JPH0750682B2 - Deposited film formation method - Google Patents
Deposited film formation methodInfo
- Publication number
- JPH0750682B2 JPH0750682B2 JP59074923A JP7492384A JPH0750682B2 JP H0750682 B2 JPH0750682 B2 JP H0750682B2 JP 59074923 A JP59074923 A JP 59074923A JP 7492384 A JP7492384 A JP 7492384A JP H0750682 B2 JPH0750682 B2 JP H0750682B2
- Authority
- JP
- Japan
- Prior art keywords
- film
- deposited film
- substrate
- gas
- present
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000000034 method Methods 0.000 title claims description 15
- 230000015572 biosynthetic process Effects 0.000 title description 5
- 239000000758 substrate Substances 0.000 claims description 31
- 229910052710 silicon Inorganic materials 0.000 claims description 26
- 239000010703 silicon Substances 0.000 claims description 26
- -1 silicon halide compound Chemical class 0.000 claims description 20
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 10
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 10
- 239000001257 hydrogen Substances 0.000 claims description 10
- 229910052739 hydrogen Inorganic materials 0.000 claims description 10
- 239000010408 film Substances 0.000 description 64
- 239000007789 gas Substances 0.000 description 23
- 229910021417 amorphous silicon Inorganic materials 0.000 description 18
- 238000000151 deposition Methods 0.000 description 16
- 239000002994 raw material Substances 0.000 description 12
- 230000008021 deposition Effects 0.000 description 9
- 238000000354 decomposition reaction Methods 0.000 description 8
- 230000005284 excitation Effects 0.000 description 8
- 150000001875 compounds Chemical class 0.000 description 7
- 230000003287 optical effect Effects 0.000 description 6
- 239000000460 chlorine Substances 0.000 description 3
- 239000012212 insulator Substances 0.000 description 3
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 3
- 229910052753 mercury Inorganic materials 0.000 description 3
- 239000004065 semiconductor Substances 0.000 description 3
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 125000005843 halogen group Chemical group 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 2
- 230000001678 irradiating effect Effects 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 239000006200 vaporizer Substances 0.000 description 2
- ZCYVEMRRCGMTRW-UHFFFAOYSA-N 7553-56-2 Chemical compound [I] ZCYVEMRRCGMTRW-UHFFFAOYSA-N 0.000 description 1
- WKBOTKDWSSQWDR-UHFFFAOYSA-N Bromine atom Chemical compound [Br] WKBOTKDWSSQWDR-UHFFFAOYSA-N 0.000 description 1
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 1
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical compound FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000004642 Polyimide Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- 229920001328 Polyvinylidene chloride Polymers 0.000 description 1
- 229910003691 SiBr Inorganic materials 0.000 description 1
- 229910003902 SiCl 4 Inorganic materials 0.000 description 1
- XKRFYHLGVUSROY-UHFFFAOYSA-N argon Substances [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- GDTBXPJZTBHREO-UHFFFAOYSA-N bromine Substances BrBr GDTBXPJZTBHREO-UHFFFAOYSA-N 0.000 description 1
- 229910052794 bromium Inorganic materials 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 239000012159 carrier gas Substances 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 229920002301 cellulose acetate Polymers 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000003085 diluting agent Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- 150000002367 halogens Chemical class 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- 239000011630 iodine Substances 0.000 description 1
- 229910052740 iodine Inorganic materials 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 239000000123 paper Substances 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 229920000915 polyvinyl chloride Polymers 0.000 description 1
- 239000004800 polyvinyl chloride Substances 0.000 description 1
- 239000005033 polyvinylidene chloride Substances 0.000 description 1
- 229910000077 silane Inorganic materials 0.000 description 1
- 229910052990 silicon hydride Inorganic materials 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 229920003002 synthetic resin Polymers 0.000 description 1
- 239000000057 synthetic resin Substances 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
- 229910052724 xenon Inorganic materials 0.000 description 1
- FHNFHKCVQCLJFQ-UHFFFAOYSA-N xenon atom Chemical compound [Xe] FHNFHKCVQCLJFQ-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B05—SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D—PROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D1/00—Processes for applying liquids or other fluent materials
- B05D1/60—Deposition of organic layers from vapour phase
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/22—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/48—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating by irradiation, e.g. photolysis, radiolysis, particle radiation
- C23C16/482—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating by irradiation, e.g. photolysis, radiolysis, particle radiation using incoherent light, UV to IR, e.g. lamps
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/48—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating by irradiation, e.g. photolysis, radiolysis, particle radiation
- C23C16/483—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating by irradiation, e.g. photolysis, radiolysis, particle radiation using coherent light, UV to IR, e.g. lasers
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/48—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating by irradiation, e.g. photolysis, radiolysis, particle radiation
- C23C16/487—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating by irradiation, e.g. photolysis, radiolysis, particle radiation using electron radiation
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/48—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating by irradiation, e.g. photolysis, radiolysis, particle radiation
- C23C16/488—Protection of windows for introduction of radiation into the coating chamber
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02436—Intermediate layers between substrates and deposited layers
- H01L21/02439—Materials
- H01L21/02441—Group 14 semiconducting materials
- H01L21/0245—Silicon, silicon germanium, germanium
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02518—Deposited layers
- H01L21/02521—Materials
- H01L21/02524—Group 14 semiconducting materials
- H01L21/02532—Silicon, silicon germanium, germanium
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02518—Deposited layers
- H01L21/0257—Doping during depositing
- H01L21/02573—Conductivity type
- H01L21/02576—N-type
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02518—Deposited layers
- H01L21/0257—Doping during depositing
- H01L21/02573—Conductivity type
- H01L21/02579—P-type
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02612—Formation types
- H01L21/02617—Deposition types
- H01L21/0262—Reduction or decomposition of gaseous compounds, e.g. CVD
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B05—SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D—PROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D3/00—Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
- B05D3/06—Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by exposure to radiation
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Organic Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- Toxicology (AREA)
- Health & Medical Sciences (AREA)
- Optics & Photonics (AREA)
- Inorganic Chemistry (AREA)
- Photoreceptors In Electrophotography (AREA)
- Chemical Vapour Deposition (AREA)
- Photovoltaic Devices (AREA)
Description
【発明の詳細な説明】 〔技術分野〕 本発明はシリコンを含有する堆積膜、とりわけ光導電
膜、半導体膜あるいは絶縁体膜などとして有用なアモル
ファスシリコン(以下、a−Siという)あるいは多結晶
シリコンの堆積膜を形成するのに好適な方法に関する。TECHNICAL FIELD The present invention relates to a deposited film containing silicon, particularly amorphous silicon (hereinafter referred to as a-Si) or polycrystalline silicon useful as a photoconductive film, a semiconductor film or an insulator film. And a method suitable for forming a deposited film.
〔従来技術〕 従来、例えばa−Siの堆積膜を、SiH4又はSi2H6を原料
として用いたグロー放電堆積法又は熱エネルギー堆積法
で形成することが知られている。即ち、SiH4やSi2H6を
電気エネルギーや熱エネルギーを用いて励起・分解して
基体上にa−Siの堆積膜を形成し、この膜を種々の目的
で利用することが周知である。[Prior Art] Conventionally, it is known to form an a-Si deposited film by a glow discharge deposition method or a thermal energy deposition method using SiH 4 or Si 2 H 6 as a raw material. That is, it is well known that SiH 4 and Si 2 H 6 are excited and decomposed by using electric energy and thermal energy to form a deposited film of a-Si on a substrate, and this film is used for various purposes. .
しかし、これらSiH4及びSi2H6を原料として用いた場
合、グロー放電堆積法においては、高出力下で堆積中の
膜への放電エネルギーの影響が大きく、再現性のある安
定した条件とする制御が難しい。特に、広面積、厚膜の
堆積膜を形成する場合に、これが顕著である。However, when these SiH 4 and Si 2 H 6 are used as raw materials, in the glow discharge deposition method, the influence of the discharge energy on the film being deposited under high output is large, and the conditions are stable and reproducible. Difficult to control. This is particularly noticeable when forming a large-area, thick-film deposited film.
また、熱エネルギー堆積法においても、高温が必要とな
ることから、使用される基体が限定されると共に、高温
によりa−Si中の有用な結合水素原子が離脱してしまう
確率が増え、所望の特性が得にくくなる。Also, in the thermal energy deposition method, since a high temperature is required, the substrate to be used is limited, and the high temperature increases the probability that useful bonded hydrogen atoms in a-Si are released, which is desirable. It becomes difficult to obtain the characteristics.
この様に、SiH4及びSi2H6を用いて堆積膜を形成する場
合、均一な電気的・光学的特性及び品質の安定性の確保
が難しく、堆積中の膜表面の乱れ及びバルク内の欠陥が
生じ易いなどの解決されるべき問題点が残されているの
が現状である。Thus, when forming a deposited film using SiH 4 and Si 2 H 6 , it is difficult to ensure uniform electrical and optical properties and stability of quality, and the film surface is disturbed during deposition and At present, there are still some problems to be solved, such as easy occurrence of defects.
そこで、近年、これらの問題点を解消すべく、SiH4及び
Si2H6を原料とするa−Siの光エネルギー堆積法(光CVD
法)が提案され、注目を集めている。この光エネルギー
堆積法によると、a−Si堆積膜を低温で作製できる利点
などにより、上記問題点を大幅に改善することができ
る。しかしながら、光エネルギーといった比較的僅少な
励起エネルギー下でのSiH4及びSi2H6を原料とした光エ
ネルギー堆積法では、飛躍的に効率の良い分解を期待す
ることができないため、成膜速度の向上が期待できず、
量産性に難点があるという新たな問題点が生じている。Therefore, in recent years, in order to eliminate these problems, SiH 4 and
Light energy deposition method of a-Si using Si 2 H 6 as raw material (optical CVD
Law) has been proposed and is attracting attention. According to this light energy deposition method, the aforesaid problem can be remarkably improved due to the advantage that an a-Si deposition film can be formed at a low temperature. However, with the light energy deposition method using SiH 4 and Si 2 H 6 as the raw material under a relatively small excitation energy such as light energy, it is not possible to expect dramatically efficient decomposition, so that the deposition rate I can not expect improvement,
There is a new problem that there is a problem in mass productivity.
本発明は、現状におけるこれら問題点を解消すべくなさ
れたものである。The present invention has been made to solve these problems at present.
本発明の目的は、高品質を維持しつつ成膜速度を高くす
ることのできるシリコンを含有する堆積膜の形成方法を
提供することにある。An object of the present invention is to provide a method for forming a deposited film containing silicon, which can increase the film formation rate while maintaining high quality.
本発明の他の目的は、広面積、厚膜の場合においても、
均一な電気的・光学的特性及び品質の安定性を確保しつ
つ高品質のシリコンを含有する堆積膜を作製することの
できる堆積膜形成方法を提供することにある。Another object of the present invention is to provide a large area and thick film.
It is an object of the present invention to provide a deposited film forming method capable of producing a deposited film containing high quality silicon while ensuring uniform electrical and optical characteristics and stability of quality.
上記本発明の目的は、基体を収容した室内に、Si3F8、S
i5F12、Si6F14、Si3Cl8から選択される少なくとも一つ
の鎖状ハロゲン化ケイ素化合物と水素の気体状雰囲気を
形成し、光エネルギーを利用することによって前記鎖状
ハロゲン化ケイ素化合物及び前記水素を励起し、前記基
体上にシリコンを含有する堆積膜を形成することを特徴
とする堆積膜形成方法によって達成される。The object of the present invention is to provide Si 3 F 8 , S in a chamber containing a substrate.
i 5 F 12 , Si 6 F 14 , Si 3 Cl 8 and at least one chain silicon halide compound and a hydrogen atmosphere is formed by forming a gaseous atmosphere of hydrogen, and the chain silicon halide is used. This is achieved by a method for forming a deposited film, which comprises exciting a compound and the hydrogen to form a deposited film containing silicon on the substrate.
本発明方法によって形成されるシリコンを含有する堆積
膜は、結晶質でも非晶質でもよく、膜中のシリコンの結
合は、オリゴマー状からポリマー状までの何れの形態で
もよい。また、原料中の水素原子及びハロゲン原子など
を構造中にとり込んでいてもよい。The silicon-containing deposited film formed by the method of the present invention may be crystalline or amorphous, and the silicon bond in the film may be in any form from oligomeric to polymeric. Further, hydrogen atoms and halogen atoms in the raw material may be incorporated in the structure.
以下、主としてa−Si堆積膜の場合について、本発明の
実施態様を説明する。Hereinafter, embodiments of the present invention will be described mainly in the case of an a-Si deposited film.
前記一般式の鎖状ハロゲン化ケイ素化合物は、直鎖又は
分岐状の鎖状水素化ケイ素化合物(鎖状シラン化合物)
SinH2n+2のハロゲン誘導体であって、製造が容易であり
かつ安定性の高い化合物である。一般式中、Xはフッ
素、塩素、臭素及びヨウ素から選ばれるハロゲン原子を
表わす。nの値を1〜6に限定したのは、nが大きくな
る程分解が容易となるが気化しにくくなり合成も困難で
ある上、分解効率も悪くなるためである。The chain silicon halide compound of the above general formula is a linear or branched chain silicon hydride compound (chain silane compound).
A halogen derivative of Si n H 2n + 2 , which is a compound that is easy to manufacture and has high stability. In the general formula, X represents a halogen atom selected from fluorine, chlorine, bromine and iodine. The reason for limiting the value of n to 1 to 6 is that the larger n is, the easier the decomposition is, but the more difficult it is to vaporize, the more difficult the synthesis is, and the lower the decomposition efficiency is.
前記一般式の鎖状ハロゲン化ケイ素化合物の好適例とし
は、以下の化合物を挙げることができる。The following compounds may be mentioned as preferred examples of the chain silicon halide compound of the above general formula.
(1)SiF4,(2)Si2F6,(3)Si3F8,(4)Si4F10,
(5)Si5F12,(6)Si6F14,(7)SiCl4,(8)Si2C
l6,(9)Si3Cl8,(10)SiBr4,(11)Si2Br6,(12)Si3
Br8,(13)SiI4。(1) SiF 4 , (2) Si 2 F 6 ,, (3) Si 3 F 8 ,, (4) Si 4 F 10 ,
(5) Si 5 F 12 ,, (6) Si 6 F 14 ,, (7) SiCl 4 ,, (8) Si 2 C
l 6 , (9) Si 3 Cl 8 , (10) SiBr 4 , (11) Si 2 Br 6 , (12) Si 3
Br 8 , (13) SiI 4 .
本発明においてシリコンを含有する堆積膜を形成する前
記室は、減圧下におかれるのが好ましいが、常圧下ない
し加圧下においても本発明方法を実施することができ
る。In the present invention, the chamber for forming the deposited film containing silicon is preferably placed under reduced pressure, but the method of the present invention can be carried out under normal pressure or under pressure.
本発明において使用される励起エネルギーは、光エネル
ギーに限定されるものであるが、前記一般式の鎖状ハロ
ゲン化ケイ素化合物は、光エネルギー等比較的低いエネ
ルギーの付与により容易に励起・分解し、良質なシリコ
ン堆積膜を形成することができ、またこれに際し、基体
の温度も比較的低い温度とすることができるという特長
を有する。また、励起エネルギーは基体近傍に到達した
原料に一様にあるいは選択的制御的に付与されるが、光
エネルギーを使用すれば、適宜の光学系を用いて基体の
全体に照射して堆積膜を形成することができるし、ある
いは所望部分のみに選択的制御的に照射して部分的に堆
積膜を形成することができ、またレジスト等を使用して
所定の図形部分のみに照射し堆積膜を形成できるなどの
便利さを有しているため、有利に用いられる。The excitation energy used in the present invention is limited to light energy, but the chain silicon halide compound of the general formula is easily excited and decomposed by application of relatively low energy such as light energy, It has the feature that a good quality silicon deposited film can be formed and the temperature of the substrate can be set to a relatively low temperature. Further, the excitation energy is uniformly or selectively applied to the raw material reaching the vicinity of the substrate, but if light energy is used, the entire substrate is irradiated with an appropriate optical system to form a deposited film. It can be formed, or a deposited film can be partially formed by selectively irradiating only a desired portion with selective control, and a deposited film can be formed by irradiating only a predetermined graphic portion with a resist or the like. It is advantageously used because it can be formed conveniently.
本発明においては、前記室内に前記一般式の鎖状ハロゲ
ン化ケイ素化合物及び水素の気体状雰囲気を形成するこ
とにより、励起・分解反応の過程で生成する水素ラジカ
ルが反応の効率を高める。その上、形成される堆積膜中
に水素がとり込まれ、Si結合構造の欠陥を減らす役割を
果たす。また、前記一般式の鎖状ハロゲン化ケイ素化合
物は、分解の過程でSiX,SiX2,SiX3,Si2X2,Si2X3,Si2X4,
Si2X5,Si3X3,Si3X4,Si3X5,Si3X6,Si3X7などのラジカル
を発生させ、また水素によって、Si,X及びHが結合した
ラジカルが発生するため、これらのラジカルを含む反応
プロセスを経て、最終的に、Siのダングリングボンドを
H又はXで十分にターミネートした局在準位密度の小さ
い良質の膜が得られる。In the present invention, by forming a gaseous atmosphere of the chain silicon halide compound of the general formula and hydrogen in the chamber, hydrogen radicals generated in the process of the excitation / decomposition reaction enhance the reaction efficiency. In addition, hydrogen is taken into the formed deposited film and plays a role of reducing defects in the Si bond structure. Further, the chain silicon halide compound of the general formula, SiX, SiX 2 , SiX 3 , Si 2 X 2 , Si 2 X 3 , Si 2 X 4 , in the process of decomposition,
Radicals such as Si 2 X 5 , Si 3 X 3 , Si 3 X 4 , Si 3 X 5 , Si 3 X 6 , Si 3 X 7 are generated, and hydrogen causes radicals in which Si, X and H are bonded. As a result, through a reaction process containing these radicals, a high-quality film with a small localized level density in which dangling bonds of Si are sufficiently terminated with H or X is finally obtained.
また、前記一般式の鎖状ハロゲン化ケイ素化合物は、2
種以上を併用してもよいが、この場合、各化合物によっ
て期待される膜特性を平均化した程度の特性、ないしは
相乗的に改良された特性が得られる。Further, the chain-like silicon halide compound of the above general formula is 2
Although two or more species may be used in combination, in this case, the characteristics of the film expected by each compound are averaged or synergistically improved.
以下、図面を参照して説明する。Hereinafter, description will be given with reference to the drawings.
図面は、本発明方法によって光導電膜、半導体膜又は絶
縁体膜等として用いられるa−Si堆積膜を形成するのに
使用する装置の1例を示した模式図である。The drawings are schematic views showing an example of an apparatus used for forming an a-Si deposited film used as a photoconductive film, a semiconductor film, an insulator film or the like by the method of the present invention.
図中、1は堆積室であり、内部の基体支持台2上に所望
の基体3が載置される。基体3は、導電性、半導電性あ
るいは電気絶縁性の何れの基体でもよく、例えば、電気
絶縁性の基体としては、ポリエステル、ポリエチレン、
ポリカーボネート、セルローズアセテート、ポリプロピ
レン、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリスチ
レン、ポリアミド等の合成樹脂のフィルム又はシート、
ガラス、セラミック、紙等が通常使用される。また、基
体3には予め電極層、他のシリコン層等が積層されてい
てもよい。In the figure, 1 is a deposition chamber in which a desired substrate 3 is placed on a substrate support base 2 inside. The substrate 3 may be any one of conductive, semiconductive, or electrically insulating substrates. For example, as electrically insulating substrates, polyester, polyethylene,
Films or sheets of synthetic resins such as polycarbonate, cellulose acetate, polypropylene, polyvinyl chloride, polyvinylidene chloride, polystyrene and polyamide,
Glass, ceramics, paper and the like are usually used. Further, an electrode layer, another silicon layer or the like may be laminated on the base 3 in advance.
4は基体加熱用のヒーターであり、導線5を介して給電
され、発熱する。基体温度は特に制限されないが、本発
明方法を実施するにあたっては、好ましくは50〜150
℃、より好ましくは100〜150℃であることが望ましい。Reference numeral 4 is a heater for heating the substrate, which is supplied with electric power through the conductor 5 to generate heat. The substrate temperature is not particularly limited, but in carrying out the method of the present invention, it is preferably 50 to 150.
It is desirable that the temperature is ℃, more preferably 100 to 150 ℃.
6乃至9は、ガス供給源であり、前記一般式で示される
鎖状ハロゲン化ケイ素化合物のうち液状のものを使用す
る場合には、適宜の気化装置を具備させる。気化装置に
は加熱沸騰を利用するタイプ、液体原料中にキャリア−
ガスを通過させるタイプ等があり、何れでもよい。ま
た、水素ガスは分子状のままで用いても、予めラジカル
化して用いてもよい。ガス供給源の個数は4に限定され
ず、使用する前記一般式の鎖状ハロゲン化ケイ素化合物
の数、キャリヤ−ガス、希釈ガス、触媒ガス等を使用す
る場合において原料ガスである前記一般式の化合物及び
水素との予備混合の有無等に応じて適宜選択される。図
中、ガス供給源6乃至9の符号に、aを付したのは分岐
管、bを付したのは流量計、cを付したのは各流量計の
高圧側の圧力を計測する圧力計、d又はeを付したのは
各気体流量を調整するためのバルブである。Reference numerals 6 to 9 denote gas supply sources, which are equipped with an appropriate vaporizer when a liquid one of the chain silicon halide compounds represented by the above general formula is used. The vaporizer uses heating and boiling, the carrier in the liquid raw material
There is a type that allows gas to pass therethrough, and any of these may be used. Further, the hydrogen gas may be used as it is in a molecular form or may be used by radicalizing it in advance. The number of gas supply sources is not limited to 4, and the number of chain silicon halide compounds of the above-mentioned general formula to be used, the carrier gas, the diluent gas, the catalyst gas, etc. It is appropriately selected depending on the presence or absence of premixing with the compound and hydrogen. In the figure, reference numerals of the gas supply sources 6 to 9 have a branch pipe with a, a flow meter with b, and a pressure gauge for measuring the high-pressure side pressure of each flow meter with c. , D or e are valves for adjusting the flow rate of each gas.
各ガス供給源から供給される原料ガス等は、ガス導入管
10の途中で混合され、図示しない排気装置に付勢され
て、室1内に導入される。11は室1内に導入されるガス
の圧力を計測するための圧力計である。また、12はガス
排気管であり、堆積室1内を減圧したり、導入ガスを強
制排気するための図示しない排気装置と接続されてい
る。13はレギュレータ・バルブである。原料ガス等を導
入する前に、室1内を排気し、減圧状態とする場合、室
内の気圧は、5×10-5Torr以下、更には1×10-6Torr以
下であることが好ましい。また、原料ガス等を導入した
状態において、室1内の圧力は、好ましくは1×10-2〜
100Torr、より好ましくは1×10-2〜1Torrの範囲に維持
されることが望ましい。The raw material gas, etc. supplied from each gas supply source is supplied by a gas introduction pipe.
The mixture is mixed in the middle of 10, is urged by an exhaust device (not shown), and is introduced into the chamber 1. Reference numeral 11 is a pressure gauge for measuring the pressure of the gas introduced into the chamber 1. A gas exhaust pipe 12 is connected to an exhaust device (not shown) for decompressing the inside of the deposition chamber 1 and forcibly exhausting the introduced gas. 13 is a regulator valve. When the chamber 1 is evacuated to a reduced pressure state before introducing the raw material gas and the like, the atmospheric pressure in the chamber is preferably 5 × 10 −5 Torr or less, and more preferably 1 × 10 −6 Torr or less. The pressure inside the chamber 1 is preferably 1 × 10 -2
It is desirable to maintain the pressure in the range of 100 Torr, more preferably 1 × 10 −2 to 1 Torr.
本発明で使用する励起エネルギー供給源の1例として
は、14は光エネルギー発生装置であって、例えば水銀ラ
ンプ、キセノンランプ、炭酸ガスレーザ、アルゴンイオ
ンレーザ、エキシマレーザー等が用いられる。なお、本
発明で用いる光エネルギーは紫外線エネルギーに限定さ
れず、原料ガスを励起・分解せしめ、分解生成物を堆積
させることができるものであれば、波長域を問うもので
はない。また、光エネルギーが原料ガス、又は基板に吸
収されて熱エネルギーに変換し、その熱エネルギーによ
って原料ガスの励起・分解がもたらされて堆積膜が形成
される場合を排除するものでもない。光エネルギー発生
装置14から適宜の光学系を用いて基体全体あるいは基体
の所望部分に向けられた光15は、矢印16の向きに流れて
いる原料ガス等に照射され、励起・分解を起こして基体
3上の全体あるいは所望部分にa−Siの堆積膜を形成す
る。As an example of the excitation energy supply source used in the present invention, 14 is a light energy generator, and for example, a mercury lamp, a xenon lamp, a carbon dioxide gas laser, an argon ion laser, an excimer laser or the like is used. The light energy used in the present invention is not limited to ultraviolet energy, and the wavelength range is not limited as long as the source gas can be excited and decomposed and the decomposition product can be deposited. Further, it does not exclude the case where the light energy is absorbed by the raw material gas or the substrate and converted into heat energy, and the heat energy causes excitation / decomposition of the raw material gas to form a deposited film. Light 15 directed from the light energy generator 14 to the entire substrate or a desired portion of the substrate using an appropriate optical system is irradiated to the raw material gas or the like flowing in the direction of the arrow 16 to cause excitation / decomposition to cause the substrate. A deposited film of a-Si is formed on the entire surface of 3 or on a desired portion.
本発明方法によれば、所望により、薄膜から厚膜までの
任意の膜厚の堆積膜が得られ、また膜面積も所望により
任意に選択することができる。膜厚の制御は、原料ガス
の圧力、流量、濃度等の制御、励起エネルギー量の制御
等通常の方法で行なうことができる。例えば一般の光導
電膜、半導体膜又は絶縁体膜等を構成するa−Si膜を作
製する場合、膜厚は好ましくは500〜5×104Å、より好
ましくは1000〜10000Åの範囲で選択されることが望ま
しい。According to the method of the present invention, a deposited film having an arbitrary thickness from a thin film to a thick film can be obtained as desired, and the film area can be arbitrarily selected as desired. The film thickness can be controlled by a usual method such as controlling the pressure, flow rate, concentration, etc. of the source gas, controlling the amount of excitation energy. For example, when an a-Si film that constitutes a general photoconductive film, a semiconductor film, an insulator film, or the like is produced, the film thickness is preferably selected in the range of 500 to 5 × 10 4 Å, more preferably 1000 to 10000 Å. Is desirable.
以下に、本発明の具体的実施例を示す。Specific examples of the present invention will be shown below.
実施例1 前記一般式の鎖状ハロゲン化ケイ素化合物として、前記
例示化合物(1),(2),(3)又は(5)を用い、
図面の装置によりa−Si堆積膜を形成した。Example 1 Using the exemplified compounds (1), (2), (3) or (5) as the chain silicon halide compound of the general formula,
An a-Si deposited film was formed by the apparatus shown in the drawing.
先づ、導電性フィルム基板(コーニング社製、#7059)
を支持台2上に載置し、排気装置を用いて堆積室1内を
排気し、10-6Torrに減圧した。第1表に示した基板温度
で、気体状態とされている前記ハロゲン化ケイ素化合物
を110SCCM、水素ガスを40SCCMの流量で堆積室内に導入
し、室内の気圧を0.1Torrに保ちつつ低圧水銀灯を光強
度100mW/cm2で基板に垂直に照射して、膜厚4000ÅのI
型a−Si膜を形成した。成膜速度は、35Å/secであっ
た。First, conductive film substrate (# 7059, Corning)
Was placed on the support base 2, the inside of the deposition chamber 1 was evacuated using an exhaust device, and the pressure was reduced to 10 −6 Torr. At the substrate temperature shown in Table 1, the gaseous silicon halide compound was introduced into the deposition chamber at a flow rate of 110 SCCM and hydrogen gas at 40 SCCM, and the low pressure mercury lamp was turned on while maintaining the pressure in the chamber at 0.1 Torr. Irradiate vertically on the substrate with an intensity of 100 mW / cm 2
A type a-Si film was formed. The film formation rate was 35Å / sec.
比較のため、Si2H6を用いて同様にしてa−Si膜を形成
した。成膜速度は15Å/secであった。For comparison, an a-Si film was similarly formed using Si 2 H 6 . The film formation rate was 15Å / sec.
次いで、得られた各a−Si膜試料を蒸着槽に入れ、10-6
Torrまで引いた後真空度10-5Torr、成膜速度20Å/secで
Alを1500Å蒸着し、クシ型のAlギャップ電極(長さ250
μ、巾5mm)を形成した後、印加電圧10Vで光電流(AM
1、100mW/cm2)と暗電流を測定し、光導電率σp、σp
と暗導電率σdとの比σp/σdを求めて、a−Si膜を評
価した。結果を第1表に示した。Then, each of the obtained a-Si film samples was placed in a vapor deposition tank and the temperature was reduced to 10 −6.
After pulling down to Torr, vacuum degree is 10 -5 Torr, deposition rate is 20 Å / sec
1500Å Al is vapor-deposited and a comb-shaped Al gap electrode (length 250
μ, width 5 mm), and then photocurrent (AM
1, 100mW / cm 2 ) and dark current were measured, and photoconductivity σp, σp
The a-Si film was evaluated by obtaining the ratio σp / σd between the dark conductivity σd and the dark conductivity σd. The results are shown in Table 1.
第1表から、本発明によるa−Si膜は従来品に比べ、低
い基板温度でもσp及びσp/σdが向上している。 From Table 1, the a-Si film according to the present invention has improved σp and σp / σd even at a low substrate temperature as compared with the conventional product.
実施例2 基板をポリイミド基板、光源及び光強度を高圧水銀灯20
0mW/cm2とし、前記一般式の鎖状ハロゲン化ケイ素化合
物として、前記例示化合物(6),(7),(9)を用
いた以外は、実施例1と同様にa−Si膜を形成し、σp
及びσp/σdを求めた。結果を第2表に示した。Example 2 The substrate is a polyimide substrate, the light source and the light intensity are high pressure mercury lamps.
The a-Si film was formed in the same manner as in Example 1 except that the exemplified compounds (6), (7) and (9) were used as the chain silicon halide compound of the above general formula at 0 mW / cm 2. , Σp
And σp / σd were determined. The results are shown in Table 2.
〔発明の効果〕 本発明によれば、低い基体温度でしかも高い成膜速度に
よって高品質のシリコン堆積膜を形成することができ
る。その上、形成する膜が広面積、厚膜の場合において
も、均一な電気的・光学的特性が得られ、品質の安定性
も確保できるという従来にない格別の効果が奏される。
また、ほかにも、基体の高温加熱が不要であるためエネ
ルギーの節約になる、耐熱性の乏しい基体上にも成膜で
きる、低温処理によって工程の短縮化を図れる、原料化
合物が容易に合成でき、安価でしかも安定性に優れ取扱
上の危険も少ない、といった効果が発揮される。 [Advantages of the Invention] According to the present invention, a high quality silicon deposited film can be formed at a low substrate temperature and at a high film forming rate. In addition, even if the film to be formed has a large area and a thick film, uniform electrical and optical characteristics can be obtained, and the stability of quality can be ensured, which is an unprecedented special effect.
In addition, there is no need to heat the substrate at high temperature, which saves energy. It is possible to form a film even on a substrate with poor heat resistance. It is possible to shorten the process by low temperature treatment. The advantages are that it is inexpensive, has excellent stability, and there is little danger of handling.
図面は、本発明で使用する光エネルギー照射型堆積膜形
成装の1例を示した概略構成図である。 1……堆積室、2……基体支持台、3……基体、4……
ヒーター、6〜9……ガス供給源、10……ガス導入管、
12……ガス排気管、14……光エネルギー発生装置。The drawings are schematic configuration diagrams showing an example of a light energy irradiation type deposited film forming apparatus used in the present invention. 1 ... Deposition chamber, 2 ... Substrate support, 3 ... Substrate, 4 ...
Heater, 6-9 ... Gas supply source, 10 ... Gas inlet pipe,
12 …… Gas exhaust pipe, 14 …… Light energy generator.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 松田 宏 東京都大田区下丸子3丁目30番2号 キヤ ノン株式会社内 (72)発明者 西村 征生 東京都大田区下丸子3丁目30番2号 キヤ ノン株式会社内 (72)発明者 中桐 孝志 東京都大田区下丸子3丁目30番2号 キヤ ノン株式会社内 (56)参考文献 特開 昭57−27015(JP,A) 特開 昭57−117233(JP,A) 特開 昭58−163951(JP,A) 特開 昭58−158914(JP,A) ─────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Hiroshi Matsuda 3-30-2 Shimomaruko, Ota-ku, Tokyo Canon Inc. (72) Inventor Seisei Nishimura 3-30-2 Shimomaruko, Ota-ku, Tokyo Kya Non-Incorporated (72) Inventor Takashi Nakagiri 3-30-2 Shimomaruko, Ota-ku, Tokyo Canon Incorporated (56) Reference JP-A-57-27015 (JP, A) JP-A-57-117233 ( JP, A) JP-A-58-163951 (JP, A) JP-A-58-158914 (JP, A)
Claims (1)
i6F14、Si3Cl8から選択される少なくとも一つの鎖状ハ
ロゲン化ケイ素化合物と水素の気体状雰囲気を形成し、
光エネルギーを利用することによって前記鎖状ハロゲン
化ケイ素化合物及び前記水素を励起し、前記基体上にシ
リコンを含有する堆積膜を形成することを特徴とする堆
積膜形成方法。1. A chamber containing a substrate is provided with Si 3 F 8 , Si 5 F 12 , S.
i 6 F 14 , forming a gaseous atmosphere of hydrogen with at least one chain silicon halide compound selected from Si 3 Cl 8 ,
A method for forming a deposited film, characterized in that the chain silicon halide compound and the hydrogen are excited by utilizing light energy to form a deposited film containing silicon on the substrate.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59074923A JPH0750682B2 (en) | 1984-04-16 | 1984-04-16 | Deposited film formation method |
US06/722,468 US4683147A (en) | 1984-04-16 | 1985-04-12 | Method of forming deposition film |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59074923A JPH0750682B2 (en) | 1984-04-16 | 1984-04-16 | Deposited film formation method |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS60218828A JPS60218828A (en) | 1985-11-01 |
JPH0750682B2 true JPH0750682B2 (en) | 1995-05-31 |
Family
ID=13561372
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP59074923A Expired - Lifetime JPH0750682B2 (en) | 1984-04-16 | 1984-04-16 | Deposited film formation method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0750682B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE60039744D1 (en) * | 1999-03-30 | 2008-09-18 | Seiko Epson Corp | Process for the preparation of a silicon layer |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5727015A (en) * | 1980-07-25 | 1982-02-13 | Agency Of Ind Science & Technol | Manufacture of silicon thin film |
JPS57117233A (en) * | 1981-01-14 | 1982-07-21 | Hitachi Ltd | Growing method for semiconductor in gaseous phase |
JPS58163951A (en) * | 1982-03-25 | 1983-09-28 | Canon Inc | Photoconductive material |
JPS58158914A (en) * | 1982-03-16 | 1983-09-21 | Semiconductor Res Found | Semiconductor manufacturing device |
-
1984
- 1984-04-16 JP JP59074923A patent/JPH0750682B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPS60218828A (en) | 1985-11-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4683146A (en) | Process for producing deposition films | |
US4683147A (en) | Method of forming deposition film | |
US5214002A (en) | Process for depositing a thermal CVD film of Si or Ge using a hydrogen post-treatment step and an optional hydrogen pre-treatment step | |
JPH06105691B2 (en) | Method for producing carbon-doped amorphous silicon thin film | |
US4755483A (en) | Method for producing semiconductor device with p-type amorphous silicon carbide semiconductor film formed by photo-chemical vapor deposition | |
JPH0750682B2 (en) | Deposited film formation method | |
JPH0670970B2 (en) | Deposited film formation method | |
JPH0587171B2 (en) | ||
JP3084395B2 (en) | Semiconductor thin film deposition method | |
JPH0682616B2 (en) | Deposited film formation method | |
JPH07221026A (en) | Method for forming high quality semiconductor thin film | |
JPS60218830A (en) | Deposited film forming method | |
JPH0639702B2 (en) | Deposited film formation method | |
JPS60218838A (en) | Deposited film forming method | |
JPS60218473A (en) | Formation of deposited film | |
JP3040247B2 (en) | Manufacturing method of silicon thin film | |
JPS60218836A (en) | Deposited film forming method | |
JPH0750683B2 (en) | Deposited film formation method | |
JPS60218833A (en) | Deposited film forming method | |
JPS6216512A (en) | Manufacture of semiconductor thin film | |
JPS60218840A (en) | Deposited film forming method | |
JP2654456B2 (en) | Manufacturing method of high quality IGFET | |
JPS60218837A (en) | Deposited film forming method | |
JPS60219728A (en) | Forming method of deposited film | |
JPS60218835A (en) | Deposited film forming method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EXPY | Cancellation because of completion of term |