JPH0634004B2 - Oxygen concentration detector - Google Patents
Oxygen concentration detectorInfo
- Publication number
- JPH0634004B2 JPH0634004B2 JP59032545A JP3254584A JPH0634004B2 JP H0634004 B2 JPH0634004 B2 JP H0634004B2 JP 59032545 A JP59032545 A JP 59032545A JP 3254584 A JP3254584 A JP 3254584A JP H0634004 B2 JPH0634004 B2 JP H0634004B2
- Authority
- JP
- Japan
- Prior art keywords
- oxygen
- pump
- oxygen concentration
- electrode
- small
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N27/00—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
- G01N27/26—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
- G01N27/416—Systems
- G01N27/417—Systems using cells, i.e. more than one cell and probes with solid electrolytes
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Physics & Mathematics (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Molecular Biology (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Measuring Oxygen Concentration In Cells (AREA)
Description
【発明の詳細な説明】 技術分野 この発明は、被測定ガス中の酸素濃度を検出する酸素セ
ンサに関し、特に内燃機関の排気中の酸素濃度を検出す
る酸素センサに関する。TECHNICAL FIELD The present invention relates to an oxygen sensor for detecting an oxygen concentration in a gas to be measured, and more particularly to an oxygen sensor for detecting an oxygen concentration in exhaust gas of an internal combustion engine.
従来技術 一般に、内燃機関においては、吸入混合気の空燃比を高
精度に目標値に制御するために、空燃比と相関関係をも
つ排気ガス中の酸素濃度を検出し、この検出した酸素濃
度に応じて燃料供給量をフイードバツク制御するように
している。BACKGROUND ART Generally, in an internal combustion engine, in order to control the air-fuel ratio of the intake air-fuel mixture to a target value with high accuracy, the oxygen concentration in the exhaust gas that has a correlation with the air-fuel ratio is detected, and the detected oxygen concentration Accordingly, the fuel supply amount is feedback-controlled.
従来、このような空燃比検出装置に使用されている酸素
センサとして、例えば特開昭57−76450号公報に
記載されているようなものがあり、この酸素センサを第
1図を参照して説明する。Conventionally, as an oxygen sensor used in such an air-fuel ratio detection device, there is one described in, for example, JP-A-57-76450. This oxygen sensor will be described with reference to FIG. To do.
この酸素センサ1は、酸素濃度に応じて起電力を発生す
る一種の濃淡電池の原理を応用したものであり、酸素イ
オン伝導性の固体電解質2の両面に、白金を主成分とす
る基準電極3と、金と白金の合金からなる酸素電極4と
を対向させて形成して、その基準電極3を多孔質保護層
(コーテイング層)5によつて被覆し、酸素電極4を酸
素の流入,拡散を制限する多孔質保護層(コーテイング
層)6によつて被覆したものである。This oxygen sensor 1 applies the principle of a kind of concentration battery that generates an electromotive force according to the oxygen concentration, and a reference electrode 3 containing platinum as a main component is formed on both surfaces of an oxygen ion conductive solid electrolyte 2. And an oxygen electrode 4 made of an alloy of gold and platinum so as to face each other, the reference electrode 3 is covered with a porous protective layer (coating layer) 5, and the oxygen electrode 4 inflows and diffuses oxygen. Is covered with a porous protective layer (coating layer) 6 for limiting the temperature.
この酸素センサ1にあつては、被測定ガス、例えば排気
ガス中において、基準電極3に所定の大きさの流し込み
電流Isを供給すると、電流Isの大きさに応じた量の
酸素イオンO2-が電流Isと逆の方向に固体電解質2を
通じて移動するので、基準電極3に基準酸素分圧Paが
発生し、このとき酸素電極4に被測定ガスの有する酸素
分圧による酸素分圧Pbが発生している。In the oxygen sensor 1, when a flow-in current Is of a predetermined magnitude is supplied to the reference electrode 3 in a gas to be measured, for example, exhaust gas, the amount of oxygen ions O 2− corresponding to the magnitude of the current Is is increased. Moves in the direction opposite to the current Is through the solid electrolyte 2, so that a reference oxygen partial pressure Pa is generated at the reference electrode 3 and at this time, an oxygen partial pressure Pb is generated at the oxygen electrode 4 due to the oxygen partial pressure of the gas to be measured. is doing.
それによつて、基準電極3と酸素電極4との間には、酸
素分圧Pa,Pbに基づいて、 E=RT/4F・ln(Pa/Pb)…… 但し、R:気体定数, T:絶対温度 F:フアラデイ定数 なるネルンストの式によつて表わされる起電力Eが発生
し、この起電力Eは被測定ガス酸素濃度により変化する
ので、これを酸素センサ1の出力Vsとして外部に取出
すことができる。Therefore, between the reference electrode 3 and the oxygen electrode 4, based on the oxygen partial pressures Pa and Pb, E = RT / 4F · ln (Pa / Pb) ... where R: gas constant, T: Absolute temperature F: Faraday constant An electromotive force E represented by the Nernst equation is generated, and this electromotive force E changes depending on the oxygen concentration of the gas to be measured. You can
この出力Vsの変化を各流し込み電流値ごとに示したの
が第2図である。なお、この場合、被測定ガスとして内
燃機関の排気ガスを用いており、その酸素濃度は内燃機
関に供給される混合気の空燃比(当量比λ,但しλ=現
空燃比/現論空燃比)に換算して示してある。FIG. 2 shows the change of the output Vs for each flowing current value. In this case, the exhaust gas of the internal combustion engine is used as the gas to be measured, and the oxygen concentration thereof is the air-fuel ratio (equivalent ratio λ, where λ = current air-fuel ratio / current air-fuel ratio) of the air-fuel mixture supplied to the internal combustion engine. ).
しかしながら、この酸素センサ1の出力Vsは、流し込
み電流Isを固定した場合、出力Vsの変化する空燃比
の幅が小さいので、広範囲に亘る空燃比の検出すること
は難しい。However, the output Vs of the oxygen sensor 1 is difficult to detect the air-fuel ratio over a wide range because the width of the air-fuel ratio in which the output Vs changes is small when the flow-in current Is is fixed.
そこで、この酸素センサ1の出力Vsを目標電圧Va
(出力Vsに対応した値であればどのような値でもよい
が、例えば切り換わり空燃比において急変する酸素セン
サ出力Vsの上限と下限の略中間値)として設定し、酸
素センサ出力Vsがこの目標値Vaとなるように、流し
込み電流Isを供給すると、この流し込み電流Isの値
は第3図に示すように現在の空燃比に応じた値となる。Therefore, the output Vs of the oxygen sensor 1 is set to the target voltage Va.
(It may be any value as long as it is a value corresponding to the output Vs, but for example, it is set as an intermediate value between the upper limit and the lower limit of the oxygen sensor output Vs which changes suddenly in the air-fuel ratio), and the oxygen sensor output Vs is set to this target. When the pouring current Is is supplied so as to have the value Va, the value of the pouring current Is becomes a value according to the current air-fuel ratio, as shown in FIG.
したがつて、その酸素センサ1への流し込み電流Isの
値を検出することによつて実際の空燃比を検出すること
ができる。Therefore, the actual air-fuel ratio can be detected by detecting the value of the current Is flowing into the oxygen sensor 1.
このように従来の酸素センサにあつては、被測定ガスを
酸素の拡散を制限する多孔質層を通過させ、その多孔質
層を通過する酸素を電流として検出することによつて、
被測定ガス中の酸素濃度を検出するようにしている。Thus, in the conventional oxygen sensor, the gas to be measured is passed through the porous layer that limits the diffusion of oxygen, and by detecting the oxygen passing through the porous layer as a current,
The oxygen concentration in the measured gas is detected.
そのため、被測定ガス中にカーボン粒子等のデポジツト
が含まれている場合には、多孔質層に目づまりを生じ
て、拡散する酸素分子の量が変化し、出力特性が変化し
て正確に酸素濃度を検出できなくなるおそれがある。Therefore, when the measured gas contains deposits such as carbon particles, the porous layer becomes clogged, the amount of oxygen molecules diffusing changes, the output characteristics change, and the oxygen concentration becomes accurate. May not be detected.
目 的 この発明は上記の点に鑑みてなされたものであり、酸素
濃度を長期に亘つて高精度に検出できるようにすること
を目的とする。Aim The present invention has been made in view of the above points, and an object thereof is to make it possible to detect an oxygen concentration with high accuracy over a long period of time.
構 成 そのため、この発明による酸素濃度検出装置は、 被測定ガスから隔離された密閉室と、 酸素イオン伝導性の第1の固体電解質で形成された部材
の両面に電極を設けてなり、前記電極のうちの一方を前
記密閉室内部に臨ませた第1の酸素濃淡電池及び第1の
酸素ポンプと、 酸素イオン伝導性の第2の固体電解質で形成された部材
の両面に電極を設けてなり、前記電極のうちの一方を前
記密閉室内部に臨ませた第2の酸素濃淡電池及び第2の
酸素ポンプと、 前記密閉室を、第1の酸素濃淡電池及び第1の酸素ポン
プを備えた第1の小室と、第2の酸素濃淡電池及び第2
の酸素ポンプを備えた第2の小室とに分割する隔壁と、 両小室を連通する小通路と、 を有する酸素センサと、 前記第1の酸素濃淡電池の出力に基づいて前記第1の酸
素ポンプに供給するポンプ電流を増減させることにより
前記第1の小室の酸素濃度を第1の所定値に保ち、前記
第2の酸素濃淡電池の出力に基づいて前記第2の酸素ポ
ンプに供給するポンプ電流を増減させることにより前記
第2の小室の酸素濃度を第2の所定値に保つと共に、少
なくとも一方の酸素ポンプに供給するポンプ電流の値を
検出することにより被測定ガスの酸素濃度を検出する酸
素濃度検出回路と、 を備えたものである。Structure Therefore, the oxygen concentration detection apparatus according to the present invention comprises electrodes provided on both surfaces of a closed chamber isolated from the gas to be measured and a member formed of the oxygen ion conductive first solid electrolyte. A first oxygen concentration battery and a first oxygen pump, one of which faces the interior of the closed chamber, and electrodes provided on both sides of a member formed of an oxygen ion conductive second solid electrolyte. A second oxygen concentration battery and a second oxygen pump in which one of the electrodes faces the inside of the sealed chamber; and the sealed chamber includes a first oxygen concentration battery and a first oxygen pump. A first compartment, a second oxygen concentration cell and a second
An oxygen sensor having a partition wall that divides into a second small chamber provided with the oxygen pump, and a small passage communicating between the small chambers, and the first oxygen pump based on the output of the first oxygen concentration battery. A pump current supplied to the second oxygen pump based on the output of the second oxygen concentration battery by maintaining the oxygen concentration in the first small chamber at a first predetermined value by increasing or decreasing the pump current supplied to the second oxygen pump. The oxygen concentration of the second small chamber is kept at a second predetermined value by increasing or decreasing the oxygen concentration, and the oxygen concentration of the measured gas is detected by detecting the value of the pump current supplied to at least one of the oxygen pumps. And a concentration detection circuit.
実施例 以下、この発明の実施例を添付図面の第4図以降を参照
して説明する。Embodiment Hereinafter, an embodiment of the present invention will be described with reference to FIG.
第4図及び第5図は、この発明の酸素濃度検出装置にお
ける酸素センサの一実施例の横断面図及び分解斜視図で
ある。4 and 5 are a cross-sectional view and an exploded perspective view of an embodiment of the oxygen sensor in the oxygen concentration detecting device of the present invention.
この酸素センサ11は、平板状の酸素イオン伝導性の第
1の固体電解質12と、四角状の貫通孔13aを穿設し
た隔壁板13と、平板状の隔壁板14と、四角状の貫通
孔15aを穿設した隔壁板15と、平板状の第2の固体
電解質16とを積層して構成され、被測定ガスから隔離
された密閉室11Cを形成している。This oxygen sensor 11 includes a flat plate-shaped oxygen ion conductive first solid electrolyte 12, a partition plate 13 having a square through hole 13a, a flat plate partition plate 14, and a square through hole. A partition plate 15 having a hole 15a and a flat plate-shaped second solid electrolyte 16 are laminated to form a closed chamber 11C isolated from the gas to be measured.
一方、第1の固体電解質12には、外面に第1のセンサ
電極20及び第1のポンプ電極21を、内面に第1のセ
ンサ電極20及び第1のポンプ電極21と対向する第1
の基準電極22を設けてあり、これらが第1の酸素濃淡
電池及び第1の酸素ポンプ(11A)を構成している。On the other hand, the first solid electrolyte 12 has a first sensor electrode 20 and a first pump electrode 21 on the outer surface, and a first sensor electrode 20 and a first pump electrode 21 on the inner surface facing the first sensor electrode 20 and the first pump electrode 21.
Of the reference electrode 22 are provided, and these constitute the first oxygen concentration battery and the first oxygen pump (11A).
また、第2の固体電解質16には、外面に第2のセンサ
電極23及び第2のポンプ電極24を、内面に第2のセ
ンサ電極23及び第2のポンプ電極24と対向する第2
の基準電極25を設けてあり、これらが第2の酸素濃淡
電池及び第2の酸素ポンプ(11B)を構成している。In addition, the second solid electrolyte 16 has a second sensor electrode 23 and a second pump electrode 24 on the outer surface, and a second sensor electrode 23 and a second pump electrode 24 on the inner surface facing the second sensor electrode 23 and the second pump electrode 24.
Of the reference electrode 25, and these constitute the second oxygen concentration battery and the second oxygen pump (11B).
隔壁板14は、密閉室11Cを第1の小室17と第2の
小室18とに分割する隔壁となっている。The partition plate 14 serves as a partition that divides the closed chamber 11C into a first small chamber 17 and a second small chamber 18.
第1の小室17は第1の酸素濃淡電池及び第1の酸素ポ
ンプ(11A)を備えており、同様に第2の小室18は
第2の酸素濃淡電池及び第2の酸素ポンプ(11B)を
備えている。隔壁板14には、第1の小室と第2の小室
とを連通する小通路としての小孔19が穿設してあり、
この小孔19は両小室間の酸素の拡散を制限している。The first small chamber 17 includes a first oxygen concentration battery and a first oxygen pump (11A), and similarly, the second small chamber 18 includes a second oxygen concentration battery and a second oxygen pump (11B). I have it. The partition plate 14 has a small hole 19 as a small passage for communicating the first small chamber and the second small chamber,
This small hole 19 limits the diffusion of oxygen between the two small chambers.
なお、隔壁板13の第1の固体電解室12側面の貫通孔
13aの周囲には、第1,第2の固体電解質12,16
の活性を保つために、これ等を加熱するヒータ30を印
刷形成してある。In addition, the first and second solid electrolytes 12, 16 are formed around the through hole 13 a on the side surface of the first solid electrolytic chamber 12 of the partition plate 13.
In order to maintain the activity of the above, a heater 30 for heating these is formed by printing.
また、第1のセンサ電極20,第1のポンプ電極21,
第1の基準電極22には、夫々リード線32〜34を、
第2のセンサ電極23,第2のポンプ電極24,第2の
基準電極25には、夫々リード線35〜37を、ヒータ
30には、リード線38,39を接続してある。In addition, the first sensor electrode 20, the first pump electrode 21,
Lead wires 32 to 34 are connected to the first reference electrode 22, respectively.
Lead wires 35 to 37 are connected to the second sensor electrode 23, the second pump electrode 24, and the second reference electrode 25, respectively, and lead wires 38 and 39 are connected to the heater 30, respectively.
さらに、第1,第2の固体電解質12,16としては、
例えばZrO2,HrO2,ThO2,Bi2O3等の
酸化物にC2O,MgO,Y2O2,YB2O3等を固溶
させた焼結体を用い、各電極20〜25は、白金又は金
を主成分とする。Further, as the first and second solid electrolytes 12 and 16,
For example, a sintered body in which C 2 O, MgO, Y 2 O 2 , YB 2 O 3 or the like is solid-dissolved in an oxide such as ZrO 2 , HrO 2 , ThO 2 , or Bi 2 O 3 is used. 25 has platinum or gold as a main component.
さらにまた、この実施例では、第1,第2の小室17,
18を被測定ガスから隔離する隔壁の全部を第1,第2
の固体電解質12,16で形成しているが、電極20〜
25に対応する部分のみを固体電解質で形成してもよ
い。Furthermore, in this embodiment, the first and second small chambers 17,
All of the partition walls that isolate 18 from the gas to be measured are
The solid electrolytes 12 and 16 of
You may form only the part corresponding to 25 with a solid electrolyte.
第6図は、本発明の酸素濃度検出装置における酸素濃度
(空燃比)検出回路の一例を示す回路図である。FIG. 6 is a circuit diagram showing an example of an oxygen concentration (air-fuel ratio) detection circuit in the oxygen concentration detection device of the present invention.
この酸素濃度検出回路は、簡単に説明すると、第1の酸
素濃淡電池の出力に基づいて第1の酸素ポンプに供給す
るポンプ電流を増減させることにより第1の小室17の
酸素濃度を第1の所定値に保ち、第2の酸素濃淡電池の
出力に基づいて第2の酸素ポンプに供給するポンプ電流
を増減させることにより第2の小室18の酸素濃度を第
2の所定値に保つと共に、少なくとも一方の酸素ポンプ
に供給するポンプ電流の値を検出することにより被測定
ガスの酸素濃度を検出するものであり、具体的には、第
1の制御回路41と、第2の制御回路42と、平均回路
43とからなる。Briefly described, this oxygen concentration detection circuit increases or decreases the oxygen concentration of the first small chamber 17 by increasing or decreasing the pump current supplied to the first oxygen pump based on the output of the first oxygen concentration battery. The oxygen concentration in the second small chamber 18 is maintained at the second predetermined value by maintaining the predetermined value and increasing or decreasing the pump current supplied to the second oxygen pump based on the output of the second oxygen concentration battery, and at least The oxygen concentration of the measured gas is detected by detecting the value of the pump current supplied to one of the oxygen pumps. Specifically, the first control circuit 41, the second control circuit 42, and And an averaging circuit 43.
第1の制御回路41は、まず、第1の基準電極22と第
1のセンサ電極20との間の電位Vs1と目標電圧Va
1(Va1=0)との差を差動アンプ45で検出して、
この差動アンプ45から出力される差電圧ΔVs1(Δ
Vs1=Vs1)に応じて第1のポンプ電流供給回路4
6が第1のポンプ電極21に、第1のセンサ電極20及
び第1のポンプ電極21側から第1の基準電極22側に
向つて酸素イオンが第1の固体電解質12内を移動する
方向に第1のポンプ電流Ip1を供給する。The first control circuit 41 first sets the potential Vs 1 between the first reference electrode 22 and the first sensor electrode 20 and the target voltage Va.
1 (Va 1 = 0) is detected by the differential amplifier 45,
The differential voltage ΔVs 1 (Δ
Vs 1 = Vs 1 ) according to the first pump current supply circuit 4
6 is directed to the first pump electrode 21 in a direction in which oxygen ions move in the first solid electrolyte 12 from the first sensor electrode 20 and the first pump electrode 21 side toward the first reference electrode 22 side. The first pump current Ip 1 is supplied.
つまり、この第1のポンプ電流供給回路46は、差動ア
ンプ45からの差電圧ΔVs1がプラスであれば第1の
ポンプ電流Ip1を増加し、差電圧ΔVs1がマイナス
であれば第1のポンプ電流Ip1を減少させて、Vs1
=Va1=0になるように第1のポンプ電流Ip1を制
御する。That is, the first pump current supply circuit 46 increases the first pump current Ip 1 if the difference voltage ΔVs 1 from the differential amplifier 45 is positive, and increases the first pump current Ip 1 if the difference voltage ΔVs 1 is negative. Pump current Ip 1 of Vs 1
The first pump current Ip 1 is controlled so that = Va 1 = 0.
そして、この第1のポンプ電流供給回路46から第1の
ポンプ電流21に供給される第1のポンプ電流Ip
1を、その給電路に介挿した抵抗47で電圧に変換し、
この抵抗47の両端間の電位差を差動アンプ48で検出
して電圧V1(V1∝Ip1)として平均回路43に出
力する。Then, the first pump current Ip supplied from the first pump current supply circuit 46 to the first pump current 21.
1 is converted into a voltage by a resistor 47 inserted in the feeding line,
The potential difference between both ends of the resistor 47 is detected by the differential amplifier 48 and output to the averaging circuit 43 as the voltage V 1 (V 1 ∝Ip 1 ).
第2の制御回路42は、まず、第2の基準電極25と第
1のセンサ電極23との間の電位Vs2と電源50から
の目標電圧Va2との差を差動アンプ51で検出して、
この差動アンプ51から出力される差電圧ΔVs2(ΔV
s2=Vs2−Va2)に応じて第2のポンプ電流供給回路
52が第2のポンプ電極24に、第2の基準電極25側
から第2のセンサ電極23及び第2のポンプ電極24側
に向つて酸素イオンが第2の固体電解質16内を移動す
る方向に第2のポンプ電流Ip2を供給する。The second control circuit 42 first detects the difference between the potential Vs 2 between the second reference electrode 25 and the first sensor electrode 23 and the target voltage Va 2 from the power source 50 with the differential amplifier 51. hand,
The differential voltage ΔVs 2 (ΔV
s 2 = Vs 2 −Va 2 ), the second pump current supply circuit 52 supplies the second pump electrode 24 with the second sensor electrode 23 and the second pump electrode 24 from the second reference electrode 25 side. The second pump current Ip 2 is supplied in the direction in which oxygen ions move toward the side in the second solid electrolyte 16.
つまり、この第2のポンプ電流供給回路52は、差動ア
ンプ51からの差電圧ΔVs2がプラスであれば第2の
ポンプ電流Ip2を減少し、差電圧ΔVs2がマイナス
であれば第2のポンプ電流Ip2を増加して、Vs2=
Va2になるように第2のポンプ電流Ip2を制御す
る。That is, the second pump current supply circuit 52 decreases the second pump current Ip 2 if the difference voltage ΔVs 2 from the differential amplifier 51 is positive, and the second pump current Ip 2 if the difference voltage ΔVs 2 is negative. Pump current Ip 2 of Vs 2 =
The second pump current Ip 2 is controlled so as to become Va 2 .
そして、この第2のポンプ電流供給回路52から第2の
ポンプ電極24に供給される第2のポンプ電流Ip
2を、その給電路に介挿した抵抗53で電圧に変換し、
この抵抗52の両端間の電圧を差動アンプ54で検出し
て電圧V2(V2∝Ip2)として平均回路43に出力
する。Then, the second pump current Ip supplied from the second pump current supply circuit 52 to the second pump electrode 24.
2 is converted into a voltage by a resistor 53 inserted in the power supply line,
The voltage across the resistor 52 is detected by the differential amplifier 54 and output to the averaging circuit 43 as the voltage V 2 (V 2 ∝Ip 2 ).
平均回路43は、抵抗値が同じ抵抗55及び抵抗56か
らなり、第1の制御回路41からの電圧V1と第2の制
御回路42からの電圧V2との平均値(V1+V2)/
2を平均電圧VNとして出力する。The averaging circuit 43 is composed of a resistor 55 and a resistor 56 having the same resistance value, and the average value (V 1 + V 2 ) of the voltage V 1 from the first control circuit 41 and the voltage V 2 from the second control circuit 42. /
2 is output as the average voltage VN.
次に、このように構成したこの実施例の作用について説
明する。Next, the operation of this embodiment thus configured will be described.
まず、酸素濃度検出回路の第1の制御回路41における
目標電圧Va1をVa1=0mV,第2の制御回路42
における目標電圧Va2をVa2=500mVに設定した場
合、第1のポンプ電流供給回路46は、電圧Vs1がV
s1=Va1=0になる第1のポンプ電流Ip1を第1
のポンプ電極21に供給し、第2のポンプ電流供給回路
52は電圧Vs2がVs2=Va2=500mVになる第2
のポンプ電流Ip2を第2のポンプ電極24に供給す
る。First, the target voltage Va 1 in the first control circuit 41 of the oxygen concentration detection circuit is set to Va 1 = 0 mV, and the second control circuit 42
When the target voltage Va 2 in the above is set to Va 2 = 500 mV, the first pump current supply circuit 46 determines that the voltage Vs 1 is V
The first pump current Ip 1 that makes s 1 = Va 1 = 0
The second pump current supply circuit 52 supplies the voltage Vs 2 to Vs 2 = Va 2 = 500 mV.
Of the pump current Ip 2 is supplied to the second pump electrode 24.
このとき、第1の小室17の酸素分圧をP1,第2の小
室18の酸素分圧をP2,被測定ガス中の酸素分圧をP
xとすると、温度が1000Kのとき、前述したネルンスト
の式(式)から明らかなように、P1Px,P2
Px×10-100となる。At this time, the oxygen partial pressure of the first small chamber 17 is P 1 , the oxygen partial pressure of the second small chamber 18 is P 2 , and the oxygen partial pressure of the measured gas is P 2 .
x, when the temperature is 1000 K, as is clear from the Nernst equation described above, P 1 Px, P 2
It becomes Px × 10 −10 0.
したがつて、隔壁板14の小孔19を通つて拡散するO
2の量Qは、拡散係数をDとすると、 Q=D(P1−P2)… =D(Px−0)…… となる。Therefore, O that diffuses through the small holes 19 of the partition plate 14
The quantity Q of 2 is Q = D (P 1 −P 2 ) ... = D (Px−0).
このO2の量Qは、定常的には、第1のポンプ電流Ip
1及び第2のポンプ電流Ip2に比例するので、第1の
ポンプ電流Ip1及び第2のポンプ電流Ip2は、 Ip1=Ip2=K1・Q=K1・D・Px =K2・Px…… となる。但し、K1,K2は定数である。The amount Q of O 2 is normally the first pump current Ip.
Since the first pump current Ip 1 and the second pump current Ip 2 are proportional to the first and second pump currents Ip 2 , Ip 1 = Ip 2 = K 1 · Q = K 1 · D · Px = K a 2 · Px ....... However, K 1 and K 2 are constants.
この式から、第1のポンプ電流Ip1及び第2のポン
プ電流Ip2は被測定ガス中の酸素分圧Pxに比例する
ことが分かる。From this equation, it can be seen that the first pump current Ip 1 and the second pump current Ip 2 are proportional to the oxygen partial pressure Px in the measured gas.
つまり、第1のポンプ電流Ip1及び第2のポンプ電流
Ip2の値が、いずれも被測定ガス中の酸素分圧(濃
度)を表わす。That is, the values of the first pump current Ip 1 and the second pump current Ip 2 both represent the oxygen partial pressure (concentration) in the measured gas.
したがつて、酸素濃度検出回路の第1の制御回路41及
び第2の制御回路42から出力される電圧V1及びV2
は、夫々被測定ガス中の酸素濃度に応じた値となり、平
均回路43からその電圧V1,V2を平均化した酸素濃
度に応じた平均電圧VNが出力される。Therefore, the voltages V 1 and V 2 output from the first control circuit 41 and the second control circuit 42 of the oxygen concentration detection circuit, respectively.
Are values corresponding to the oxygen concentration in the gas to be measured, and the averaging circuit 43 outputs the average voltage VN corresponding to the oxygen concentration obtained by averaging the voltages V 1 and V 2 .
このようにして酸素濃度検出回路から出力される酸素濃
度に対する平均電圧VNの特性を第7図に示してある。FIG. 7 shows the characteristic of the average voltage VN with respect to the oxygen concentration output from the oxygen concentration detection circuit in this way.
ところで、この酸素センサ11にあつては、酸素の拡散
を制限する手段である隔壁板14の小孔19が被測定ガ
スに触れることがない。By the way, in the oxygen sensor 11, the small holes 19 of the partition plate 14 which are means for limiting the diffusion of oxygen do not come into contact with the gas to be measured.
したがつて、被測定ガス中にカーボン粒子等のデポジツ
トが含まれていても、そのデポジツトが小孔19に付着
することがなく、拡散する酸素分子の量が変化すること
がない。Therefore, even if the gas to be measured contains deposits such as carbon particles, the deposits do not adhere to the small holes 19 and the amount of oxygen molecules diffused does not change.
それによつて、長期間に亘つて酸素濃度を高精度に検出
することができる。As a result, the oxygen concentration can be detected with high accuracy over a long period of time.
なお、上記実施例においては、第1の小室17の酸素分
圧を被測定ガスの酸素分圧と同じに保ち、第2の小室1
8の酸素分圧を被測定ガスの酸素分圧の約1/1010に
保つたが、他の倍率に保つてもよい。In the above embodiment, the oxygen partial pressure of the first small chamber 17 is kept the same as the oxygen partial pressure of the gas to be measured, and the second small chamber 1
The oxygen partial pressure of 8 was maintained at about 1/10 10 of the oxygen partial pressure of the gas to be measured, but it may be maintained at another ratio.
例えば、第1の小室17の酸素分圧を被測定ガスの酸素
分圧の2倍に、第2の小室18の酸素分圧を被測定ガス
の酸素分圧の1/2倍に保つても、被測定ガス中の酸素
濃度を検出できる。For example, even if the oxygen partial pressure of the first small chamber 17 is kept at twice the oxygen partial pressure of the measured gas, and the oxygen partial pressure of the second small chamber 18 is kept at 1/2 the oxygen partial pressure of the measured gas. The oxygen concentration in the measured gas can be detected.
つまり、第1の固体電解質12に電流を供給して酸素イ
オンを移動させ、第1の小室17の酸素濃度を被測定ガ
スの酸素濃度の第1の所定倍に保ち、第2の固体電解質
16に電流を供給して酸素イオンを移動させ、第2の小
室18の酸素濃度を被測定ガスの酸素濃度の第2の所定
倍に保ち、第1の固体電解質12及び第2の固体電解質
16に供給する電流の少なくとも一方の電流を検出する
ことによつて被測定ガスの酸素濃度を検出できる。即
ち、この酸素センサは、被測定ガスから隔離された密閉
室11Cを2つの小室17,18に分割し、両小室1
7,18を小孔19によって連通した構成であるから、
ある程度の酸素の拡散は確保されるが、この拡散は制限
されたものとなり、夫々の小室17,18の酸素濃度を
異なる濃度に維持することが可能となる。従って、第1
の酸素濃淡電池の出力に基づいて第1の酸素ポンプに供
給するポンプ電流を増減させることにより第1の小室1
7の酸素濃度を第1の所定値に保ち、第2の酸素濃淡電
池の出力に基づいて第2の酸素ポンプに供給するポンプ
電流を増減させることにより第2の小室18の酸素濃度
を第2の所定値に保ち、このときの供給電流の大きさを
検出すれば、被測定ガスの酸素濃度を検出することが可
能となるのである。That is, a current is supplied to the first solid electrolyte 12 to move oxygen ions, the oxygen concentration in the first small chamber 17 is kept at a first predetermined multiple of the oxygen concentration of the gas to be measured, and the second solid electrolyte 16 is kept. Current is supplied to move the oxygen ions to keep the oxygen concentration in the second small chamber 18 at the second predetermined multiple of the oxygen concentration of the gas to be measured, and to the first solid electrolyte 12 and the second solid electrolyte 16. The oxygen concentration of the gas to be measured can be detected by detecting at least one of the supplied currents. That is, in this oxygen sensor, the closed chamber 11C isolated from the gas to be measured is divided into two small chambers 17 and 18, and both small chambers 1
7 and 18 are connected by a small hole 19,
Although diffusion of oxygen to some extent is secured, this diffusion is limited, and it becomes possible to maintain the oxygen concentration in each of the small chambers 17 and 18 at different concentrations. Therefore, the first
The first small chamber 1 by increasing or decreasing the pump current supplied to the first oxygen pump based on the output of the oxygen concentration battery of
The oxygen concentration in the second small chamber 18 is set to the second predetermined value by increasing or decreasing the pump current supplied to the second oxygen pump based on the output of the second oxygen concentration battery while maintaining the oxygen concentration in the second small chamber 18 at the first predetermined value. It is possible to detect the oxygen concentration of the gas to be measured by keeping the predetermined value of and detecting the magnitude of the supply current at this time.
第8図及び第9図は、この発明を実施した酸素センサの
更に他の異なる例を示す横断面図である。8 and 9 are transverse cross-sectional views showing still another different example of the oxygen sensor embodying the present invention.
第8図に示す酸素センサ71は、第1の固体電解質12
と、隔壁板13と、酸素の拡散制限用小孔19を穿設し
た第3の固体電解質72と、隔壁板15と、第2の固体
電解質16とを積層してある。The oxygen sensor 71 shown in FIG.
The partition plate 13, the third solid electrolyte 72 having the oxygen diffusion limiting small holes 19 formed therein, the partition plate 15, and the second solid electrolyte 16 are laminated.
そして、その第1の固体電解質12の両面には第1のセ
ンサ電極20及び第1のポンプ電極21と第1の基準電
極22とを設け、第2の固体電解質16の両面には第2
のポンプ電極24と第2の基準電極25とを設け、第3
の固体電解質72の両面には第2のセンサ電極73及び
第3の基準電極74を設けている。Then, the first sensor electrode 20, the first pump electrode 21, and the first reference electrode 22 are provided on both sides of the first solid electrolyte 12, and the second sensor is provided on both sides of the second solid electrolyte 16 with the second sensor electrode 20.
A pump electrode 24 and a second reference electrode 25 of
A second sensor electrode 73 and a third reference electrode 74 are provided on both surfaces of the solid electrolyte 72.
この酸素センサ71にあつては、第1の小室17の酸素
分圧と第2の小室18の酸素分圧との差を第2のセンサ
電極73及び第3の基準電極74とで検出して、この検
出結果に応じて第2のポンプ電極24及び第2の基準電
極25間に流す第2のポンプ電流を制御して、第2の小
室18の酸素分圧を所定値に保つ。なお、第1の小室1
7の酸素分圧の制御については上記実施例と同様であ
る。In the oxygen sensor 71, the difference between the oxygen partial pressure of the first small chamber 17 and the oxygen partial pressure of the second small chamber 18 is detected by the second sensor electrode 73 and the third reference electrode 74. The second pump current flowing between the second pump electrode 24 and the second reference electrode 25 is controlled according to the detection result to maintain the oxygen partial pressure of the second small chamber 18 at a predetermined value. The first small chamber 1
The control of the oxygen partial pressure of No. 7 is the same as that of the above embodiment.
次に、第9図に示す酸素センサ81は、第1の固体電解
質12と、隔壁板13と、小孔19を穿設した隔壁板1
4と、第2の小室18を形成する貫通孔82a及び大気
を導入する大気導入空間83を形成する溝82bを形成
した固体電解質の隔壁板82と、第2の固体電解質16
とを積層してある。Next, the oxygen sensor 81 shown in FIG. 9 has a first solid electrolyte 12, a partition plate 13, and a partition plate 1 having small holes 19 formed therein.
4, a partition plate 82 of a solid electrolyte having a through hole 82a forming the second small chamber 18 and a groove 82b forming an atmosphere introducing space 83 for introducing the atmosphere, and the second solid electrolyte 16
And are stacked.
そして、第1の固体電解質12の両面に第1のセンサ電
極20及び第1のポンプ電極21と第1の基準電極22
とを設け、第2の固体電解質16の両面に第2のポンプ
電極24と第2の基準電極25とを設けると共に、第2
の小室18と大気導入空間83との間の隔壁板82の隔
壁の両面に第2のセンサ電極84と第3の基準電極85
とを設けている。Then, the first sensor electrode 20, the first pump electrode 21 and the first reference electrode 22 are formed on both surfaces of the first solid electrolyte 12.
And the second pump electrode 24 and the second reference electrode 25 are provided on both surfaces of the second solid electrolyte 16, and
The second sensor electrode 84 and the third reference electrode 85 are formed on both sides of the partition wall of the partition plate 82 between the small chamber 18 and the air introduction space 83.
And are provided.
この酸素センサ81にあつては、大気の酸素分圧と第2
の小室18の酸素分圧との差を第2のセンサ電極84及
び第3の基準電極85によつて検出し、この検出結果に
応じて第2のポンプ電極24と第2の基準電極25の間
に流す第2のポンプ電流を制御して、第2の小室18の
酸素分圧を大気の所定倍に保つ。なお、第1の小室17
の酸素分圧の制御については上記実施例と同様である。In this oxygen sensor 81, the oxygen partial pressure of the atmosphere and the second
The difference between the oxygen partial pressure of the small chamber 18 and the oxygen partial pressure of the second chamber is detected by the second sensor electrode 84 and the third reference electrode 85, and the second pump electrode 24 and the second reference electrode 25 are detected according to the detection result. By controlling the second pump current flowing between them, the oxygen partial pressure in the second small chamber 18 is kept at a predetermined value higher than atmospheric pressure. The first small chamber 17
The control of the oxygen partial pressure is the same as in the above embodiment.
これ等の酸素センサ71,81においても、夫々の小室
17,18の酸素濃度を異なる濃度に維持することが可
能となると共に、酸素の拡散を制限する手段である小孔
19が被測定ガスに触れないので、酸素濃度を長期に亘
つて高精度に検出できる。Also in these oxygen sensors 71 and 81, the oxygen concentrations of the small chambers 17 and 18 can be maintained at different concentrations, and the small holes 19 that are means for limiting the diffusion of oxygen are added to the gas to be measured. Since it is not touched, the oxygen concentration can be detected with high accuracy over a long period of time.
なお、上記各実施例において、センサ電極及びポンプ電
極と基準電極との位置関係を反対にしてもよく、またセ
ンサ電極とポンプ電極に対向する基準電極を別個にして
もよい。In each of the above embodiments, the positional relationship between the sensor electrode and the pump electrode and the reference electrode may be reversed, or the reference electrode facing the sensor electrode and the pump electrode may be separate.
また、ポンプ電極とセンサ電極を共通にして、ポンプ電
流を供給する電極と酸素分圧比によつて発生する電圧を
検出する電極とを兼用させることもできる。Further, the pump electrode and the sensor electrode may be commonly used, and the electrode for supplying the pump current and the electrode for detecting the voltage generated by the oxygen partial pressure ratio may be used in common.
ただし、このようにすると、電極間の電圧としては酸素
分圧比によつて発生する電圧だけでなく、センサの内部
抵抗による電圧降下分が含まれるので、固体電解質の両
面間の酸素分圧比を一定に保つための目標電圧の設定を
精度よく行うためには、この内部抵抗による電圧降下分
を補償する必要があるが、例えば特開昭57−1928
50号公報に見られるように、酸素センサの電極間に流
し込む電流に交流を重畳して、第6図の抵抗47,53
の両端から検出する信号の直流成分をIpの検出信号と
し、交流成分から内部抵抗を算出して、直流成分によつ
て検出したIpを乗じて酸素センサの内部抵抗による電
圧降下分を求め、これを加えることにより前記目標電圧
とすれば、前述の実施例と同様に空燃比を連続的に精度
よく検出することが可能である。However, in this case, the voltage between the electrodes includes not only the voltage generated by the oxygen partial pressure ratio but also the voltage drop due to the internal resistance of the sensor, so that the oxygen partial pressure ratio between the two surfaces of the solid electrolyte is constant. In order to accurately set the target voltage for maintaining the voltage, it is necessary to compensate for the voltage drop due to this internal resistance. For example, Japanese Patent Laid-Open No. 57-1928.
As seen in Japanese Patent Laid-Open No. 50, the alternating current is superposed on the current flowing between the electrodes of the oxygen sensor, and the resistors 47 and 53 shown in FIG.
The DC component of the signal detected from both ends of is the detection signal of Ip, the internal resistance is calculated from the AC component, and Ip detected by the DC component is multiplied to obtain the voltage drop due to the internal resistance of the oxygen sensor. If the target voltage is set by adding the above, it is possible to continuously and accurately detect the air-fuel ratio as in the above-described embodiment.
効 果 以上説明したように、この発明によれば、被測定ガスか
ら隔離された密閉室を2つの小室に分割し、両小室を小
通路によって連通した構成であるから、各小室の酸素濃
度を異なる濃度に維持することが可能となると共に、酸
素と拡散を制限する小通路が被測定ガスに触れないよう
にすることができ、酸素濃度を長期にわたって高精度に
検出できる。Effect As described above, according to the present invention, the closed chamber isolated from the gas to be measured is divided into two small chambers, and both small chambers are connected by the small passage. It is possible to maintain different concentrations, and it is possible to prevent the small passages that restrict oxygen and diffusion from coming into contact with the gas to be measured, so that the oxygen concentration can be detected with high accuracy over a long period of time.
第1図は、従来の酸素センサの一例を示す断面図、 第2図及び第3図は、第1図の作用説明に供する酸素セ
ンサ出力−空燃比特性及び流し込み電流−空燃比特性を
示す線図、 第4図及び第5図は、この発明の実施例を示す酸素セン
サの横断面図及び分解斜視図、 第6図は、その酸素センサを使用した酸素濃度検出回路
の一例を示す回路図、 第7図は、同じくその出力−酸素濃度及び空燃比特性を
示す線図、 第8図及び第9図は、この発明の他の異なる実施例を示
す酸素センサの横断面図である。 11,71,81……酸素センサ、11A……第1の酸
素濃淡電池及び第1の酸素ポンプ、11B……第2の酸
素濃淡電池及び第2の酸素ポンプ、11C……密閉室、
12……第1の固体電解質、14,72……隔壁板(第
1と第2の小室を分割する隔壁)、16……第2の固体
電解質、17……第1の小室、18……第2の小室、1
9……小孔(小通路)、20……第1のセンサ電極、2
1……第1のポンプ電極、22……第1の基準電極、2
3……第2のセンサ電極、24……第2のポンプ電極、
25……第2の基準電極FIG. 1 is a cross-sectional view showing an example of a conventional oxygen sensor, and FIGS. 2 and 3 are lines showing oxygen sensor output-air-fuel ratio characteristics and flow-in current-air-fuel ratio characteristics, which are used to explain the operation of FIG. FIG. 4, FIG. 4 and FIG. 5 are cross-sectional views and exploded perspective views of an oxygen sensor showing an embodiment of the present invention, and FIG. 6 is a circuit diagram showing an example of an oxygen concentration detection circuit using the oxygen sensor. FIG. 7 is a diagram similarly showing the output-oxygen concentration and air-fuel ratio characteristics, and FIGS. 8 and 9 are transverse sectional views of an oxygen sensor showing another different embodiment of the present invention. 11, 71, 81 ... Oxygen sensor, 11A ... First oxygen concentration battery and first oxygen pump, 11B ... Second oxygen concentration battery and second oxygen pump, 11C ... Closed chamber,
12 ... First solid electrolyte, 14, 72 ... Partition plate (partition wall dividing the first and second small chambers), 16 ... Second solid electrolyte, 17 ... First small chamber, 18 ... Second chamber, 1
9 ... Small hole (small passage), 20 ... First sensor electrode, 2
1 ... 1st pump electrode, 22 ... 1st reference electrode, 2
3 ... second sensor electrode, 24 ... second pump electrode,
25 ... Second reference electrode
Claims (1)
の両面に電極を設けてなり、前記電極のうちの一方を前
記密閉室内部に臨ませた第1の酸素濃淡電池及び第1の
酸素ポンプと、 酸素イオン伝導性の第2の固体電解質で形成された部材
の両面に電極を設けてなり、前記電極のうちの一方を前
記密閉室内部に臨ませた第2の酸素濃淡電池及び第2の
酸素ポンプと、 前記密閉室を、第1の酸素濃淡電池及び第1の酸素ポン
プを備えた第1の小室と、第2の酸素濃淡電池及び第2
の酸素ポンプを備えた第2の小室とに分割する隔壁と、 両小室を連通する小通路と、 を有する酸素センサと、 前記第1の酸素濃淡電池の出力に基づいて前記第1の酸
素ポンプに供給するポンプ電流を増減させることにより
前記第1の小室の酸素濃度を第1の所定値に保ち、前記
第2の酸素濃淡電池の出力に基づいて前記第2の酸素ポ
ンプに供給するポンプ電流を増減させることにより前記
第2の小室の酸素濃度を第2の所定値に保つと共に、少
なくとも一方の酸素ポンプに供給するポンプ電流の値を
検出することにより被測定ガスの酸素濃度を検出する酸
素濃度検出回路と、 を備えたことを特徴とする酸素濃度検出装置。1. A closed chamber isolated from a gas to be measured, and electrodes provided on both surfaces of a member formed of an oxygen ion conductive first solid electrolyte, one of the electrodes being the closed chamber. Electrodes are provided on both surfaces of a first oxygen concentration battery and a first oxygen pump facing inside, and a member formed of a second solid electrolyte having oxygen ion conductivity, and one of the electrodes is provided. A second oxygen concentration battery and a second oxygen pump facing the inside of the sealed chamber; a closed chamber, a first small chamber provided with the first oxygen concentration battery and the first oxygen pump; Oxygen concentration cell and second
An oxygen sensor having a partition wall that divides into a second small chamber provided with the oxygen pump, and a small passage communicating between the small chambers, and the first oxygen pump based on the output of the first oxygen concentration battery. A pump current supplied to the second oxygen pump based on the output of the second oxygen concentration battery by maintaining the oxygen concentration in the first small chamber at a first predetermined value by increasing or decreasing the pump current supplied to the second oxygen pump. The oxygen concentration of the second small chamber is kept at a second predetermined value by increasing or decreasing the oxygen concentration, and the oxygen concentration of the measured gas is detected by detecting the value of the pump current supplied to at least one of the oxygen pumps. An oxygen concentration detecting device comprising: a concentration detecting circuit;
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59032545A JPH0634004B2 (en) | 1984-02-24 | 1984-02-24 | Oxygen concentration detector |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59032545A JPH0634004B2 (en) | 1984-02-24 | 1984-02-24 | Oxygen concentration detector |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS60177258A JPS60177258A (en) | 1985-09-11 |
JPH0634004B2 true JPH0634004B2 (en) | 1994-05-02 |
Family
ID=12361899
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP59032545A Expired - Lifetime JPH0634004B2 (en) | 1984-02-24 | 1984-02-24 | Oxygen concentration detector |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0634004B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102013204197A1 (en) * | 2013-03-12 | 2014-10-02 | Robert Bosch Gmbh | Microelectrochemical sensor and method for operating a microelectrochemical sensor |
JP6367709B2 (en) * | 2014-12-26 | 2018-08-01 | 日本特殊陶業株式会社 | Gas sensor element and gas sensor |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59100853A (en) * | 1982-12-01 | 1984-06-11 | Hitachi Ltd | Oxygen sensor manufacturing method |
-
1984
- 1984-02-24 JP JP59032545A patent/JPH0634004B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPS60177258A (en) | 1985-09-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0580206B1 (en) | Wide-range oxygen sensor | |
US6355152B1 (en) | Gas sensor and nitrogen oxide sensor | |
US4776943A (en) | Device for detecting air-fuel ratio of mixture over wide range from below to above stoichiometric ratio | |
KR910006224B1 (en) | Air-fuel ratio detection device | |
US4769124A (en) | Oxygen concentration detection device having a pair of oxygen pump units with a simplified construction | |
US4578171A (en) | Air/fuel ratio detector | |
JPS60128349A (en) | Air fuel ratio detector | |
JPH0260142B2 (en) | ||
JP2505459B2 (en) | Adjustment method of oxygen concentration measuring device | |
US5972200A (en) | Method for driving a wide range air to fuel ratio sensor | |
JP2929038B2 (en) | Air-fuel ratio sensor drive circuit | |
JP4563601B2 (en) | Composite laminated sensor element | |
JPH0634004B2 (en) | Oxygen concentration detector | |
JPH0436341B2 (en) | ||
JPS62148849A (en) | Air-fuel ratio sensor | |
US20230288366A1 (en) | Gas sensor | |
JPH0668482B2 (en) | Air-fuel ratio sensor | |
JPS60238755A (en) | Air fuel ratio detecting device | |
JPS60195447A (en) | Oxygen concentration detector | |
JPH061258B2 (en) | Air-fuel ratio detector | |
JP3152792B2 (en) | Oxygen analyzer and oxygen analysis method using the same | |
JPH0414307B2 (en) | ||
JPS60211355A (en) | Oxygen sensor and oxygen concentration measuring device | |
JPS60200162A (en) | Apparatus for measuring concentration of oxygen | |
JPS60186750A (en) | Device for measuring oxygen concentration |