlation between the air-fuel ratio and the air-fuel ratio. By detecting the oxygen concentration in the exhaust gas, the air-fuel ratio of the air-fuel mixture is detected, and the amount of fuel supplied to the internal combustion engine or the like is feedback-controlled.

ところで、このような酸素センサを、測定されるべき被
測定ガスの温度が比較的低い場合においても有効に作動
させるためには、かかる酸素センサにおける酸素検知素
子の少なくとも酸素濃度検知部を、適当なヒータ(加熱
体)によって所定の高温度に加熱せしめる必要があるが
、従来にあっては、かかる加熱のために、有底円筒形状
を為す酸素検知素子の内孔内に傍熱型のヒータを設けた
り(特開昭57−142555号公叩参照)、また積層
型の酸素検知素子にあっては、その積層構造内にヒータ
を一体的に埋設してなる構造のもの(特開昭55−14
0145号公報参照)等が明らかにされている。
By the way, in order for such an oxygen sensor to operate effectively even when the temperature of the gas to be measured is relatively low, at least the oxygen concentration sensing portion of the oxygen sensing element in the oxygen sensor must be It is necessary to heat it to a predetermined high temperature with a heater (heating body), but in the past, for such heating, an indirect heating type heater was placed inside the inner hole of the oxygen sensing element, which has a bottomed cylindrical shape. (Refer to Japanese Unexamined Patent Publication No. 57-142555), and in the case of a laminated oxygen sensing element, a heater is integrally embedded in the laminated structure (Japanese Unexamined Patent Publication No. 55-1982). 14
0145) etc. have been clarified.

(発明が解決しようとする問題) しかしながら、この種の酸素センサ(酸素濃度測定装置
)においては、酸素検知素子の酸素濃度検知部を加熱す
るヒータ(加熱体)の発熱量、或いはそれに対する供給
電圧が特に制御されておらず、そのために、かかる酸素
濃度測定装置が使用される環境の変化により、例えば被
測定ガス温度の変化により、かかる酸素検知素子の酸素
濃度検知部の温度が変化し、以て被測定ガス中の酸素濃
度に応じた出力である起電力或いはポンプ電流が変化し
て、正確な測定が出来ない問題を内在している。
(Problem to be Solved by the Invention) However, in this type of oxygen sensor (oxygen concentration measuring device), the amount of heat generated by the heater (heating body) that heats the oxygen concentration detection part of the oxygen detection element, or the supply voltage to it is not particularly controlled, and therefore, due to changes in the environment in which such an oxygen concentration measuring device is used, for example due to changes in the temperature of the gas to be measured, the temperature of the oxygen concentration sensing part of such oxygen sensing element changes, and the following may occur. Therefore, there is a problem in that the electromotive force or pump current, which is the output depending on the oxygen concentration in the gas to be measured, changes, making accurate measurement impossible.

また、被測定ガス温度の上昇により、酸素濃度検知部の
温度も上昇し、時として、そこが過熱状態となり、かか
る酸素濃度検知部や加熱体の寿命を著しく短くするとい
う問題も内在していたのである。
Additionally, as the temperature of the gas being measured rises, the temperature of the oxygen concentration detection section also rises, sometimes resulting in overheating, which poses the inherent problem of significantly shortening the life of the oxygen concentration detection section and heating element. It is.

(問題点を解決するための手段) ここにおいて、本発明は、上記の問題を解決するために
為されたものであって、その特徴とするところは、酸素
濃度検知部と該酸素濃度検知部を所定の温度に加熱する
加熱体とを有し、更に該加熱体の電気抵抗値に基づいて
、前記酸素濃度検知部の温度を安定に保つように、該加
熱体に供給される電力または電圧を制御する制御手段を
有するように、酸素濃度測定装置を構成したのである。
(Means for Solving the Problems) Here, the present invention has been made to solve the above problems, and is characterized by an oxygen concentration detection section and an oxygen concentration detection section. and a heating element that heats the oxygen concentration sensor to a predetermined temperature, and further includes electric power or voltage supplied to the heating element to keep the temperature of the oxygen concentration detection section stable based on the electrical resistance value of the heating element. The oxygen concentration measuring device was configured to include a control means for controlling the oxygen concentration.

そして、このような構成を具備する本発明に従う酸素濃
度測定装置にあっては、加熱体の抵抗温度係数を利用し
て、当該加熱体の電気抵抗を測定するようにしたことに
より、かかる加熱体にて加熱される酸素濃度検知部の温
度を直接的に検知することが出来ることとなり、そして
かかる加熱体の電気抵抗値を一定に保つように、或いは
かかる加熱体の常温下での電気抵抗値と酸素濃度検知部
の加熱状態下における電気抵抗値との比率が一定となる
ように、所定の制御手段にて、該加熱体に供給される電
力または電圧を制御することにより、酸素濃度検知部の
温度を安定的に保持し得て、それを一定に保ち、以て測
定精度を著しく向上せしめ得るのである。
In the oxygen concentration measuring device according to the present invention having such a configuration, the electrical resistance of the heating element is measured using the temperature coefficient of resistance of the heating element. It is now possible to directly detect the temperature of the oxygen concentration detection section heated by the heating element, and the electrical resistance value of the heating element can be kept constant, or the electrical resistance value of the heating element at room temperature can be directly detected. By controlling the electric power or voltage supplied to the heating element using a predetermined control means so that the ratio between the electric resistance value and the electrical resistance value under the heating state of the oxygen concentration sensing part is constant, the oxygen concentration sensing part is heated. This makes it possible to stably maintain the temperature of the sample and keep it constant, thereby significantly improving measurement accuracy.

なお、かかる酸素濃度測定装置にあっては、前記加熱体
は、一般に、前記酸素濃度検知部と一体的に形成されて
いるものであり、またかかる加熱体は、酸素濃度検知条
件下において、少なくとも0.1%/℃の正または負の
抵抗温度係数を有するものであることが望ましく、これ
によって、酸素4度検知部の温度変化を感度よく検出し
て、その温度制御をより正確と為し得るのである。
In addition, in such an oxygen concentration measuring device, the heating body is generally formed integrally with the oxygen concentration detection section, and under the oxygen concentration detection conditions, the heating body at least It is desirable that the sensor has a positive or negative temperature coefficient of resistance of 0.1%/℃, which allows for sensitive detection of temperature changes in the oxygen 4 degree detection section and more accurate temperature control. You get it.

また、本発明の一つの実施態様によれば、前記加熱体は
複数において設けられ、それら複数の加熱体にて酸素濃
度検知部が均一な温度に加熱せしめられ得るように構成
されると共に、それらのうちの少な(とも一つの加熱体
に供給される電力または電圧が、前記制御手段にて制御
されるように構成されることとなる。そして、そのよう
な複数の加熱体を設けた場合において、それらのうちの
発熱量の小さな加熱体の電気抵抗値に基づいて、酸素濃
度検知部の温度を安定に保つように、それら加熱体に供
給される電力または電圧が前記制御手段にて制御される
こととなる。
Further, according to one embodiment of the present invention, a plurality of the heating bodies are provided, and the oxygen concentration detection section is configured to be heated to a uniform temperature by the plurality of heating bodies. The configuration is such that the electric power or voltage supplied to one heating element is controlled by the control means.In the case where a plurality of such heating elements are provided, Based on the electric resistance value of the heating element having a small calorific value among them, the electric power or voltage supplied to the heating element is controlled by the control means so as to keep the temperature of the oxygen concentration detection section stable. The Rukoto.

ところで、かかる本発明における電気抵抗値を検知する
ための加熱体にあっては、それは、一般に、酸素濃度検
知部を直接加熱する発熱部と、かかる発熱部に電力を供
給するためのリード部とから構成されるものであるが、
かかる発熱部の常温抵抗値は、前記リード部の常温抵抗
値よりも高くされていることが好ましく、これによって
、酸素濃度検知部の温度をより正確に検出し得るのであ
る。けだし、加熱体の全抵抗値は、発熱部の抵抗値とリ
ード部の抵抗値とを加えたものであるところから、発熱
部の抵抗に対してリード部の抵抗が大きくなると、発熱
体の全抵抗値が発熱部の温度、換言すれば酸素濃度検知
部の温度を代表し得なくなるからである。
By the way, the heating body for detecting the electrical resistance value according to the present invention generally includes a heat generating part that directly heats the oxygen concentration detection part and a lead part for supplying power to the heat generating part. It is composed of
It is preferable that the resistance value at room temperature of the heating part is higher than the resistance value at room temperature of the lead part, so that the temperature of the oxygen concentration detection part can be detected more accurately. However, since the total resistance value of the heating element is the sum of the resistance value of the heating part and the resistance value of the lead part, if the resistance of the lead part becomes larger than the resistance of the heating part, the total resistance of the heating element This is because the resistance value cannot represent the temperature of the heat generating section, in other words, the temperature of the oxygen concentration detection section.

また、本発明にあっては、個体間(酸素濃度測定装置間
)のバラツキを調整するために、各酸素濃度測定装置に
おける加熱体の電力供給路に、所定の第一の調整抵抗を
電気的に直列または並列に設けた構造が好適に採用され
、この第一の調整抵抗の抵抗値を適宜に変化させること
によって、当該酸素濃度測定装置における加熱体の電気
抵抗値(出力)を温度に対応した所定の値に制御するこ
とが可能となる。なお、かかる第一の調整抵抗は、加熱
体と一体形成され得るものであるが、また別体に形成さ
れていても何等差支えない。更に、かかる第一の調整抵
抗の抵抗値の調整に際しては、酸素濃度検知部を加熱体
または他の傍熱ヒータにて所定温度に加熱し、その際の
加熱体の電気抵抗値及び第一の調整抵抗の電気抵抗値の
和が一定値となるように、該第一の調整抵抗の電気抵抗
値を調整することによって実施されることとなる。
In addition, in the present invention, in order to adjust variations between individual devices (between oxygen concentration measuring devices), a predetermined first adjustment resistor is electrically connected to the power supply path of the heating element in each oxygen concentration measuring device. A structure in which the first adjustment resistor is provided in series or in parallel is preferably adopted, and by appropriately changing the resistance value of this first adjustment resistor, the electrical resistance value (output) of the heating element in the oxygen concentration measuring device can be adjusted to correspond to the temperature. It becomes possible to control to a predetermined value. The first adjustment resistor may be formed integrally with the heating body, but there is no problem even if it is formed separately. Furthermore, when adjusting the resistance value of the first adjustment resistor, the oxygen concentration detection section is heated to a predetermined temperature with a heating element or other indirect heater, and the electrical resistance value of the heating element and the first adjustment resistance are adjusted. This is carried out by adjusting the electric resistance value of the first adjusting resistor so that the sum of the electric resistance values of the adjusting resistors becomes a constant value.

さらに、本発明の一実施態様によれば、前記制御手段に
よって、前記加熱体の常温下での電気抵抗値と前記酸素
濃度検知部の加熱状態下における電気抵抗値との比率が
一定となるように、該加熱体に供給される電力または電
圧が制御せしめられるようにされ、これによっても個体
間の電気抵抗値のバラツキを吸収することが可能である
。そして、この場合において、前記酸素濃度検知部と前
記加熱体とを一体的に形成してなる酸素検知素子を外部
の機器にコネクタを介して接続せしめる構造において、
前記制御手段が、該コネクタ上に位置する若しくはそれ
よりも酸素検知素子側に位置する前記加熱体への電力供
給回路に設けられた、電気抵抗値が調整される第二の調
整抵抗の少なくとも一つを有するように、構成されるの
である。
Furthermore, according to an embodiment of the present invention, the control means causes the ratio between the electrical resistance value of the heating body at room temperature and the electrical resistance value of the oxygen concentration detection section under the heated state to be constant. In addition, the electric power or voltage supplied to the heating element is controlled, and this also makes it possible to absorb variations in electrical resistance values between individual elements. In this case, in a structure in which an oxygen sensing element formed by integrally forming the oxygen concentration sensing section and the heating body is connected to an external device via a connector,
The control means includes at least one of a second adjustment resistor whose electric resistance value is adjusted, which is provided in a power supply circuit to the heating body located on the connector or closer to the oxygen sensing element than the connector. It is constructed in such a way that it has one.

なお、この第二の調整抵抗は、酸素検知素子上に位置す
る、加熱体への電力供給回路部分に一体的に設けられた
り、或いはコネクタ上の電力供給回路部分に、またコネ
クタと酸素検知素子との間の電力供給回路部分に、設け
られたりされるものである。
Note that this second adjustment resistor may be provided integrally with the power supply circuit portion to the heating body located on the oxygen sensing element, or may be provided in the power supply circuit portion on the connector, or between the connector and the oxygen sensing element. It is installed in the power supply circuit section between the

また、本発明は、外部の被測定ガス存在空間から導入さ
れる被測定ガスを所定の拡散抵抗の下に拡散せしめる拡
散室と、該拡散室における雰囲気中の酸素濃度を変化さ
せる酸素ポンプ手段と、該拡散室における雰囲気中の酸
素濃度を検出する酸素濃淡電池手段とから構成される酸
素濃度検知部を有する酸素濃度測定装置に対して、好適
に適用されるものである。そのような酸素濃度検知部の
拡散室における被測定ガスの拡散抵抗が、温度の影響を
受けて変化し、酸素ポンプ手段のポンプ電流(出力)等
を変化せしめて、被測定ガス中の酸素濃度の検知精度を
低下せしめるからである。
The present invention also provides a diffusion chamber for diffusing a gas to be measured introduced from an external space where the gas to be measured exists under a predetermined diffusion resistance, and an oxygen pump means for changing the oxygen concentration in the atmosphere in the diffusion chamber. The present invention is suitably applied to an oxygen concentration measuring device having an oxygen concentration detection section comprising an oxygen concentration battery means for detecting the oxygen concentration in the atmosphere in the diffusion chamber. The diffusion resistance of the gas to be measured in the diffusion chamber of such an oxygen concentration detection unit changes under the influence of temperature, causing changes in the pump current (output) of the oxygen pump means, etc., and the oxygen concentration in the gas to be measured changes. This is because it reduces the detection accuracy.

なお、本発明にあっては、前記加熱体は、好ましくは、
導体として白金を用いて形成され、また酸素濃度検知部
は、ZrO□を主成分とする酸素イオン伝導性の固体電
解質にて構成され、更にかかる加熱体の発熱部は、被測
定ガスから遮断されて、直接に晒されないような構造と
されていることが望ましい。
In addition, in the present invention, the heating body preferably includes:
It is formed using platinum as a conductor, and the oxygen concentration detection section is composed of an oxygen ion conductive solid electrolyte whose main component is ZrO□, and the heating section of the heating body is isolated from the gas to be measured. Therefore, it is desirable that the structure is such that it is not exposed to direct exposure.

(実施例) 以下、本発明に従う幾つかの実施例を、図面に基づいて
詳細に説明すると共に、本発明の構成について、更に具
体的に明らかにする。
(Examples) Hereinafter, some embodiments according to the present invention will be described in detail based on the drawings, and the structure of the present invention will be explained more specifically.

先ず、第1図は、本発明の酸素濃度測定装置に用いられ
る酸素検知素子の展開構造図であり、第2図は、そのよ
うな酸素検知素子における先端部の酸素濃度検知部の横
断面形態を示している。この酸素検知素子2は、狭幅な
板状の長手形状を為しており、その先端部に酸素濃淡電
池の原理を利用した酸素濃度検知部が形成されている。
First, FIG. 1 is a developed structural diagram of an oxygen sensing element used in the oxygen concentration measuring device of the present invention, and FIG. 2 is a cross-sectional view of the oxygen concentration sensing portion at the tip of such an oxygen sensing element. It shows. This oxygen sensing element 2 has a narrow plate-like elongated shape, and an oxygen concentration sensing section utilizing the principle of an oxygen concentration battery is formed at the tip thereof.

そして、酸素検知素子2は、それらの図から明らかなよ
うに、積層構造とされている。即ち、高温において酸素
イオン伝導性を示す安定化ジルコニアからなる板状の固
体電解質体4と、同様な固体電解質材料から形成された
スペーサ部材6と、板状のヒータ層8とを積層せしめて
、一体向な構造とされていると共に、スペーサ部材6の
切欠き部によって、それら固体電解質体4とヒータ層8
との間に、大気に連通せしめられる空気通路lOが形成
されているのである。また、固体電解質体4の外側面に
は、被測定ガスに接触せしめられる測定電極12が設け
られており、そしてこの測定電極12に対向するように
、固体電解質体4の空気通路lOに面する内側面には、
基準電極14が設けられて、空気通路10を通じて導か
れる基準ガスとしての空気が、かかる基準電極14に接
触せしめられるようになっている。
As is clear from these figures, the oxygen sensing element 2 has a laminated structure. That is, a plate-shaped solid electrolyte body 4 made of stabilized zirconia that exhibits oxygen ion conductivity at high temperatures, a spacer member 6 made of the same solid electrolyte material, and a plate-shaped heater layer 8 are laminated, The solid electrolyte body 4 and the heater layer 8 are connected to each other by the notch part of the spacer member 6.
An air passage 10 that communicates with the atmosphere is formed between the two. Further, a measurement electrode 12 that is brought into contact with the gas to be measured is provided on the outer surface of the solid electrolyte body 4, and a measurement electrode 12 that faces the air passage lO of the solid electrolyte body 4 is provided so as to be opposed to the measurement electrode 12. On the inside surface,
A reference electrode 14 is provided so that air as a reference gas guided through the air passage 10 is brought into contact with the reference electrode 14 .

また、ヒータ層8は、気密質の電気絶縁性セラミックス
板状体16内に加熱体としての第一のヒータエレメント
18が埋設されて、構成されている。なお、この第一の
ヒータエレメント18は、酸素検知素子2の先端部の酸
素濃度検知部を加熱するための発熱部18aと、かかる
発熱部18aを外部の電源に接続するリード部tabと
から構成されている。また、第二のヒータエレメント2
0が、固体電解質体4の測定電極12が設けられた側の
面に、該測定電極12を取り囲むようにして設けられて
おり、この第二のヒータエレメント20も、発熱部20
aとリード部20bとから構成されている。要するに、
これら第一及び第二のヒータエレメント18.20のそ
れぞれの発熱部18a、20aによって、酸素濃度検知
部を構成する測定電極12、基準電極I4及びそれら電
極12.14の配置された固体電解質体4部分が所定の
温度に加熱せしめられ得るようになっているのである。
Further, the heater layer 8 is constructed by embedding a first heater element 18 as a heating body in an airtight electrically insulating ceramic plate 16. The first heater element 18 is composed of a heat generating part 18a for heating the oxygen concentration sensing part at the tip of the oxygen sensing element 2, and a lead part tab for connecting the heat generating part 18a to an external power source. has been done. In addition, the second heater element 2
0 is provided on the surface of the solid electrolyte body 4 on the side where the measurement electrode 12 is provided so as to surround the measurement electrode 12, and this second heater element 20 is also provided on the surface of the solid electrolyte body 4 on the side where the measurement electrode 12 is provided.
a and a lead portion 20b. in short,
The measurement electrode 12, the reference electrode I4, and the solid electrolyte body 4 in which these electrodes 12.14 are arranged constitute the oxygen concentration detection section by the respective heat generating parts 18a and 20a of the first and second heater elements 18.20. The parts can be heated to a predetermined temperature.

ト18.20の少なくとも何れか一方には(ここでは両
方に)、第3図に示される如き、電力乃至は電圧を制御
する制御手段を含む電力供給回路21が接続されている
のである。なお、かがる第3図において、22.24.
26.28.3o、32.34は、何れも所定の抵抗で
あり、また36は比較器、38は電力/電圧調整用トラ
ンジスタ、40は電源である。そして、ヒータエレメン
ト18(20)と共に、抵抗22.24及び26によっ
て、抵抗ブリッジ回路が構成されているのである。
A power supply circuit 21 including control means for controlling power or voltage as shown in FIG. 3 is connected to at least one of the ports 18 and 20 (both in this case). In addition, in Fig. 3 of Kagaru, 22.24.
26.28.3o and 32.34 are predetermined resistors, 36 is a comparator, 38 is a power/voltage adjustment transistor, and 40 is a power source. A resistive bridge circuit is constituted by the resistors 22, 24 and 26 together with the heater element 18 (20).

従って、かかる電力供給回路21の抵抗ブリッジ回路に
おいて、ヒータエレメント18(20)の負荷(電気抵
抗値);r、抵抗22.24及び26の抵抗値: A、
B、Rとすると、rB=RAのときに、第3図の電力供
給回路2Iにおけるa点とb点との間の電位差がOとな
る。そして、r=RA/Bとなるように、即ちa、b間
の電圧差がOとなるように、比較器36でそれらa、b
間の電圧差を検知して、トランジスタ38をコントロー
ルすることにより、C点における電圧がコントロールさ
れることとなるのである。それ故に、かかる電力供給回
路21にてr、換言すればヒータエレメント18(20
)の抵抗値が一定となるようにコントロールすることが
可能となるのである。換言すれば、ヒータエレメント1
B(20)にて加熱される酸素検知素子2の先端の酸素
濃度検知部の温度が一定となるように制御することが可
能となるのである。
Therefore, in the resistance bridge circuit of the power supply circuit 21, the load (electrical resistance value) of the heater element 18 (20): r, the resistance values of the resistors 22, 24 and 26: A,
Assuming that B and R, the potential difference between the point a and the point b in the power supply circuit 2I in FIG. 3 becomes O when rB=RA. Then, the comparator 36 connects a and b so that r=RA/B, that is, the voltage difference between a and b becomes O.
By detecting the voltage difference between them and controlling the transistor 38, the voltage at point C is controlled. Therefore, in the power supply circuit 21, r, in other words, the heater element 18 (20
) can be controlled so that the resistance value remains constant. In other words, heater element 1
This makes it possible to control the temperature of the oxygen concentration sensing portion at the tip of the oxygen sensing element 2 heated at B(20) to be constant.

なお、かくの如き構造の酸素検知素子2にあっては、よ
く知られているように、固体電解質体4と被測定ガスに
晒される測定電極12と基準ガスに晒される基準電極1
4とから構成される電気化学的セルからなる酸素濃度検
知部によって、酸素濃度差に基づくところのネルンスト
の式に従う起電力が出力信号として取り出され、そして
そのような出力信号に基づいて、そのような被測定ガス
(排気ガス)を発生せしめる内燃機関等の燃焼制御が行
なわれるのである。
As is well known, the oxygen sensing element 2 having such a structure includes the solid electrolyte body 4, the measurement electrode 12 exposed to the gas to be measured, and the reference electrode 1 exposed to the reference gas.
The electromotive force according to Nernst's equation based on the oxygen concentration difference is extracted as an output signal by the oxygen concentration detection section consisting of an electrochemical cell consisting of 4, and based on such an output signal, such Combustion control of an internal combustion engine or the like that generates a gas to be measured (exhaust gas) is performed.

そして、その際、本発明の構成によれば、ヒータエレメ
ント18(20)の電気抵抗値に基づいて、酸素濃度検
知部の温度が一定に保たれるように、かかるヒータエレ
メント18(20)に供給される電力乃至は電圧が制御
されることとなるところから、かかる酸素濃度検知部が
所定の温度に常に保持され、その温度変化が小さくなる
ところから、例えば被測定ガスの温度が変化しても、か
かる酸素濃度検知部から安定な出力を得ることが出来、
それによって高精度の測定が可能となるのである。また
、そのような酸素濃度検知部の温度が制御されることに
より、かかる酸素濃度検知部やヒータエレメント1B(
20)が過熱する危険がなく、その寿命も効果的に永続
化せしめ得るのである。
At that time, according to the configuration of the present invention, the heater element 18 (20) is controlled so that the temperature of the oxygen concentration detection section is kept constant based on the electrical resistance value of the heater element 18 (20). Since the supplied power or voltage is controlled, the oxygen concentration detection section is always maintained at a predetermined temperature, and the temperature change is small, so for example, if the temperature of the gas to be measured changes. Also, stable output can be obtained from such an oxygen concentration detection section,
This allows highly accurate measurements. In addition, by controlling the temperature of such an oxygen concentration detection section, the temperature of such an oxygen concentration detection section and heater element 1B (
20) is not at risk of overheating, and its lifespan can be effectively extended.

ところで、酸素濃度測定装置には、上記の如き基本的構
造を有するものの他、その酸素濃度検知部が、被測定ガ
スを所定の拡散抵抗の下に拡散せしめる拡散室と、該拡
散室における雰囲気の酸素濃度を変化させる酸素ポンプ
手段と、該拡散室における雰囲気中の酸素濃度を検出す
る酸素濃淡電池手段とから構成されるものがあるが、特
に後者の拡散室を設けた構造の酸素濃度検知部を有する
ものにあっては、その拡散室における被測定ガスの拡散
抵抗(拡散定数)が温度によって大きく影響を受けると
ころから、本発明が有利に適用され、以てその検知精度
が効果的に高められ得るものであって、その−例が、第
4図及び第5図に示されている。
By the way, in addition to having the basic structure as described above, the oxygen concentration measuring device also includes a diffusion chamber in which the gas to be measured is diffused under a predetermined diffusion resistance, and an atmosphere in the diffusion chamber. Some devices are composed of an oxygen pump means for changing the oxygen concentration and an oxygen concentration battery means for detecting the oxygen concentration in the atmosphere in the diffusion chamber. Since the diffusion resistance (diffusion constant) of the gas to be measured in the diffusion chamber is greatly affected by the temperature, the present invention can be advantageously applied to such a device, thereby effectively increasing the detection accuracy. Examples are shown in FIGS. 4 and 5.

すなわち、それらの図に示された構造の酸素検知素子5
0は、前例の如き構造の酸素検知素子2において、その
測定電極12側に気密質の電気絶縁性セラミックス層5
2、更に酸素イオン伝導性の安定化ジルコニアからなる
板状の固体電解質体54が積層されて一体的な構造とさ
れていると共に、該固体電解質体54に設けられた通気
孔56を介して外部の被測定ガス存在空間に連通せしめ
られる、所定の拡散抵抗を有する細隙な平坦空間(拡散
室)58が、セラミックス層52に設けられた円形の切
欠き部によって、二つの板状の固体電解質体4.54間
に形成されている。そして、固体電解質体54の両側の
面に接するように、相対向して、円環状の内側ポンプ電
極60及び外側ポンプ電極62がそれぞれ設けられ、そ
れら二つのポンプ電極60.62と固体電解質体54と
によって、電気化学的セルである酸素ポンプ手段が構成
されているのである。
That is, the oxygen sensing element 5 having the structure shown in those figures
0 is an oxygen sensing element 2 having a structure similar to the previous example, with an airtight electrically insulating ceramic layer 5 on the measurement electrode 12 side.
2. Furthermore, a plate-shaped solid electrolyte body 54 made of stabilized zirconia with oxygen ion conductivity is laminated to form an integral structure, and the solid electrolyte body 54 is connected to the outside through a ventilation hole 56 provided in the solid electrolyte body 54. A narrow flat space (diffusion chamber) 58 having a predetermined diffusion resistance and communicating with the space in which the gas to be measured is present is formed by a circular notch provided in the ceramic layer 52 between the two plate-shaped solid electrolytes. It is formed between the body 4.54. An annular inner pump electrode 60 and an annular outer pump electrode 62 are provided facing each other so as to be in contact with both sides of the solid electrolyte body 54, and these two pump electrodes 60, 62 and the solid electrolyte body 54 This constitutes an oxygen pump means which is an electrochemical cell.

また、ここでは、第一のヒータエレメント18が、その
ような酸素ポンプ手段と測定電極12、基準電極14及
び固体電解質体4にて構成される酸素濃淡電池手段とか
らなる酸素濃度検知部を所゛定の温度に加熱せしめ得る
ようになっている。
Further, here, the first heater element 18 is equipped with an oxygen concentration detection section comprising such an oxygen pump means and an oxygen concentration battery means constituted by the measurement electrode 12, the reference electrode 14, and the solid electrolyte body 4. It is designed so that it can be heated to a certain temperature.

従って、このような構造の酸素検知素子50にあっては
、よく知られているように、平坦空間58内において、
所定の拡散抵抗の下に拡散せしめられる被測定ガス中の
酸素濃度と空気通路10内の基準ガス(空気)中の酸素
濃度との間の酸素濃度差に従って、酸素濃淡電池手段を
構成する測定電極12と基準電極14との間に発生する
、濃淡電池の原理に基づく起電力が検出される一方、そ
のような起電力に基づいて、酸素ポンプ手段を構成する
内側ポンプ電極6oと外側ポンプ電極62との間に所定
のポンプ電流が通電せしめられることによって、所定の
酸素ポンプ作用が行なわれて、平坦空間58の内側ポン
プ電極60の配置された近傍の雰囲気、換言すれば酸素
濃淡電池手段の測定電極12の配置された近傍の雰囲気
が所定の雰囲気となるように制御され、そしてその際、
酸素ポンプ手段の二つの電極60.62間に流されるホ
77” ”Z流:■、を検出することによって、目的と
する被測定ガスの酸素濃度が測定されることとなる。
Therefore, in the oxygen sensing element 50 having such a structure, as is well known, in the flat space 58,
Measuring electrodes constituting an oxygen concentration cell means according to the oxygen concentration difference between the oxygen concentration in the gas to be measured diffused under a predetermined diffusion resistance and the oxygen concentration in the reference gas (air) in the air passage 10 12 and the reference electrode 14 is detected based on the principle of a concentration cell, and based on such an electromotive force, the inner pump electrode 6o and the outer pump electrode 62 constituting the oxygen pump means are detected. By passing a predetermined pump current between the two, a predetermined oxygen pumping action is performed, and the atmosphere in the vicinity of the inner pump electrode 60 of the flat space 58, in other words, the measurement of the oxygen concentration battery means. The atmosphere in the vicinity of the electrode 12 is controlled to be a predetermined atmosphere, and at that time,
By detecting the flow flowing between the two electrodes 60 and 62 of the oxygen pump means, the oxygen concentration of the target gas to be measured is measured.

このような構造の酸素検知素子を備えた酸素濃度測定装
置にあっても、その第一のヒータエレメント18に、第
3図に示される如き電力供給回路21を設けることによ
って、その酸素濃度検知部の温度を所定の温度に効果的
に保持し得るのであり、それによって、平坦空間58内
に導かれ、拡散せしめられる被測定ガスの拡散抵抗(拡
散定数)を変化せしめることなく、目的とする被測定ガ
スの酸素濃度を測定することが出来るところから、その
酸素濃度検知部より安定して出力信号を取り出し得るの
である。
Even in an oxygen concentration measuring device equipped with an oxygen sensing element having such a structure, by providing the first heater element 18 with a power supply circuit 21 as shown in FIG. The temperature of the target gas can be effectively maintained at a predetermined temperature, and thereby the target gas can be effectively maintained at a predetermined temperature without changing the diffusion resistance (diffusion constant) of the gas to be measured that is introduced into the flat space 58 and diffused. Since the oxygen concentration of the measurement gas can be measured, an output signal can be stably extracted from the oxygen concentration detection section.

なお、以上の実施例において、酸素濃度検知部を構成す
る固体電解質体は安定化ジルコニアにて構成され、本発
明では、そのようなZrO□を主成分とする酸素イオン
伝導性の固体電解質が、酸素濃度検知部を構成する材料
として有利に用いられ得るものであるが、また、その他
の酸素イオン伝導性の固体電解質、例えば5rCeO,
、B iz○3−希土類酸化物系固溶体等の材料を用い
て形成されたものであっても、河岸差支えない。
In the above embodiments, the solid electrolyte body constituting the oxygen concentration detection section is made of stabilized zirconia, and in the present invention, the oxygen ion conductive solid electrolyte mainly composed of ZrO□ is Although it can be advantageously used as a material constituting the oxygen concentration detection section, other oxygen ion conductive solid electrolytes such as 5rCeO,
, Biz○3-Even if it is formed using a material such as a rare earth oxide solid solution, there is no problem with the river bank.

また、加熱体としての第一のヒータエレメント18や第
二のヒータエレメント20は、酸素濃度検知部における
温度の変化を、それらの電気抵抗値の変化として出力す
るものであるところから、酸素濃度検知条件下において
、少なくとも0.1%/℃の正または負の抵抗温度係数
を存するものであることが望ましく、それによって加熱
体の電気抵抗値の読取り誤差が加熱体温度に与える影響
が小さくなって、酸素濃度検知部の温度変化を精度良く
検出することが出来るのであり、以てかかる酸素濃度検
知部の温度制御がより一層効果的に行なわれ得るのであ
る。なお、そのような加熱体は、電極12.14;60
.62と同様に、白金、パラジウム、ロジウム、イリジ
ウム、ルテニウム、オスミウムの如き白金族金属等の導
電性金属や導電性化合物等の公知の導電性材料から形成
されることとなるが、特に好ましくは、導体として白金
を用いて形成されていることが望ましい。また、そのよ
うな加熱体は、基地との密着一体化の向上を図るために
、上記の如き導電性金属にセラミ・ノクスの微粉末を混
入せしめて、その焼成を行なうことにより、形成するよ
うにすることも可能である。
Furthermore, since the first heater element 18 and the second heater element 20 as heating bodies output the change in temperature in the oxygen concentration detection section as a change in their electrical resistance value, the first heater element 18 and the second heater element 20 are used for oxygen concentration detection. It is desirable to have a positive or negative temperature coefficient of resistance of at least 0.1%/°C under the conditions, so that the influence of reading errors in the electrical resistance of the heating element on the temperature of the heating element is reduced. Therefore, the temperature change of the oxygen concentration detection section can be detected with high accuracy, and the temperature control of the oxygen concentration detection section can be performed even more effectively. It should be noted that such a heating body is the electrode 12.14;
.. Similarly to No. 62, it is formed from a known conductive material such as a conductive metal such as platinum group metals such as platinum, palladium, rhodium, iridium, ruthenium, and osmium, or a conductive compound, but particularly preferably, It is desirable that the conductor be formed using platinum. In addition, in order to improve the close integration with the base, such a heating body is formed by mixing fine powder of ceramic nox into the above-mentioned conductive metal and firing the mixture. It is also possible to

また、上述の具体例にあっては、一つ又は二つのヒータ
エレメントにて酸素濃度検知部を加熱する構造となって
いるが、更により多くの加熱体を設けることも可能であ
る。そして、複数の加熱体(18,20)を設けた場合
において、それらのうちの少なくとも一つ以上の加熱体
に供給される電力または電圧が、前述の如き電力供給回
路21(第3図参照)にて制御されることとなる。
Further, in the above-described specific example, the oxygen concentration detection section is heated by one or two heater elements, but it is also possible to provide even more heating elements. When a plurality of heating bodies (18, 20) are provided, the power or voltage supplied to at least one of them is controlled by the power supply circuit 21 (see FIG. 3) as described above. It will be controlled by

そして、複数の加熱体(18,20)を設けた場合にお
いて、好ましくは、それらのうちの発熱量の小さな加熱
体を用い、その電気抵抗値に基づいて酸素濃度検知部の
温度を安定に保つように、それら加熱体に供給される電
力または電圧を制御するようにすることが望ましい。け
だし、発熱量の小さい、換言すれば電気抵抗値の高い側
の加熱体の電気抵抗値を用いることにより、その抵抗値
が大きくなる程、電力供給回路の回路定数による誤差の
影響が小さくなるからである。
When a plurality of heating elements (18, 20) are provided, it is preferable to use a heating element with a smaller calorific value among them to keep the temperature of the oxygen concentration detection section stable based on its electrical resistance value. Therefore, it is desirable to control the power or voltage supplied to the heating elements. However, by using the electrical resistance value of the heating element that generates less heat, in other words, has a higher electrical resistance value, the larger the resistance value, the smaller the influence of errors caused by the circuit constants of the power supply circuit. It is.

さらに、電気抵抗値を検知するための加熱体においては
、それの酸素濃度検知部を直接加熱する発熱部(18a
、20a)の常温抵抗値を、該発熱部に電力を供給する
ためのリード部(18b、20b)の常温抵抗値に比較
して高くすることが好ましい。リード部の抵抗(R11
)と発熱部の抵抗(RA)との比率:RIl/RAが大
きい程、加熱体の全抵抗値が発熱部の温度、即ち酸素濃
度検知部の温度を代表しなくなるからである。
Furthermore, in the heating element for detecting the electrical resistance value, a heat generating part (18a
, 20a) is preferably higher than that of the lead portions (18b, 20b) for supplying power to the heat generating portion. Resistance of lead part (R11
) and the resistance (RA) of the heat generating part: The larger the ratio: RIl/RA, the less the total resistance value of the heating element represents the temperature of the heat generating part, that is, the temperature of the oxygen concentration detection part.

ところで、所定の温度における、各酸素濃度測定装置に
設けた加熱体(18,20)の電気抵抗値には、成る程
度の製造バラツキが認められるものであるが、そのよう
な個体間のバラツキは、加熱体(18,20)の電力供
給路に適当な第一の調整抵抗を電気的に直列または並列
に設けることによって解消乃至は抑制することが可能で
あり、その−例が第6図に示されている。
By the way, there is some manufacturing variation in the electrical resistance value of the heating element (18, 20) provided in each oxygen concentration measuring device at a given temperature, but such variation between individual units is can be eliminated or suppressed by electrically providing a suitable first adjustment resistor in series or parallel to the power supply path of the heating element (18, 20), an example of which is shown in FIG. It is shown.

すなわち、第6図において、ヒータエレメント18(2
0)のリード部18 a  (20a)に対して直列に
第一の調整抵抗64若しくは66が設けられ、或いはリ
ード部18b(20b)に対して並列に第一の調整抵抗
68若しくは70が設けられているのである。また、そ
れら第一の調整抵抗64.66.68.70は、組み合
わされて、複数において配設される場合もある。特に、
第一の調整抵抗64や68の如く、ヒータエレメント1
8(20)と一体形成されていることが望ましいが、ま
た第一の調整抵抗66や70の如く、酸素検知素子2(
50)外において、外部の機器との接続路上やコネクタ
上等に設けられていても、同等差支えない。そして、こ
れら第一の調整抵抗64.66.68.70の少なくと
も何れか一つが接続され、抵抗値の調整によって、d 
−= e間の抵抗が、酸素濃度検知部の温度が所定の温
度のときに所定の抵抗値となるようにされるのである。
That is, in FIG. 6, heater element 18 (2
A first adjustment resistor 64 or 66 is provided in series with the lead portion 18a (20a) of 0), or a first adjustment resistor 68 or 70 is provided in parallel with the lead portion 18b (20b). -ing Moreover, the first adjustment resistors 64, 66, 68, 70 may be combined and arranged in plurality. especially,
Heater element 1 such as first adjustment resistor 64 and 68
8 (20), but it is also preferable that the oxygen sensing element 2 (20) be formed integrally with the oxygen sensing element 2 (20).
50) Even if it is provided outside, on a connection path with external equipment, on a connector, etc., there is no problem. Then, at least one of these first adjustment resistors 64, 66, 68, 70 is connected, and by adjusting the resistance value, d
The resistance between -=e is set to a predetermined resistance value when the temperature of the oxygen concentration detection section is a predetermined temperature.

なお、かかる第一の調整抵抗64.66.68.70に
おける抵抗値の調整は、例えば、酸素検知素子2(50
)の酸素濃度検知部を加熱体(18,20)または他の
傍熱ヒータにて所定温度に加熱し、その際の加熱体の電
気抵抗値及び第一の調整抵抗の電気抵抗値の和が一定値
となるように、それら第一の調整抵抗の電気抵抗値をト
リミング等によって調整することにより、容易に実施さ
れ得るものである。
The resistance value of the first adjusting resistor 64,66,68,70 can be adjusted, for example, by adjusting the resistance value of the first adjusting resistor 64,66,68,70.
) is heated to a predetermined temperature with a heating element (18, 20) or another indirect heater, and the sum of the electrical resistance value of the heating element and the electrical resistance value of the first adjustment resistor at that time is This can be easily carried out by adjusting the electrical resistance values of the first adjusting resistors by trimming or the like so that they become constant values.

さらに、本発明においては、上述の如き第一の調整抵抗
を用いた個体間のバラツキ吸収対策に代えて、制御手段
により、加熱体の常温下での電気抵抗値と酸素濃度検知
部の加熱状態下における該加熱体の電気抵抗値の比率が
一定となるように、かかる加熱体に供給される電力また
は電圧を制御するようにした構成も、有利に採用される
こととなる。
Furthermore, in the present invention, instead of using the above-mentioned first adjustment resistor to absorb variations between individuals, the control means controls the electrical resistance value of the heating element at room temperature and the heating state of the oxygen concentration detection section. A configuration in which the electric power or voltage supplied to the heating element is controlled so that the ratio of the electric resistance values of the heating element below is constant may also be advantageously adopted.

すなわち、Ro :加熱体の常温下での電気抵抗値、R
T :酸素濃度検知部の目標とする加熱状態下での加熱
体の電気抵抗値、α:加熱体の抵抗温度係数、To :
常温、TT :目標とする加熱温度、ΔT(温度差):
’l’T−To、a  (比率):R7/R,とすると
、下記(1)弐が成り立つ。
That is, Ro: electrical resistance value of the heating element at room temperature, R
T: Electrical resistance value of the heating element under the target heating state of the oxygen concentration detection unit, α: Temperature coefficient of resistance of the heating element, To:
Room temperature, TT: Target heating temperature, ΔT (temperature difference):
If 'l'T-To, a (ratio): R7/R, then the following (1) 2 holds true.

Rr = Ro  (1+αΔT)    ・−−(1
)そして、この(1)式は、以下の(2)〜(4)式の
様に展開されるのである。
Rr = Ro (1+αΔT) ・−−(1
) Then, this equation (1) is expanded as shown in the following equations (2) to (4).

a=Rt/Ro=1+αΔT   ’−・−(2)、、
ΔT=(a−1)/α =T7−To      ・・・ (3)TT=(a−
1)/α+To ・・・ (4)従って、ミニ一定とす
れば、上記(4)式より酸素濃度検知部の加熱温度(T
ア)は一定となるのであり、以て各酸素濃度測定装置の
加熱体の電気抵抗値(RO)のバラツキによる加熱温度
の変化が解消され、一定温度への加熱が可能となるので
ある。
a=Rt/Ro=1+αΔT'-・-(2),,
ΔT=(a-1)/α=T7-To... (3) TT=(a-
1)/α+To... (4) Therefore, if the mini constant is used, the heating temperature (T
A) becomes constant, thereby eliminating variations in heating temperature due to variations in the electrical resistance value (RO) of the heating element of each oxygen concentration measuring device, making it possible to heat to a constant temperature.

ところで、このようなRt/Roの比率(a)に基づく
ところの酸素濃度検知部の加熱温度の制御に際しては、
先ず、加熱体の常温抵抗値(RO)を測定し、次いで、
それに、目標加熱温度に応じて予め入力されている比率
(a)を乗じて、その値(RT =aRo )にて加熱
体への供給電力乃至は供給電圧を制御するようにするの
である。より具体的には、(a)加熱体の発熱を無視し
得る程の低電圧を該加熱体に印加して(従って、加熱体
は常温状態に維持される)、そのときの電圧(V)と電
流(1)を読み、Ro−V/Iを求め、そして予め入力
されている比率(a)を乗じてR7を求めた後、加熱状
態にある加熱体の実際の電気抵抗値(Rイ)から、R,
=Rアとなるように、該加熱体に印加される電圧乃至は
電力を制御する、コンピュータを用いたソフト的手法や
、(b)上記の如く低電圧を加熱体に印加して、R,を
求め、その後第3図に示される回路の抵抗22(A)、
24 (B)、26  (R)の少なくとも何れか一つ
を調整して、下記(5)式を満足させる、ハード的手法
が採用されることとなる。
By the way, when controlling the heating temperature of the oxygen concentration detection section based on the ratio (a) of Rt/Ro,
First, measure the room temperature resistance (RO) of the heating element, and then
This is multiplied by a ratio (a) input in advance according to the target heating temperature, and the power or voltage supplied to the heating element is controlled by the value (RT = aRo). More specifically, (a) a voltage so low that the heat generation of the heating element can be ignored is applied to the heating element (therefore, the heating element is maintained at room temperature), and the voltage (V) at that time is and current (1), calculate Ro-V/I, and calculate R7 by multiplying by the ratio (a) input in advance. Then, calculate the actual electrical resistance value of the heating element (R ) from R,
(b) A software method using a computer that controls the voltage or power applied to the heating element so that R, or (b) a low voltage is applied to the heating element as described above to , and then the resistance 22 (A) of the circuit shown in FIG.
A hardware method will be adopted in which at least one of 24 (B) and 26 (R) is adjusted to satisfy the following equation (5).

γ=AR/B=Roa    HHH(5)また、本発
明にあっては、第3図に示される電力供給回路21にお
いて、その抵抗22.24.26のうちの少なくとも一
つを、酸素検知素子2(50)を外部の機器(電力供給
回路21の主たる部分、換言すれば制御手段の本体部分
)に接続せしめるコネクタ上に位置するように、または
該コネクタよりも酸素検知素子2側に位置するように(
酸素検知素子2上の電力供給回路部分、或いは酸素検知
素子2とコネクタとの間の電力供給回路部分に)、設け
ることが出来、そしてこのようにコネクタ上若しくはそ
れよりも酸素検知素子2側に配置された、第二の調整抵
抗である少なくとも一つの抵抗(22,24,26)の
抵抗値(A。
γ=AR/B=Roa HHH (5) Furthermore, in the present invention, in the power supply circuit 21 shown in FIG. 2 (50) to an external device (the main part of the power supply circuit 21, in other words, the main body part of the control means), or located closer to the oxygen sensing element 2 than the connector. like(
It can be provided in the power supply circuit part on the oxygen sensing element 2 or in the power supply circuit part between the oxygen sensing element 2 and the connector, and in this way, it can be provided on the connector or on the side of the oxygen sensing element 2. The resistance value (A.

B、R)を調整することによって、制御手段(電力供給
回路21)の本体部分の調整を行なうことなく、酸素検
知素子2を他の酸素検知素子(加熱体の電気抵抗値が異
なる)に取り替えることが出来るのである。加えて、こ
のような抵抗22.24.26のうちの少なくとも一つ
のものの抵抗値(A、B若しくはR)の調整によって、
下式にて示されるように、加熱温度二T、を一定とする
ことが出来、以てR8の初期バラツキを吸収することが
可能となり、これにより前記した(b)のハード的手法
を酸素検知素子2側で実施することが出来るのである。
By adjusting B and R), the oxygen sensing element 2 can be replaced with another oxygen sensing element (the electrical resistance value of the heating body is different) without adjusting the main body of the control means (power supply circuit 21). It is possible. In addition, by adjusting the resistance value (A, B or R) of at least one of such resistors 22, 24, 26,
As shown in the formula below, it is possible to keep the heating temperature 2T constant, which makes it possible to absorb the initial variation in R8. This can be carried out on the element 2 side.

前記(5)式と(2)式より、次の(6)弐を導くこと
が出来る。
From the above equations (5) and (2), the following (6) 2 can be derived.

r = A R/ B = Ro a =Ro  (1+αΔT)    ・・・ (6)そし
て、この(6)式を変形して、それに(3)式を代入す
ることによって、下記(7)式の如くT、がA、R,B
の関数として表わされることとなり(Ro、α、Toは
一定値)、それ故A、R1Bの値を定めることによって
、γの値の如何に拘わらず、T7を一定とすることが出
来るのである。
r = A R / B = Ro a = Ro (1+αΔT) ... (6) Then, by transforming this equation (6) and substituting equation (3) into it, we get the following equation (7). T, is A, R, B
(Ro, α, and To are constant values). Therefore, by determining the values of A and R1B, T7 can be made constant regardless of the value of γ.

1+αΔT=AR/RoB αΔT=AR/R,B−1 Δ’r= [(AR/ROB)−11/α、−、TT 
= [(AR/ROB)−1] /α+T。
1+αΔT=AR/RoB αΔT=AR/R,B-1 Δ'r= [(AR/ROB)-11/α,-,TT
= [(AR/ROB)-1]/α+T.

・・・ (7) なお、第3図に示した電力供給回路21は、本発明の具
体的な一実施例を示したものであり、勿論、他の回路構
成としても良いことは言うまでもないところである。
(7) Note that the power supply circuit 21 shown in FIG. 3 shows a specific embodiment of the present invention, and it goes without saying that other circuit configurations may be used. be.

以上、本発明に従う酸素濃度測定装置の構成について、
幾つかの酸素検知素子の構造に基づいて説明してきたが
、その他の構造の酸素検知素子、ひいては酸素濃度測定
装置にも、本発明が好適に適用されるものであることが
、理解されるべきである。
As described above, regarding the configuration of the oxygen concentration measuring device according to the present invention,
Although the description has been made based on the structures of several oxygen sensing elements, it should be understood that the present invention is suitably applied to oxygen sensing elements with other structures, and even to oxygen concentration measuring devices. It is.

要するに、本発明は、上記例示の具体例のみに限定して
解釈されるものでは決してなく、本発明の趣旨を逸脱し
ない限りにおいて、当業者の知識に基づいて、種々なる
変形、修正、改良等を加えた形態において実施され得る
ものであって、本発明がそのような実施形態のものをも
含むものであることは、言うまでもないところである。
In short, the present invention is by no means to be construed as being limited to the specific examples illustrated above, and various modifications, modifications, improvements, etc. can be made based on the knowledge of those skilled in the art without departing from the spirit of the present invention. It goes without saying that the present invention also includes such embodiments.

(発明の効果) 以上の説明から明らかなように、本発明に従う酸素濃度
測定装置は、その酸素濃度検知部を加熱するための加熱
体自身の電気抵抗値に基づいて、該酸素濃度検知部の温
度を安定に保つように、該加熱体に供給される電力また
は電圧を制御するようにしたものであって、酸素濃度検
知部の温度が直接的に検出されて制御されるものである
ところから、酸素濃度測定装置の使用条件により、例え
ば被測定ガスの温度の変化等により、ががる酸素濃度検
知部の温度は変化せしめられず、安定な出力による高精
度の酸素濃度測定が可能となり、また酸素濃度検知部の
温度を制御するものであるところから、酸素濃度検知部
及び加熱体の過熱の危険がなく、その寿命を永続化せし
め得て、長期間に亘って使用可能である等の優れた効果
を奏するものであり、そこに、本発明の大きな工業的意
義が存するのである。
(Effects of the Invention) As is clear from the above description, the oxygen concentration measuring device according to the present invention heats the oxygen concentration sensing portion based on the electrical resistance value of the heating body itself for heating the oxygen concentration sensing portion. The power or voltage supplied to the heating element is controlled to keep the temperature stable, and the temperature of the oxygen concentration sensor is directly detected and controlled. Depending on the usage conditions of the oxygen concentration measuring device, for example, the temperature of the oxygen concentration detection part will not change due to changes in the temperature of the gas to be measured, making it possible to measure oxygen concentration with high precision with stable output. In addition, since it controls the temperature of the oxygen concentration detection section, there is no risk of overheating of the oxygen concentration detection section and heating element, and its lifespan can be extended, allowing it to be used for a long period of time. This produces excellent effects, and this is where the present invention has great industrial significance.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明に従う酸素濃度測定装置の酸素検知素
子の一例を示す展開構造図であり、第2図は、第1図に
おけるn−n断面説明図であり、第3図は、そのような
酸素検知素子のヒータエレメントに対する電力供給回路
の一例を示す回路図であり、第4図は、本発明に従う酸
素濃度測定装置の酸素検知素子の他の一例を示す展開構
造図であり、第5図は、第4図におけるV−V断面説明
図であり、第6図は、ヒータエレメントに対する調整抵
抗の配設位置を示す説明図である。 2.50:酸素検知素子 4.54:固体電解質体 6:スペーサ部材    8:ヒータ層10:空気通路
     12:測定電極14:基準電極 16:セラミックス板状体 18:第一のヒータエレメント 20:第二のヒータエレメント 18a、20a:発熱部 18b、20b:リード部 21:電力供給回路 22.24.26.28. 30.32.34:抵抗 36:比較器
FIG. 1 is a developed structure diagram showing an example of the oxygen sensing element of the oxygen concentration measuring device according to the present invention, FIG. 2 is an explanatory cross-sectional view taken along the line nn in FIG. FIG. 4 is a circuit diagram showing an example of a power supply circuit for the heater element of such an oxygen sensing element, and FIG. FIG. 5 is an explanatory diagram of the V-V cross section in FIG. 4, and FIG. 6 is an explanatory diagram showing the arrangement position of the adjustment resistor with respect to the heater element. 2.50: Oxygen sensing element 4.54: Solid electrolyte body 6: Spacer member 8: Heater layer 10: Air passage 12: Measuring electrode 14: Reference electrode 16: Ceramic plate 18: First heater element 20: First Second heater element 18a, 20a: Heat generating part 18b, 20b: Lead part 21: Power supply circuit 22.24.26.28. 30.32.34: Resistor 36: Comparator

Claims (16)

【特許請求の範囲】[Claims] (1)酸素濃度検知部と該酸素濃度検知部を所定の温度
に加熱する加熱体とを有し、更に該加熱体の電気抵抗値
に基づいて、前記酸素濃度検知部の温度を安定に保つよ
うに、該加熱体に供給される電力または電圧を制御する
制御手段を有することを特徴とする酸素濃度測定装置。
(1) It has an oxygen concentration detection section and a heating body that heats the oxygen concentration detection section to a predetermined temperature, and further maintains the temperature of the oxygen concentration detection section stably based on the electrical resistance value of the heating body. An oxygen concentration measuring device characterized in that it has a control means for controlling the electric power or voltage supplied to the heating element.
(2)前記酸素濃度検知部と前記加熱体とが一体に形成
されている特許請求の範囲第1項記載の酸素濃度測定装
置。
(2) The oxygen concentration measuring device according to claim 1, wherein the oxygen concentration detection section and the heating body are integrally formed.
(3)前記加熱体が、酸素濃度検知条件下において少な
くとも0.1%/℃の正または負の抵抗温度係数を有す
る特許請求の範囲第1項または第2項記載の酸素濃度測
定装置。
(3) The oxygen concentration measuring device according to claim 1 or 2, wherein the heating body has a positive or negative temperature coefficient of resistance of at least 0.1%/°C under oxygen concentration detection conditions.
(4)前記加熱体の複数を有し、それらのうちの少なく
とも一つの加熱体に供給される電力または電圧が、前記
制御手段にて制御される特許請求の範囲第1項乃至第3
項の何れかに記載の酸素濃度測定装置。
(4) Claims 1 to 3 include a plurality of heating bodies, and the power or voltage supplied to at least one of the heating bodies is controlled by the control means.
The oxygen concentration measuring device according to any one of paragraphs.
(5)前記複数の加熱体のうち、発熱量の小さな加熱体
の電気抵抗値に基づいて、前記酸素濃度検知部の温度を
安定に保つように、それら加熱体に供給される電力また
は電圧を前記制御手段にて制御するようにした特許請求
の範囲第4項記載の酸素濃度測定装置。
(5) Based on the electrical resistance value of the heating element with a small calorific value among the plurality of heating elements, the electric power or voltage supplied to the heating element is adjusted so as to keep the temperature of the oxygen concentration detection section stable. The oxygen concentration measuring device according to claim 4, wherein the oxygen concentration measuring device is controlled by the control means.
(6)電気抵抗値を検知するための加熱体において、前
記酸素濃度検知部を直接加熱する発熱部の常温抵抗値が
、該発熱部に電力を供給するためのリード部の常温抵抗
値に比較して高い特許請求の範囲第1項乃至第5項の何
れかに記載の酸素濃度測定装置。
(6) In a heating element for detecting electrical resistance, the room temperature resistance value of the heat generating part that directly heats the oxygen concentration sensing part is compared with the room temperature resistance value of the lead part for supplying power to the heat generating part. An oxygen concentration measuring device according to any one of claims 1 to 5.
(7)前記加熱体の電力供給路に、第一の調整抵抗を電
気的に直列または並列に設けた特許請求の範囲第1項乃
至第6項の何れかに記載の酸素濃度測定装置。
(7) The oxygen concentration measuring device according to any one of claims 1 to 6, wherein a first adjustment resistor is electrically provided in series or parallel to the power supply path of the heating body.
(8)前記第一の調整抵抗が、前記加熱体と一体形成さ
れている特許請求の範囲第7項記載の酸素濃度測定装置
(8) The oxygen concentration measuring device according to claim 7, wherein the first adjustment resistor is integrally formed with the heating body.
(9)前記酸素濃度検知部を前記加熱体または他の傍熱
ヒータにて所定の温度に加熱し、その際の加熱体の電気
抵抗値及び第一の調整抵抗の電気抵抗値の和が一定値に
なるように、該第一の調整抵抗の電気抵抗値を調整する
特許請求の範囲第7項または第8項に記載の酸素濃度測
定装置。
(9) The oxygen concentration detection section is heated to a predetermined temperature with the heating element or another indirect heater, and the sum of the electrical resistance value of the heating element and the electrical resistance value of the first adjustment resistor is constant at that time. 9. The oxygen concentration measuring device according to claim 7 or 8, wherein the electrical resistance value of the first adjusting resistor is adjusted so that the electrical resistance value of the first adjusting resistor is adjusted to the oxygen concentration value.
(10)前記制御手段が、前記加熱体の常温下での電気
抵抗値と前記酸素濃度検知部の加熱状態下における電気
抵抗値との比率が一定となるように、該加熱体に供給さ
れる電力または電圧を制御するものである特許請求の範
囲第1項乃至第6項の何れかに記載の酸素濃度測定装置
(10) The control means is supplied to the heating body such that the ratio between the electrical resistance value of the heating body at room temperature and the electrical resistance value of the oxygen concentration detection unit under the heating state is constant. The oxygen concentration measuring device according to any one of claims 1 to 6, which controls electric power or voltage.
(11)前記酸素濃度検知部と前記加熱体とを一体的に
形成してなる酸素検知素子を外部の機器にコネクタを介
して接続せしめる構造において、前記制御手段が、該コ
ネクタ上に位置する若しくはそれよりも酸素検知素子側
に位置する前記加熱体への電力供給回路に設けられた、
電気抵抗値が調整される第二の調整抵抗の少なくとも一
つを有する特許請求の範囲第10項記載の酸素濃度測定
装置。
(11) In a structure in which an oxygen sensing element formed by integrally forming the oxygen concentration sensing section and the heating body is connected to an external device via a connector, the control means is located on the connector or provided in a power supply circuit to the heating body located closer to the oxygen sensing element than that;
11. The oxygen concentration measuring device according to claim 10, comprising at least one second adjusting resistor whose electrical resistance value is adjusted.
(12)前記第二の調整抵抗が、前記酸素検知素子上に
位置する、前記加熱体への電力供給回路部分に一体的に
設けられている特許請求の範囲第11項記載の酸素濃度
測定装置。
(12) The oxygen concentration measuring device according to claim 11, wherein the second adjustment resistor is integrally provided in a power supply circuit portion to the heating body, which is located on the oxygen sensing element. .
(13)前記酸素濃度検知部が、被測定ガスを所定の拡
散抵抗の下に拡散せしめる拡散室と、該拡散室における
雰囲気中の酸素濃度を変化させる酸素ポンプ手段と、該
拡散室における雰囲気中の酸素濃度を検出する酸素濃淡
電池手段とから構成される特許請求の範囲第1項乃至第
12項の何れかに記載の酸素濃度測定装置。
(13) The oxygen concentration detection unit includes a diffusion chamber for diffusing the gas to be measured under a predetermined diffusion resistance, an oxygen pump means for changing the oxygen concentration in the atmosphere in the diffusion chamber, and an oxygen pump means for changing the oxygen concentration in the atmosphere in the diffusion chamber. 13. The oxygen concentration measuring device according to any one of claims 1 to 12, comprising an oxygen concentration battery means for detecting the oxygen concentration of the oxygen concentration.
(14)前記加熱体が、導体として白金を用いて形成さ
れている特許請求の範囲第1項乃至第13項の何れかに
記載の酸素濃度測定装置。
(14) The oxygen concentration measuring device according to any one of claims 1 to 13, wherein the heating body is formed using platinum as a conductor.
(15)前記酸素濃度検知部が、ZrO_2を主成分と
する酸素イオン伝導性の固体電解質よりなる特許請求の
範囲第1項乃至第14項の何れかに記載の酸素濃度測定
装置。
(15) The oxygen concentration measuring device according to any one of claims 1 to 14, wherein the oxygen concentration detection section is made of an oxygen ion conductive solid electrolyte containing ZrO_2 as a main component.
(16)前記加熱体の発熱部が、被測定ガスから遮断さ
れ、直接に晒されないようになっている特許請求の範囲
第1項乃至第15項の何れかに記載の酸素濃度測定装置
(16) The oxygen concentration measuring device according to any one of claims 1 to 15, wherein the heat generating part of the heating body is shielded from the gas to be measured so as not to be directly exposed to the gas.
JP62112727A 1987-01-27 1987-05-08 Adjustment method of oxygen concentration measuring device Expired - Lifetime JP2505459B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP62112727A JP2505459B2 (en) 1987-01-27 1987-05-08 Adjustment method of oxygen concentration measuring device
DE19883802051 DE3802051A1 (en) 1987-01-27 1988-01-25 Apparatus for determining oxygen concentration

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP62-16631 1987-01-27
JP1663187 1987-01-27
JP62112727A JP2505459B2 (en) 1987-01-27 1987-05-08 Adjustment method of oxygen concentration measuring device

Publications (2)

Publication Number Publication Date
JPS63302356A true JPS63302356A (en) 1988-12-09
JP2505459B2 JP2505459B2 (en) 1996-06-12

Family

ID=26353008

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62112727A Expired - Lifetime JP2505459B2 (en) 1987-01-27 1987-05-08 Adjustment method of oxygen concentration measuring device

Country Status (2)

Country Link
JP (1) JP2505459B2 (en)
DE (1) DE3802051A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01172745A (en) * 1987-12-28 1989-07-07 Honda Motor Co Ltd Heater temperature control device of oxygen concentration sensor
US4938196A (en) * 1988-10-07 1990-07-03 Toyota Jidosha Kabushiki Kaisha Control device for heater for oxygen sensor operative to correct target resistance with reference to standard power supply thereto

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4334672C2 (en) * 1993-10-12 1996-01-11 Bosch Gmbh Robert Sensor for the detection of nitrogen oxide
EP0709670A1 (en) * 1994-10-31 1996-05-01 General Motors Corporation Low power consumption thick film heater
EP0720018A1 (en) * 1994-12-27 1996-07-03 General Motors Corporation Thick film heater with multiple inks for the serpentine and the lead
GB9510086D0 (en) * 1995-05-18 1995-07-12 British Gas Plc Internal combustion engine
JP3546590B2 (en) * 1996-04-12 2004-07-28 株式会社デンソー Air-fuel ratio sensor
DE19650038A1 (en) 1996-12-03 1998-06-04 Bosch Gmbh Robert Method for operating a resistance heating element and device for carrying out the method
US7887685B2 (en) 2005-07-14 2011-02-15 Caterpillar Inc. Multilayer gas sensor having dual heating zones
US7611612B2 (en) * 2005-07-14 2009-11-03 Ceramatec, Inc. Multilayer ceramic NOx gas sensor device
WO2013029824A1 (en) * 2011-08-26 2013-03-07 Robert Bosch Gmbh Sensor element for capturing at least one property of a gas in a measurement gas space
DE102013204914A1 (en) * 2013-03-20 2014-09-25 Continental Automotive Gmbh Sensor for detecting a gas content
DE102013212370A1 (en) * 2013-06-27 2014-12-31 Robert Bosch Gmbh Sensor element for detecting at least one property of a sample gas in a sample gas space
DE102013217466B4 (en) * 2013-09-02 2022-06-23 Vitesco Technologies GmbH Gas sensor element and use of the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60202348A (en) * 1984-03-28 1985-10-12 Toyota Motor Corp Control apparatus of heater for oxygen sensor
JPS60239664A (en) * 1984-05-14 1985-11-28 Nissan Motor Co Ltd Heating apparatus of oxygen sensor
JPS6199852A (en) * 1984-10-22 1986-05-17 Hitachi Ltd air fuel ratio detector
JPS61237050A (en) * 1985-04-15 1986-10-22 Yokogawa Electric Corp Zirconia type oxygen densitometer

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3695848A (en) * 1970-04-07 1972-10-03 Naoyoshi Taguchi Gas detecting device
US4512871A (en) * 1983-05-09 1985-04-23 Ngk Insulators, Ltd. Oxygen sensor with heater
DE3326576A1 (en) * 1983-07-23 1984-06-20 Robert Bosch Gmbh, 7000 Stuttgart Method and device for determining the concentration of exhaust gas constituents, in particular in internal combustion engines for motor vehicles
JPH0697220B2 (en) * 1986-05-08 1994-11-30 株式会社日立製作所 Air-fuel ratio detector

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60202348A (en) * 1984-03-28 1985-10-12 Toyota Motor Corp Control apparatus of heater for oxygen sensor
JPS60239664A (en) * 1984-05-14 1985-11-28 Nissan Motor Co Ltd Heating apparatus of oxygen sensor
JPS6199852A (en) * 1984-10-22 1986-05-17 Hitachi Ltd air fuel ratio detector
JPS61237050A (en) * 1985-04-15 1986-10-22 Yokogawa Electric Corp Zirconia type oxygen densitometer

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01172745A (en) * 1987-12-28 1989-07-07 Honda Motor Co Ltd Heater temperature control device of oxygen concentration sensor
US4938196A (en) * 1988-10-07 1990-07-03 Toyota Jidosha Kabushiki Kaisha Control device for heater for oxygen sensor operative to correct target resistance with reference to standard power supply thereto

Also Published As

Publication number Publication date
DE3802051A1 (en) 1988-08-04
JP2505459B2 (en) 1996-06-12
DE3802051C2 (en) 1990-10-25

Similar Documents

Publication Publication Date Title
US4464244A (en) Oxygen sensing device having solid electrolyte cell and means for supplying controlled current thereto
US4824549A (en) Exhaust gas sensor for determining A/F ratio
EP0188900B1 (en) Electrochemical device
US4543176A (en) Oxygen concentration detector under temperature control
EP0152942B1 (en) Device for detecting air-fuel ratio of mixture over wide range from below to above stoichiometric ratio
US4391691A (en) Temperature compensated polarographic oxygen gas sensor and sensing system, particularly for automotive application
JP2505459B2 (en) Adjustment method of oxygen concentration measuring device
JPH0664009B2 (en) Gas sensor element
US9518954B2 (en) Gas sensor control device
JPH0542624B2 (en)
US5028309A (en) Electrochemical device incorporating means for preventing reduction of solid electrolyte and insulating ceramics due to heater current leakage
CN115335691A (en) Method for determining a state parameter of an exhaust gas sensor
JPS63275949A (en) Electrochemical apparatus
US6805782B2 (en) Compound layered type of sensing device for multiple measurement
US6524467B2 (en) Method for adjusting output characteristics of a gas sensing element based on application of electric power to this sensing element
JP2004205357A (en) Detection method of gas concentration
JP4224011B2 (en) Gas sensor and gas concentration measuring method
JPH0588780B2 (en)
JPH07117526B2 (en) Oxygen concentration detector
JPH0921782A (en) Oxygen concentration sensor
US20210063343A1 (en) Sensor element
JPH0634004B2 (en) Oxygen concentration detector
JPH032848Y2 (en)
JPH0436341B2 (en)
JPS60211355A (en) Oxygen sensor and oxygen concentration measuring device

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080402

Year of fee payment: 12