JPS6329821B2 - - Google Patents
Info
- Publication number
- JPS6329821B2 JPS6329821B2 JP55101115A JP10111580A JPS6329821B2 JP S6329821 B2 JPS6329821 B2 JP S6329821B2 JP 55101115 A JP55101115 A JP 55101115A JP 10111580 A JP10111580 A JP 10111580A JP S6329821 B2 JPS6329821 B2 JP S6329821B2
- Authority
- JP
- Japan
- Prior art keywords
- gas
- layer
- film
- sif
- thin film
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 239000007789 gas Substances 0.000 claims description 50
- 239000010409 thin film Substances 0.000 claims description 32
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 26
- 229910052710 silicon Inorganic materials 0.000 claims description 26
- 239000010703 silicon Substances 0.000 claims description 26
- 239000001257 hydrogen Substances 0.000 claims description 16
- 229910052739 hydrogen Inorganic materials 0.000 claims description 16
- 238000000034 method Methods 0.000 claims description 14
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 13
- 239000000758 substrate Substances 0.000 claims description 13
- 238000004519 manufacturing process Methods 0.000 claims description 11
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical compound FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 claims description 10
- 229910052731 fluorine Inorganic materials 0.000 claims description 10
- 239000011737 fluorine Substances 0.000 claims description 10
- 239000004065 semiconductor Substances 0.000 claims description 10
- 239000002019 doping agent Substances 0.000 claims description 6
- 229910052698 phosphorus Inorganic materials 0.000 claims description 6
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 claims description 5
- 238000007865 diluting Methods 0.000 claims description 5
- 239000011574 phosphorus Substances 0.000 claims description 5
- 150000001875 compounds Chemical class 0.000 claims description 4
- 239000000203 mixture Substances 0.000 claims description 4
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 claims description 3
- 229910052796 boron Inorganic materials 0.000 claims description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 2
- 229910052782 aluminium Inorganic materials 0.000 claims description 2
- 229910052785 arsenic Inorganic materials 0.000 claims description 2
- RQNWIZPPADIBDY-UHFFFAOYSA-N arsenic atom Chemical compound [As] RQNWIZPPADIBDY-UHFFFAOYSA-N 0.000 claims description 2
- 229910052756 noble gas Inorganic materials 0.000 claims description 2
- 230000000737 periodic effect Effects 0.000 claims description 2
- 229910000077 silane Inorganic materials 0.000 claims description 2
- 238000000151 deposition Methods 0.000 claims 1
- ABTOQLMXBSRXSM-UHFFFAOYSA-N silicon tetrafluoride Chemical compound F[Si](F)(F)F ABTOQLMXBSRXSM-UHFFFAOYSA-N 0.000 claims 1
- 239000010408 film Substances 0.000 description 35
- 230000015572 biosynthetic process Effects 0.000 description 9
- 230000000694 effects Effects 0.000 description 6
- 239000012535 impurity Substances 0.000 description 6
- 239000002994 raw material Substances 0.000 description 5
- 238000006243 chemical reaction Methods 0.000 description 4
- 239000003921 oil Substances 0.000 description 4
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- XYFCBTPGUUZFHI-UHFFFAOYSA-N Phosphine Chemical compound P XYFCBTPGUUZFHI-UHFFFAOYSA-N 0.000 description 2
- 229910052786 argon Inorganic materials 0.000 description 2
- 230000008021 deposition Effects 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- 229910052734 helium Inorganic materials 0.000 description 2
- 150000002431 hydrogen Chemical class 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 229910052754 neon Inorganic materials 0.000 description 2
- 125000004437 phosphorous atom Chemical group 0.000 description 2
- 238000004566 IR spectroscopy Methods 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- BFIDGJREXFJYJR-UHFFFAOYSA-N [SiH4].[Si](F)(F)(F)F Chemical compound [SiH4].[Si](F)(F)(F)F BFIDGJREXFJYJR-UHFFFAOYSA-N 0.000 description 1
- 229910021417 amorphous silicon Inorganic materials 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000003085 diluting agent Substances 0.000 description 1
- 238000004453 electron probe microanalysis Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- BHEPBYXIRTUNPN-UHFFFAOYSA-N hydridophosphorus(.) (triplet) Chemical compound [PH] BHEPBYXIRTUNPN-UHFFFAOYSA-N 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- QWXYZCJEXYQNEI-OSZHWHEXSA-N intermediate I Chemical compound COC(=O)[C@@]1(C=O)[C@H]2CC=[N+](C\C2=C\C)CCc2c1[nH]c1ccccc21 QWXYZCJEXYQNEI-OSZHWHEXSA-N 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- GKAOGPIIYCISHV-UHFFFAOYSA-N neon atom Chemical compound [Ne] GKAOGPIIYCISHV-UHFFFAOYSA-N 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910000073 phosphorus hydride Inorganic materials 0.000 description 1
- OBCUTHMOOONNBS-UHFFFAOYSA-N phosphorus pentafluoride Chemical compound FP(F)(F)(F)F OBCUTHMOOONNBS-UHFFFAOYSA-N 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- -1 that is Inorganic materials 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02518—Deposited layers
- H01L21/02521—Materials
- H01L21/02524—Group 14 semiconducting materials
- H01L21/02532—Silicon, silicon germanium, germanium
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/22—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
- C23C16/24—Deposition of silicon only
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02612—Formation types
- H01L21/02617—Deposition types
- H01L21/0262—Reduction or decomposition of gaseous compounds, e.g. CVD
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- General Physics & Mathematics (AREA)
- Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Inorganic Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Photovoltaic Devices (AREA)
Description
【発明の詳細な説明】
本発明は、任意の基板上にシリコン薄膜をプラ
ズマ雰囲気下で成膜し半導体素子を製造する過程
において、シリコン薄膜にフツ素および水素を導
入する目的で原料ガスとしてテトラフルオロシラ
ン−シランSiF4−SiH4混合ガスを用いる成膜方
法に関し、特に、本発明は、シリコン薄膜成膜時
のプラズマ放電電力密度を制御することによつて
効率よくシリコン薄膜より成るP−I−N接合半
導体素子を製造する方法に関する。
通常フツ素および水素を含むアモルフアスシリ
コン膜の製造過程においては、原料としてテトラ
フルオロシラン−水素SiF4−H2混合ガスを使い、
プラズマ雰囲気下でSiF4を分解して任意の基板上
にアモルフアス膜を成膜している(ネイチユア
〔Nature〕276,482(1978)参照)。
SiF4−H2混合ガスを使う成膜法の欠点は、成
膜の条件が非常に厳しく、成膜のために大電力
(陰極側プラズマ放電電力密度にして約1.0W/cm2
以上)および高いガス圧(約1torr)が必要なた
め、プラズマ状態、付着した膜厚およびその特性
に不均一性が生じることであつた。さらには、原
料ガス中に含まれ、あるいは成膜のために使用す
る真空装置中に付着または吸着された微量の元素
例えば酸素、イオウ、リン、ホウ素等の不純物が
生成されたシリコン膜に選択的に取り込まれ、膜
の光電特性およびその再現性が悪くなる。このこ
とは、P−N,P−I−Nおよびシヨツトキー障
壁型等の接合素子を製造する場合特に問題となつ
てくる。SiF4−H2混合ガスに例えばホスフイン
PH3を混合しいつたんドーピングを施したN型膜
を作成すると、真空装置内がリン元素で汚染さ
れ、その後PH3を混合しないSiF4−H2ガスでI
型膜の作成を試みても長期にわたつて膜中にリン
元素が観測され、抵抗の高いアモルフアスI型膜
を作成することがきわめて困難である。さらに、
このSiF4−H2ガスを用いて、N型半導体膜層の
上にP型半導体膜層を成長させてP−N接合膜を
製造しようとしても、最初のN層中のリン原子が
P層の成膜中にP層に取り込まれ所定のP層を作
ることがきわめて困難である。このことはN層の
上にI層を成長させるときも同様で、N層中のリ
ン原子が成膜中のI層に取り込まれ、所定のI層
を作ることが困難である。これらは、SiF4−H2
ガスを用いたときの成膜条件が先に述べたように
非常に厳しく、限られたものであり、不純物の薄
膜への混入を制御し切れないことに起因する。
本発明はこのような欠点を排除しようとするも
ので、SiF4−H2混合ガスの代りにテトラフルオ
ロシラン−シランSiF4−SiH4混合ガスを用いて、
更に成膜時のプラズマ放電電力密度を制御するこ
とにより、フツ素および水素を含むシリコン薄膜
より成るP−I−N接合半導体素子を効率よく製
造する方法を提供するものである。特に、本発明
の方法によるシリコン薄膜の製造においては、ガ
ス圧(0.01torr以上)および電力密度(0.06W/
cm2以上)と成膜条件が非常に広範囲であるという
ことを特徴としている。このため、比較的小電力
密度(例えば0.06W/cm2程度)では不純物残留効
果のないシリコン薄膜が作成でき、大電力密度
(例えば1.0W/cm2程度)では高電気伝導度のシリ
コン薄膜が生成できるという利点がある。
使用されるSiF4−SiH4混合ガスは、ヘリウム、
ネオン、アルゴン等の希ガスまたは水素で希釈す
ることができる。また、ホウ素、アルミニウム等
の周期律表の第族の元素またはその化合物、あ
るいはリン、ヒ素等の第属の元素またはその化
合物より成るガスをドーパントとして上記の混合
ガスに混入させ、生成されるシリコン薄膜にドー
ピングを施すことができる。
以下図面を参照して本発明によるフツ素および
水素を含むシリコン薄膜より成るP−I−N接合
半導体素子の製造方法を実施するための装置およ
びその操作の1例を述べる。
第1図において、混合容器1を含めた全装置系
を油回転ポンプ2および油拡散ポンプ3を使つて
10-6torrの真空度まで真空にし、つぎにSiF4ボン
ベ4およびSiH4ボンベ5、また必要に応じてド
ーピングガスボンベ6または7よりガスを混合容
器1に所要の割合で導入し、混合する。混合され
たガスを流量計8を通して真空容器9中に一定流
量で導入する。メインバルブ10で操作して真空
容器9内の真空度を真空計11で監視しながら所
要の圧力を維持する。高周波発振器12で電極
(13および13′)間に高周波電圧を印加してグ
ロー放電を行なわせる。基板15はヒータ14で
加熱された基台上に載置され、ヒータで所要の温
度に加熱されており、この基板15上にフツ素お
よび水素を含んだシリコン薄膜が成膜される。
第2図は、本発明によつて製造したシリコン薄
膜中のフツ素および水素の含有量(曲線16およ
び17)を混合ガス組成の関数として示すもので
ある。シリコン薄膜中のフツ素および水素の含有
量はEPMA法、XPS法および赤外吸収スペクト
ル法を用いて測定した。第2図は本発明の方法に
よりシリコン薄膜中にフツ素を導入することが可
能なことを証明している。
第3図は、1つの例としてSiF4:SiH4=1:
1の混合ガスを用い、基板としてガラス板を用
い、基板温度Tsを変えたときにできるシリコン
薄膜のσdark(暗中の電気伝導度)および△
σphoto(強度300μW/cm2、波長6328Åの光を照射
したときの電気伝導度と暗中の電気伝導度の差)
を示す(曲線18および19)。第3図は、本発
明の方法により製造したシリコン薄膜の光電特性
が極めて良好であることを証明しており、この膜
が光電変換素子および画像素子の材料として優透
であることを示している。
第4図は、生成されるシリコン薄膜にリンによ
るドーピングを施した実験例を示すものであり、
図中曲線20は、1例としてSiF4:SiH4=1:
1の混合ガスを用い、さらにドーパントとして五
フツ化リンPF5を混合し、基板温度300℃、電力
密度0.06W/cm2の条件で成膜したときの混合ガス
中のPF5濃度と生成されたシリコン薄膜のσdark
の関係を示す。さらに、高電気伝導度のシリコン
薄膜を得る目的でSiF4:SH4=1:1の混合ガス
を水素で27倍希釈し、すなわちSiF4:SiH4:H2
=1:1:54の混合ガスを用い、ドーパントとし
てPF5をSiF4+SiH4に対して4000ppm(体積基準)
混合して、基板温度300℃、電力密度1.0W/cm2お
よび1.6W/cm2の条件で成膜したときのシリコン
薄膜のσdarkの値をそれぞれ第4図中の21,2
2で示す。これらの値は、このように原料ガスを
水素またはHe,Ne,Ar等の希ガスで希釈する
ことにより成膜速度を押えながら高い電力を投入
すれば、きわめて電気伝導度の高いシリコン薄膜
が製造できることを示している。したがつて、こ
の膜は、光電変換素子として応用すると電極との
オーミツク特性がよく、また素子の直列抵抗を下
げる等の利点があり、光電変換素子に用いてきわ
めて有効である。
第5図は、ドーピング操作後の不純物汚染によ
る残留効果の実験例を示すものであり、図中折線
23は、1例としてSiF4:SiH4=1:1の混合
ガスを用い、ドーピング操作の後I型膜の成膜を
試みた結果である。成膜条件は、基板温度300℃、
電力密度0.06W/cm2で、ドーピング操作直後の1
回目の試料膜からI型膜が形成されていることが
分る。図中の折線24は、SiF4:H2=9:1の
混合ガスを用いたときのドーピング操作後のI型
膜の成膜試験結果を示すものである。ドーピング
操作後長期にわたつて不純物の残留効果が現われ
ている。このように、本発明の方法によれば、不
純物の残留効果の全く現われない良好なI型膜を
形成することができる。
本発明に従つたP−I−N接合半導体素子を製
造するには、SiF4−SiH4混合ガスと適当なドー
パントを原料ガスとして用い、PおよびN層は第
4図に示される実験例の場合のように原料ガスを
希釈して成膜速度を押えながら大電力を投入する
ことにより成膜し、中間のI層は小電力の投入に
より成膜できる。
さらに、本発明の追加の種々の実施例を表に
まとめた。
この表に記載される試験(実施例)において、
SiF4−SiH4の混合ガスの混合比、それらと希釈
ガスとの混合比ならびにドーピングガスの混合割
合を変えるとともに、ガス流量(SCCM)、陰極
側電力密度(W/cm2)、基板温度(℃)、成膜圧力
(Torr)等のパラメータを変え、膜厚(μm)お
よび成膜速度(Å/sec)、σdarkおよび△σPhoto
を測定した。これらの実施例において、No.1〜No.
7は単にSiF4/SiH4混合ガスの混合比を変えた
もの、No.8〜11はSiF4/SiH41:1の混合ガスに
ドーピングガスPF5の割合を種々変えたもの、No.
12,13はSiF4/SiH41:1の混合ガスを水素で希
釈するとともにドーピングガスPF5を加えたも
の、またNo.14〜16は単にSiF4/SiH41:1の混合
ガスのものである。これらのうちNo.12およびNo.13
は、1.0W/cm2および1.6W/cm2の高電力が投入さ
れており、この場合生成される薄膜の暗中電気伝
導度σdarkはそれぞれ3.81×10-3および8.73×
10-3(Ω-1cm-1)と高いことが示されている。この
ように、希釈ガスで希釈しかつドーパンドを混入
し、高電力を投入すれば、電気伝導度の高い薄膜
が得られることが認められよう。その他の実施例
においては、0.06〜0.14W/cm2の低電力が投入さ
れており、そして、この場合には、一般に生成さ
れる薄膜の電気伝導度は低いことが認められよ
う。
以上説明のように、本発明の方法によれば、光
電特性が優れ光電変換素子および画像素子材料と
して適当な薄膜や、高電気伝導度を有し電極との
オーミツク特性のよい光電変換素子として適当な
薄膜を提供でき、また残留効果のないI型膜を形
成することができるのでP−I−N接合半導体素
子を効率的に製造することができるなど、本発明
の効果はすこぶる大きい。
【表】DETAILED DESCRIPTION OF THE INVENTION The present invention uses tetrafluoride as a raw material gas for the purpose of introducing fluorine and hydrogen into a silicon thin film in the process of manufacturing a semiconductor element by forming a silicon thin film on an arbitrary substrate in a plasma atmosphere. The present invention relates to a film forming method using a fluorosilane-silane SiF 4 -SiH 4 mixed gas, and in particular, the present invention efficiently forms a P-I made of a silicon thin film by controlling the plasma discharge power density during silicon thin film formation. - A method of manufacturing an N-junction semiconductor device. Normally, in the manufacturing process of amorphous silicon films containing fluorine and hydrogen, a mixed gas of tetrafluorosilane-hydrogen SiF 4 -H 2 is used as a raw material.
SiF 4 is decomposed in a plasma atmosphere to form an amorphous film on any substrate (see Nature 276 , 482 (1978)). The disadvantage of the film formation method using SiF 4 −H 2 mixed gas is that the film formation conditions are very strict and the film formation requires a large amount of power (about 1.0 W/cm 2 in cathode side plasma discharge power density).
(above) and high gas pressure (approximately 1 torr), which resulted in nonuniformity in the plasma state, deposited film thickness, and its properties. Furthermore, trace amounts of impurities such as oxygen, sulfur, phosphorus, and boron contained in the source gas or attached or adsorbed in the vacuum equipment used for film formation are selectively removed from the silicon film. The photoelectric properties of the film and its reproducibility deteriorate. This becomes a particular problem when manufacturing junction devices such as PN, PIN, and Schottky barrier types. For example, phosphine is added to the SiF 4 −H 2 mixed gas.
When an N-type film is prepared by mixing PH 3 and immediately doping, the inside of the vacuum equipment is contaminated with phosphorus element, and then it is mixed with SiF 4 -H 2 gas without PH 3 .
Even if an attempt is made to create a type film, phosphorous elements are observed in the film over a long period of time, making it extremely difficult to create an amorphous type I film with high resistance. moreover,
Even if an attempt is made to grow a P-type semiconductor film layer on an N-type semiconductor film layer using this SiF 4 -H 2 gas to produce a P-N junction film, the phosphorus atoms in the initial N layer will be removed from the P layer. During the film formation, it is incorporated into the P layer, making it extremely difficult to form a predetermined P layer. The same holds true when growing an I layer on an N layer; phosphorus atoms in the N layer are incorporated into the I layer being formed, making it difficult to form a desired I layer. These are SiF 4 −H 2
This is due to the fact that the film forming conditions when using gas are extremely strict and limited as described above, and the incorporation of impurities into the thin film cannot be fully controlled. The present invention aims to eliminate such drawbacks by using a tetrafluorosilane-silane SiF 4 -SiH 4 mixed gas instead of the SiF 4 -H 2 mixed gas.
Furthermore, the present invention provides a method for efficiently manufacturing a P-I-N junction semiconductor device made of a silicon thin film containing fluorine and hydrogen by controlling the plasma discharge power density during film formation. In particular, in the production of silicon thin films by the method of the present invention, gas pressure (0.01 torr or more) and power density (0.06 W/
cm 2 or more) and can be formed under a very wide range of conditions. For this reason, silicon thin films with no residual impurity effects can be created at relatively low power densities (for example, around 0.06 W/cm 2 ), and silicon thin films with high electrical conductivity can be created at high power densities (for example, around 1.0 W/cm 2 ). It has the advantage of being able to be generated. The SiF 4 − SiH 4 mixed gas used is helium,
It can be diluted with a noble gas such as neon, argon, or hydrogen. In addition, silicon is produced by mixing a gas consisting of a group element of the periodic table such as boron or aluminum or a compound thereof, or a group element such as phosphorus or arsenic or a compound thereof as a dopant into the above-mentioned mixed gas. The thin film can be doped. DESCRIPTION OF THE PREFERRED EMBODIMENTS An example of an apparatus and its operation for carrying out the method of manufacturing a P-I-N junction semiconductor device made of a silicon thin film containing fluorine and hydrogen according to the present invention will be described below with reference to the drawings. In Figure 1, the entire equipment system including the mixing vessel 1 is operated using an oil rotary pump 2 and an oil diffusion pump 3.
The mixture is evacuated to a degree of vacuum of 10 -6 torr, and then gases are introduced into the mixing container 1 at a required ratio from the SiF 4 cylinder 4 and the SiH 4 cylinder 5, and if necessary, the doping gas cylinder 6 or 7, and mixed. The mixed gas is introduced into the vacuum vessel 9 through the flow meter 8 at a constant flow rate. The required pressure is maintained by operating the main valve 10 and monitoring the degree of vacuum in the vacuum container 9 with the vacuum gauge 11. A high frequency voltage is applied between the electrodes (13 and 13') by a high frequency oscillator 12 to cause glow discharge. The substrate 15 is placed on a base heated by the heater 14 and heated to a required temperature by the heater, and a silicon thin film containing fluorine and hydrogen is formed on the substrate 15. FIG. 2 shows the fluorine and hydrogen content (curves 16 and 17) in silicon thin films produced according to the invention as a function of the gas mixture composition. The contents of fluorine and hydrogen in silicon thin films were measured using EPMA method, XPS method, and infrared absorption spectroscopy. FIG. 2 proves that it is possible to introduce fluorine into a silicon thin film by the method of the present invention. FIG. 3 shows, as an example, SiF 4 :SiH 4 =1:
σdark (electrical conductivity in the dark) and △ of a silicon thin film formed when using a mixed gas of 1, using a glass plate as a substrate, and changing the substrate temperature Ts.
σphoto (difference between electrical conductivity when irradiated with light of intensity 300 μW/cm 2 and wavelength 6328 Å and electrical conductivity in the dark)
(curves 18 and 19). Figure 3 proves that the silicon thin film produced by the method of the present invention has extremely good photoelectric properties, and shows that this film is highly transparent as a material for photoelectric conversion elements and image elements. . Figure 4 shows an experimental example in which the produced silicon thin film was doped with phosphorus.
Curve 20 in the figure shows, as an example, SiF 4 :SiH 4 =1:
The concentration of PF 5 in the mixed gas and the amount of PF 5 produced when using the mixed gas of 1 and further mixing phosphorus pentafluoride PF 5 as a dopant to form a film under the conditions of a substrate temperature of 300°C and a power density of 0.06 W/cm 2 are as follows. σdark of silicon thin film
shows the relationship between Furthermore, in order to obtain a silicon thin film with high electrical conductivity, a mixed gas of SiF 4 :SH 4 =1:1 was diluted 27 times with hydrogen, that is, SiF 4 :SiH 4 :H 2
= 1:1:54 mixed gas, 4000 ppm (volume basis) of PF 5 as a dopant to SiF 4 + SiH 4
The σdark values of the silicon thin film when mixed and deposited under the conditions of a substrate temperature of 300℃ and a power density of 1.0W/cm 2 and 1.6W/cm 2 are 21 and 2 in Figure 4, respectively.
Indicated by 2. These values indicate that silicon thin films with extremely high electrical conductivity can be produced by diluting the raw material gas with hydrogen or rare gases such as He, Ne, Ar, etc. and applying high power while suppressing the film formation rate. It shows what is possible. Therefore, when applied as a photoelectric conversion element, this film has advantages such as good ohmic characteristics with electrodes and lowering the series resistance of the element, and is extremely effective for use in a photoelectric conversion element. FIG. 5 shows an experimental example of the residual effect due to impurity contamination after the doping operation, and the broken line 23 in the figure shows the result of the doping operation using a mixed gas of SiF 4 :SiH 4 =1:1 as an example. This is the result of attempting to form a post-I type film. The film forming conditions were: substrate temperature 300℃,
1 immediately after the doping operation at a power density of 0.06W/ cm2 .
It can be seen that an I-type film is formed from the sample film of the second time. A broken line 24 in the figure shows the result of a film formation test of an I-type film after a doping operation using a mixed gas of SiF 4 :H 2 =9:1. The residual effect of impurities appears for a long time after the doping operation. As described above, according to the method of the present invention, it is possible to form a good type I film without any residual effects of impurities. To manufacture the P-I-N junction semiconductor device according to the present invention, a SiF 4 -SiH 4 mixed gas and a suitable dopant are used as raw material gases, and the P and N layers are as shown in the experimental example shown in FIG. The film is formed by diluting the raw material gas and applying large electric power while suppressing the film forming rate, as in the case, and the intermediate I layer can be formed by applying small electric power. Additionally, various additional embodiments of the invention are tabulated. In the tests (examples) listed in this table,
In addition to changing the mixing ratio of the SiF 4 -SiH 4 mixed gas, the mixing ratio of these with the diluting gas, and the mixing ratio of the doping gas, the gas flow rate (SCCM), the cathode side power density (W/cm 2 ), the substrate temperature ( ℃), deposition pressure (Torr), and film thickness (μm), deposition rate (Å/sec), σdark, and △σPhoto.
was measured. In these examples, No. 1 to No.
No. 7 simply changed the mixing ratio of SiF 4 /SiH 4 mixed gas, Nos. 8 to 11 had various ratios of doping gas PF 5 added to the 1:1 SiF 4 /SiH 4 mixed gas, and No.
Nos. 12 and 13 are SiF 4 /SiH 4 1:1 mixed gas diluted with hydrogen and doping gas PF 5 added, and Nos. 14 to 16 are simply SiF 4 /SiH 4 1:1 mixed gas. It is something. No.12 and No.13 of these
A high power of 1.0 W/cm 2 and 1.6 W/cm 2 is input, and the dark electrical conductivity σdark of the thin film produced in this case is 3.81×10 -3 and 8.73×, respectively.
It has been shown to be as high as 10 -3 (Ω -1 cm -1 ). Thus, it can be seen that a thin film with high electrical conductivity can be obtained by diluting with a diluent gas, mixing a dopant, and applying high power. In other examples, lower powers of 0.06 to 0.14 W/cm 2 are applied, and it will be appreciated that in this case the electrical conductivity of the thin film produced is generally low. As explained above, according to the method of the present invention, a thin film having excellent photoelectric properties and suitable as a material for photoelectric conversion elements and image elements, and a thin film having high electrical conductivity and good ohmic characteristics with electrodes can be produced. The effects of the present invention are extremely large, such as being able to provide a thin film with excellent properties and forming an I-type film with no residual effects, thereby making it possible to efficiently manufacture P-I-N junction semiconductor devices. 【table】
第1図は本発明によりプラズマ雰囲気下で任意
の基板上にフツ素および水素を含むシリコン薄膜
を成膜するための装置系を示す概略線図、第2図
〜第5図は、本発明の方法で製造したシリコン薄
膜の諸特性を示すグラフである。
1:混合容器、2:油回転式ポンプ、3:油拡
散ポンプ、4〜7:ガスボンベ、8:流量計、
9:真空容器、10:メインバルブ、12:高周
波発振器、13,13′:電極、14:ヒータ、
15:基板。
FIG. 1 is a schematic diagram showing an apparatus system for forming a silicon thin film containing fluorine and hydrogen on an arbitrary substrate in a plasma atmosphere according to the present invention, and FIGS. 3 is a graph showing various properties of a silicon thin film produced by the method. 1: Mixing container, 2: Oil rotary pump, 3: Oil diffusion pump, 4 to 7: Gas cylinder, 8: Flow meter,
9: Vacuum vessel, 10: Main valve, 12: High frequency oscillator, 13, 13': Electrode, 14: Heater,
15: Substrate.
Claims (1)
を含むシリコン薄膜を成膜することによりP−I
−N接合半導体素子を製造する方法において、任
意の割合で混合されたテトラフルオロシラン
(SiF4)−シラン(SiH4)混合ガスと、ホウ素、
アルミニウム等の周期率表の第属元素若しくは
その化合物、又はリン、ヒ素等の第属の元素若
しくはその化合物より成るドーパントガスとを用
い、前記混合ガスを高割合の希ガス又は水素で稀
釈しつつ、1.0W/cm2〜1.6W/cm2の高プラズマ放
電電力密度で電力を投入してP層又N層を形成さ
せ、次いで、前記混合ガスを用い0.6W/cm2〜
0.14W/cm2の低プラズマ放電電力密度で電力を投
入して層を形成させ、その後前記混合ガスを高
割合の希ガス又は水素で希釈しつつ1.0W/cm2〜
1.6W/cm2の高プラズマ放電電力密度で電力を投
入してN層又はP層を形成させることを特徴とす
るシリコン薄膜より成るP−I−N接合半導体素
子の製造方法。1 P-I by depositing a silicon thin film containing fluorine and hydrogen on a substrate in a plasma atmosphere.
- In a method for manufacturing an N junction semiconductor device, a tetrafluorosilane (SiF 4 )-silane (SiH 4 ) mixed gas mixed in an arbitrary ratio, boron,
Using a dopant gas consisting of a group element of the periodic table such as aluminum or a compound thereof, or a group element such as phosphorus or arsenic or a compound thereof, while diluting the mixed gas with a high proportion of rare gas or hydrogen. , a P layer or an N layer is formed by applying power at a high plasma discharge power density of 1.0 W/cm 2 to 1.6 W/cm 2 , and then using the above mixed gas at a high plasma discharge power density of 0.6 W/cm 2 to 1.6 W/cm 2 .
Power is applied at a low plasma discharge power density of 0.14 W/cm 2 to form a layer, and then the gas mixture is diluted with a high proportion of noble gas or hydrogen at 1.0 W/cm 2 .
A method for manufacturing a P-I-N junction semiconductor device made of a silicon thin film, characterized in that an N layer or a P layer is formed by applying power at a high plasma discharge power density of 1.6 W/cm 2 .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10111580A JPS5727015A (en) | 1980-07-25 | 1980-07-25 | Manufacture of silicon thin film |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10111580A JPS5727015A (en) | 1980-07-25 | 1980-07-25 | Manufacture of silicon thin film |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP12356187A Division JPS63126214A (en) | 1987-05-20 | 1987-05-20 | Manufacture of silicon thin film |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5727015A JPS5727015A (en) | 1982-02-13 |
JPS6329821B2 true JPS6329821B2 (en) | 1988-06-15 |
Family
ID=14292068
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP10111580A Granted JPS5727015A (en) | 1980-07-25 | 1980-07-25 | Manufacture of silicon thin film |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5727015A (en) |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2551244B1 (en) * | 1983-08-26 | 1985-10-11 | Thomson Csf | METHOD FOR MANUFACTURING A SUBSTRATE FOR AN ELECTRICALLY CONTROLLED DEVICE AND VISUALIZATION SCREEN DRAWN FROM SUCH A SUBSTRATE |
JPH0750683B2 (en) * | 1984-04-16 | 1995-05-31 | キヤノン株式会社 | Deposited film formation method |
JPH0750682B2 (en) * | 1984-04-16 | 1995-05-31 | キヤノン株式会社 | Deposited film formation method |
JPS6185818A (en) * | 1984-10-04 | 1986-05-01 | Canon Inc | Deposition film forming method |
JPS6187320A (en) * | 1984-10-05 | 1986-05-02 | Canon Inc | Formation of deposition film |
JPS6188520A (en) * | 1984-10-08 | 1986-05-06 | Canon Inc | Formation of deposited film |
JPS6189624A (en) * | 1984-10-09 | 1986-05-07 | Canon Inc | Formation of deposited film |
JPH0789539B2 (en) * | 1985-02-13 | 1995-09-27 | キヤノン株式会社 | Deposited film formation method |
JPH0834181B2 (en) * | 1985-02-19 | 1996-03-29 | キヤノン株式会社 | Deposited film formation method |
JPS61191020A (en) * | 1985-02-20 | 1986-08-25 | Canon Inc | Formation of deposited film |
JP2728874B2 (en) * | 1987-07-06 | 1998-03-18 | 三井東圧化学株式会社 | Semiconductor device manufacturing method |
-
1980
- 1980-07-25 JP JP10111580A patent/JPS5727015A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS5727015A (en) | 1982-02-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0062079B1 (en) | Thin silicon film and process for preparing same | |
Chittick et al. | The preparation and properties of amorphous silicon | |
US4683147A (en) | Method of forming deposition film | |
US4490208A (en) | Method of producing thin films of silicon | |
EP0141537A1 (en) | Solar cell made from amorphous superlattice material | |
JPS61231718A (en) | Gas mixture for accumulation of amorphous semiconductor and accumulation method | |
JPS6122622A (en) | Method and device for producing photovoltaic power panel | |
US5397737A (en) | Deposition of device quality low H content, amorphous silicon films | |
US4446168A (en) | Method of forming amorphous silicon | |
US4520380A (en) | Amorphous semiconductors equivalent to crystalline semiconductors | |
JPS6329821B2 (en) | ||
US5151255A (en) | Method for forming window material for solar cells and method for producing amorphous silicon solar cell | |
US4710786A (en) | Wide band gap semiconductor alloy material | |
US5776819A (en) | Deposition of device quality, low hydrogen content, amorphous silicon films by hot filament technique using "safe" silicon source gas | |
JP2692091B2 (en) | Silicon carbide semiconductor film and method for manufacturing the same | |
KR840002468B1 (en) | Process for producing a layer containing silicon | |
US7038238B1 (en) | Semiconductor device having a non-single crystalline semiconductor layer | |
JPH0381296B2 (en) | ||
JPS6057617A (en) | Manufacture of semiconductor device | |
JPH0376019B2 (en) | ||
Cretella et al. | Hydrogenated a‐SixGe1− x: A Potential Solar Cell Material | |
US4677249A (en) | Photovoltaic device | |
JPH0376018B2 (en) | ||
JPS6316616A (en) | Silicon thin film and manufacture of the same | |
JPH02275620A (en) | N-type silicon thin film |