JPS6329801B2 - - Google Patents
Info
- Publication number
- JPS6329801B2 JPS6329801B2 JP55127940A JP12794080A JPS6329801B2 JP S6329801 B2 JPS6329801 B2 JP S6329801B2 JP 55127940 A JP55127940 A JP 55127940A JP 12794080 A JP12794080 A JP 12794080A JP S6329801 B2 JPS6329801 B2 JP S6329801B2
- Authority
- JP
- Japan
- Prior art keywords
- mol
- voltage
- current
- added
- nonlinear resistor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 239000000203 mixture Substances 0.000 claims description 11
- 229910052709 silver Inorganic materials 0.000 claims description 7
- 229910018072 Al 2 O 3 Inorganic materials 0.000 claims description 6
- 229910004298 SiO 2 Inorganic materials 0.000 claims description 6
- 229910015902 Bi 2 O 3 Inorganic materials 0.000 claims description 5
- 229910052787 antimony Inorganic materials 0.000 claims description 4
- 239000011651 chromium Substances 0.000 claims 3
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims 2
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 claims 2
- 229910052804 chromium Inorganic materials 0.000 claims 2
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 claims 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 claims 1
- 229910052782 aluminium Inorganic materials 0.000 claims 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims 1
- WATWJIUSRGPENY-UHFFFAOYSA-N antimony atom Chemical compound [Sb] WATWJIUSRGPENY-UHFFFAOYSA-N 0.000 claims 1
- 229910052797 bismuth Inorganic materials 0.000 claims 1
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 claims 1
- 229910017052 cobalt Inorganic materials 0.000 claims 1
- 239000010941 cobalt Substances 0.000 claims 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 claims 1
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 claims 1
- 229910052759 nickel Inorganic materials 0.000 claims 1
- GNRSAWUEBMWBQH-UHFFFAOYSA-N nickel(II) oxide Inorganic materials [Ni]=O GNRSAWUEBMWBQH-UHFFFAOYSA-N 0.000 claims 1
- 229910052700 potassium Inorganic materials 0.000 claims 1
- 239000011591 potassium Substances 0.000 claims 1
- 239000002994 raw material Substances 0.000 claims 1
- 229910052710 silicon Inorganic materials 0.000 claims 1
- 239000010703 silicon Substances 0.000 claims 1
- 239000004332 silver Substances 0.000 claims 1
- 238000005245 sintering Methods 0.000 claims 1
- 239000011787 zinc oxide Substances 0.000 claims 1
- 230000000694 effects Effects 0.000 description 3
- 230000035939 shock Effects 0.000 description 3
- 239000011521 glass Substances 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 239000004372 Polyvinyl alcohol Substances 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 229920002451 polyvinyl alcohol Polymers 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
Landscapes
- Compositions Of Oxide Ceramics (AREA)
- Thermistors And Varistors (AREA)
Description
本発明は酸化物半導体からなる電圧非直線抵抗
体に関する。
半導体を応用した回路素子の一つに電圧非直線
抵抗体があり、その代表的なものとしてZnOに
種々の酸化物を添加含有せしめた焼結体から成る
バリスタが知られている。この種のバリスタは非
直線的な電圧−電流特性を有しており、電圧の増
大に伴ない抵抗が急激に減少して電流が著しく増
加するため異常な過電圧の吸収や電圧安定化用と
して広く実用されている。
ところで電圧非直線抵抗体の特性は一般に次の
近似式で示される電圧−電流特性をもつて評価さ
れている。
I=(V/C)〓
(但しIはバリスタに流れる電流、Vは印加電
圧、Cは定数、αは非直線係数)
従つてバリスタの一般特性はCとαの2つの定
数で表示することができ、通常はCの代りに
1mAにおける電圧V1nAで示され、また電圧非直
線特性を示す指数であるα値の大きいことが重視
されている。
上記ZnO系バリスタ(電圧非直線抵抗体)は前
記電圧−電流特性が良好なこと、さらに素子の厚
さ制御により電圧−電流特性を任意に調節しうる
ことなどの特徴を備えている。しかし一方これら
ZnO系バリスタを電力用避雷器として使用する場
合には次のような欠点があつた。すなわち、従来
のZnO系電圧非直線抵抗体は、常時課電時におけ
る小電流領域の特性変化が大きく、かつ、衝撃電
流を印加した場合バリスタ電圧の変化率が大き
い。さらに、大電流領域における非直線性が十分
でなく、満足なものとは言えなかつた。
従来のZnO系非直線抵抗体の欠点を除去するた
めには、一般的には、ZnOに種々の酸化物を添加
配合した基本組成に対して、さなにいくつかの酸
化物を添加したり、種々のガラス成分を添加する
方法がとられている。しかしながら、酸化物が添
加して、大電流域の非直線性は改善されても、常
時課電又は、衝撃電流等による小電流領域の特性
変化が大きく、信頼性に欠けたりした。さらに
種々のガラス成分による特性改善では、常時課電
による小電流領域の特性変化には効果があるが、
衝撃電流特性及び大電流域の非直線性については
効果がなかつたり、さらには悪影響を及ぼすこと
になり、電力用避雷器として使用するためには十
分なものとは言えない。
本発明者らは、これらの点に鑑み種々検討を進
めた結果ZnOを主成分とし、副成分として、
Bi2O3,Co2O3,Sb2O3,MnO,Cr2O3,SiO2と
NiOおよびAl2O3の少なくとも一種で構成される
基本組成系にさらにK2OおよびAg2Oの少なくと
も一種を添加配合するこにより、信頼性が高く、
大電流域の非直線性に優れた酸化物電圧非直線抵
抗体が得られることを見出した。
以下、本発明の詳細を実施例により説明する。
実施例 1
ZnOにBi2N3およびSb2O3をそれぞれ1.0モル
%、Co2O3,SiO2,NiO,MnO,Cr2O3をそれぞ
れ0.5モル%、さらにAl2O3を0.01モル%を基本組
成とし、これに、K2OおよびAg2Oの少なくとも
一種を0.05〜5モル%の割合で添加配合し、ボー
ルミルで十分に混合し、調整粉末とする。かくし
て得た調整粉末にポリビニルアルコールを粘結剤
として配合し、圧力1ton/cmで直径55mmのデイス
ク形にそれぞれ成形し、これらの成形体を空気雰
囲気中1200℃で焼成して焼結体を得た。かくして
得た焼結体についてそれぞれ両主面を平行に研磨
して厚さ20mmとした後、その研磨面にAlを溶射
して電極を備えた電圧非直線抵抗体を得た。
かくして得られた電圧非直線抵抗体の大電流域
における非直線性は、素子に10KAの電流を流し
たときの電圧(V10KA)と素子に1mAの電流を流
したときの電圧(V1nA)の比(V10KA/V1nA)で
表わし、基本組成に対するK2OおよびAg2Oの添
加量との関係を第1図に示した。
また第2図に衝撃電流による小電流域の特性の
変化を示した。電圧変化率は素子に10mAの電流
を流したときの電圧V10nAの衝撃電流印加前後の
変化率で表わした。なお、衝撃電流は8×20μS
10KAを30秒間隔で10回印加した。
さらに第3図は常時課電時における小電流領域
の特性変化を示したもので、80℃の雰囲気下0.85
×V1nAの電圧を500Hr印加前後のV10nAの変化率
で示したものである。第1図〜第3図で曲線aは
基本組成に対してAg2Oを添加した場合のもので
あり、曲線bは同様にK2Oを添加した場合、曲線
CはAg2OとK2Oをモル比で1:1の割合で複合
添加した場合のものである。
第1図から明らかなように、基本組成に対し
て、Ag2OおよびK2Oの少なくとも一種を添加し
た場合には、大電流域の非直線性が著しく改善さ
れていることがわかる。又、第2図からは、衝撃
電流印加による小電流領域の特性の安定性が著し
く改善されており、さらに第3図から明らかなよ
うに、常時課電時における小電流域の特性の安定
性も同時に著しく改善されている。これら大電流
域における非直線性、衝撃電流特性、常時課電特
性の著しい改善は、非直線抵抗体を避雷器などに
適用するに際して必要不可欠な要素であり、本実
施例の電圧非直線抵抗体はこれら要素を十分満足
するものである。なお、本実施例の効果は、第1
図〜第3図より明らかなように、基本組成に対し
てK2OおよびAg2Oの少なくとも一種を0.05〜5
モル%添加含有せしめた場合に常に発揮されるも
のである。
実施例 2
ZnOにBi2O3およびCo2O3,MnO,Cr2O3をそ
れぞれ0.05〜2モル%、Sb2O3を0.1〜3モル%、
SiO2を0.05〜5モル%、NiOおよびAl2O3の少な
くとも1種をそれぞれ0.05〜2モル%、0.001〜
1モル%添加配合した基本組成系に対して、
Ag2O3およびK2Oの少なくとも1種をそれぞれ
0.5モル%添加配合し、実施例1の場合と同一条
件で参考例も含め27種の電圧非直線抵抗体を得
た。かくして得られた電圧非直線抵抗体の大電流
域における非直線性および衝撃電流特性、常時課
電後における小電流域特性を表−1に組成比とと
もに示した。表−1でV10KA/V1nAおよび、衝電
電流印加によるV10nAの変化率、常時課電による
V10nAの変化率は、それぞれ実施例1に記載の条
件にもとづき測定したものである。
The present invention relates to a voltage nonlinear resistor made of an oxide semiconductor. One of the circuit elements using semiconductors is a voltage nonlinear resistor, and a typical example is a varistor made of a sintered body of ZnO with various oxides added thereto. This type of varistor has non-linear voltage-current characteristics, and as the voltage increases, the resistance rapidly decreases and the current increases significantly, so it is widely used for absorbing abnormal overvoltages and stabilizing voltage. It is put into practical use. By the way, the characteristics of a voltage nonlinear resistor are generally evaluated using the voltage-current characteristics expressed by the following approximate expression. I=(V/C)〓 (where I is the current flowing through the varistor, V is the applied voltage, C is a constant, and α is a nonlinear coefficient) Therefore, the general characteristics of a varistor can be expressed using two constants, C and α. can be used, usually instead of C.
It is expressed as a voltage V of 1nA at 1mA, and emphasis is placed on a large α value, which is an index indicating voltage nonlinear characteristics. The above-mentioned ZnO-based varistor (voltage nonlinear resistor) has the above-mentioned characteristics of good voltage-current characteristics, and furthermore, the voltage-current characteristics can be arbitrarily adjusted by controlling the thickness of the element. But on the other hand these
When using ZnO-based varistors as power surge arresters, there are the following drawbacks. That is, in the conventional ZnO-based voltage nonlinear resistor, the characteristics change greatly in the small current region when constantly energized, and the rate of change of the varistor voltage is large when an impact current is applied. Furthermore, the nonlinearity in the large current region was insufficient and could not be said to be satisfactory. In order to eliminate the drawbacks of conventional ZnO-based nonlinear resistors, it is generally necessary to add several oxides to the basic composition of ZnO with various oxides added. , methods of adding various glass components have been adopted. However, even if the nonlinearity in the large current range is improved by adding oxides, the characteristics in the small current range due to constant current application or impact current are large, resulting in a lack of reliability. Furthermore, improving characteristics using various glass components is effective in changing characteristics in the small current region due to constant voltage application, but
With regard to shock current characteristics and nonlinearity in a large current range, it is ineffective or even has an adverse effect, and cannot be said to be sufficient for use as a power surge arrester. The present inventors conducted various studies in view of these points, and as a result, ZnO was used as the main component, and as a subcomponent,
Bi 2 O 3 , Co 2 O 3 , Sb 2 O 3 , MnO, Cr 2 O 3 , SiO 2 and
By adding at least one of K 2 O and Ag 2 O to the basic composition system consisting of at least one of NiO and Al 2 O 3 , it is highly reliable.
We have discovered that an oxide voltage nonlinear resistor with excellent nonlinearity in a large current range can be obtained. Hereinafter, the details of the present invention will be explained with reference to Examples. Example 1 ZnO contains 1.0 mol% each of Bi 2 N 3 and Sb 2 O 3 , 0.5 mol% each of Co 2 O 3 , SiO 2 , NiO, MnO, Cr 2 O 3 , and 0.01 mol % of Al 2 O 3 % as the basic composition, at least one of K 2 O and Ag 2 O is added and blended thereto in a ratio of 0.05 to 5 mol %, and thoroughly mixed in a ball mill to obtain a prepared powder. Polyvinyl alcohol was blended with the thus obtained prepared powder as a binder, and each was molded into a disk shape with a diameter of 55 mm at a pressure of 1 ton/cm, and these molded bodies were fired at 1200°C in an air atmosphere to obtain a sintered body. Ta. Both main surfaces of the thus obtained sintered bodies were polished parallel to each other to a thickness of 20 mm, and then Al was sprayed onto the polished surfaces to obtain a voltage nonlinear resistor equipped with electrodes. The nonlinearity in the large current range of the voltage nonlinear resistor thus obtained is determined by the voltage when a current of 10KA is passed through the element (V 10KA ) and the voltage when a current of 1mA is passed through the element (V 1nA ). Figure 1 shows the relationship between the amounts of K 2 O and Ag 2 O added to the basic composition. Furthermore, Fig. 2 shows the change in characteristics in the small current range due to the impact current. The rate of voltage change was expressed as the rate of change before and after application of an impulse current of voltage V 10 nA when a current of 10 mA was passed through the element. In addition, the impact current is 8 x 20μS
10KA was applied 10 times at 30 second intervals. Furthermore, Figure 3 shows the change in characteristics in the small current region when constant voltage is applied.
The voltage of ×V 1nA is shown as the rate of change of V 10nA before and after 500 hours of application. In Figures 1 to 3, curve a is for the case where Ag 2 O is added to the basic composition, curve b is for the case when K 2 O is similarly added, and curve C is for the case where Ag 2 O and K 2 O are added. This is a case where O is added in a composite manner at a molar ratio of 1:1. As is clear from FIG. 1, when at least one of Ag 2 O and K 2 O is added to the basic composition, the nonlinearity in the large current range is significantly improved. Furthermore, from Fig. 2, the stability of the characteristics in the small current region due to the application of an impulse current is significantly improved, and as is clear from Fig. 3, the stability of the characteristics in the small current region when the current is constantly applied is improved. has also been significantly improved. These remarkable improvements in nonlinearity, shock current characteristics, and constant charging characteristics in the large current range are essential elements when applying nonlinear resistors to lightning arresters, etc., and the voltage nonlinear resistor of this example These factors are fully satisfied. Note that the effect of this example is the first
As is clear from Fig. 3, at least one of K 2 O and Ag 2 O is added to the basic composition by 0.05 to 5.
This is always exhibited when the compound is added in mol%. Example 2 Bi 2 O 3 and Co 2 O 3 , MnO, Cr 2 O 3 were added to ZnO in an amount of 0.05 to 2 mol %, and Sb 2 O 3 was added in an amount of 0.1 to 3 mol %.
0.05-5 mol% of SiO 2 , 0.05-2 mol% of at least one of NiO and Al 2 O 3 , 0.001-2 mol% each
For the basic composition system containing 1 mol% addition,
At least one of Ag 2 O 3 and K 2 O, respectively
Addition of 0.5 mol % was carried out under the same conditions as in Example 1 to obtain 27 types of voltage nonlinear resistors, including reference examples. The nonlinearity and impact current characteristics in the large current range of the voltage nonlinear resistor thus obtained, and the small current range characteristics after constant voltage application are shown in Table 1 together with the composition ratio. Table 1 shows V 10KA /V 1nA and the rate of change in V 10nA due to impulse current application, and the rate of change in V 10nA due to constant voltage application.
The rate of change in V 10nA was measured based on the conditions described in Example 1.
【表】
表−1から明らかなように、本実施例において
はいずれも大電流域の非直線性さらに衝撃電流印
加および常時課電時における小電流域の特性の安
定性が著しく改善されている。
すなわち、基本組成をZnOを主成分とし、
Bi2O3およびCo2O3,MnO,Cr2O3をそれぞれ
0.05〜2モル%、Sb2O3を0.1〜3モル%、SiO2を
0.05〜5モル%とNiOおよびAl2O3の少なくとも
1種をそれぞれ、0.05〜2モル%、0.001〜1モ
ル%と変化させた場合にもK2OおよびAg2Oの少
なくとも1種を添加配合することにより本発明の
効果は常に発揮される。
以上述べたように、本発明によれば、大電流域
の非直線性が優れ、さらに衝撃電流印加および常
時課電時における信頼性に優れた酸化物非直線抵
抗体が得られるものである。[Table] As is clear from Table 1, in all of these examples, the nonlinearity in the large current range and the stability of the characteristics in the small current range during application of shock current and constant voltage application are significantly improved. . In other words, the basic composition is ZnO as the main component,
Bi 2 O 3 and Co 2 O 3 , MnO, Cr 2 O 3 respectively
0.05-2 mol%, Sb 2 O 3 0.1-3 mol%, SiO 2
At least one of K 2 O and Ag 2 O is added even when changing 0.05 to 5 mol % and at least one of NiO and Al 2 O 3 to 0.05 to 2 mol % and 0.001 to 1 mol %, respectively. By blending, the effects of the present invention are always exhibited. As described above, according to the present invention, it is possible to obtain an oxide nonlinear resistor that has excellent nonlinearity in a large current range and also has excellent reliability during application of an impact current and constant voltage application.
第1図〜第3図は本発明に係る酸化物電圧非直
線抵抗体の特性例を示す曲線図である。
1 to 3 are curve diagrams showing characteristic examples of the oxide voltage nonlinear resistor according to the present invention.
Claims (1)
ル及びアルミニウムの少なくとも一種と、ビスマ
ス、コバルト、アンチモン、マンガン、クロム及
びケイ素を、それぞれNiO,Al2O3,Bi2O3,
Co2O3,Sb2O3,MnO,Cr2O3及びSiO2に換算し
て、 NiO 0.05〜2モル% Al2O3 0.001〜1モル% Bi2O3 0.05〜2モル% Co2O3 0.05〜2モル% MnO 0.05〜2モル% Cr2O3 0.05〜2モル% Sb2O3 0.1〜3モル% SiO2 0.05〜5モル% の割合で含む原料に、カリウム及び銀の少なくと
も一種をK2O,Ag2Oに換算してそれぞれ0.05〜
5モル%添加含有せしめた組成物を焼結して成る
ことを特徴とする酸化物電圧非直線抵抗体。[Claims] 1. Zinc oxide as the main component, at least one of nickel and aluminum as subcomponents, and bismuth, cobalt, antimony, manganese, chromium and silicon, respectively NiO, Al 2 O 3 and Bi 2 O 3 ,
In terms of Co 2 O 3 , Sb 2 O 3 , MnO, Cr 2 O 3 and SiO 2 , NiO 0.05-2 mol% Al 2 O 3 0.001-1 mol% Bi 2 O 3 0.05-2 mol% Co 2 O 3 0.05 to 2 mol% MnO 0.05 to 2 mol% Cr 2 O 3 0.05 to 2 mol% Sb 2 O 3 0.1 to 3 mol% SiO 2 0.05 to 5 mol% The raw material contains at least potassium and silver. Converting one type to K 2 O and Ag 2 O is 0.05~
An oxide voltage nonlinear resistor characterized by being formed by sintering a composition containing 5 mol%.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP55127940A JPS6329801B2 (en) | 1980-09-17 | 1980-09-17 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP55127940A JPS6329801B2 (en) | 1980-09-17 | 1980-09-17 |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5753905A JPS5753905A (en) | 1982-03-31 |
JPS6329801B2 true JPS6329801B2 (en) | 1988-06-15 |
Family
ID=14972395
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP55127940A Expired JPS6329801B2 (en) | 1980-09-17 | 1980-09-17 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6329801B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5334636B2 (en) * | 2009-03-13 | 2013-11-06 | 三菱電機株式会社 | Voltage non-linear resistor, lightning arrester equipped with voltage non-linear resistor, and method of manufacturing voltage non-linear resistor |
RU2612423C1 (en) * | 2016-04-01 | 2017-03-09 | Федеральное государственное бюджетное учреждение науки Институт химии и технологии редких элементов и минерального сырья им. И.В. Тананаева Кольского научного центра Российской академии наук (ИХТРЭМС КНЦ РАН) | Zinc oxide varistor ceramics |
-
1980
- 1980-09-17 JP JP55127940A patent/JPS6329801B2/ja not_active Expired
Also Published As
Publication number | Publication date |
---|---|
JPS5753905A (en) | 1982-03-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS6329802B2 (en) | ||
JPS5918602A (en) | Low voltage ceramic varistor | |
JPS6329804B2 (en) | ||
JPS6329801B2 (en) | ||
JPS6221242B2 (en) | ||
JPS6329805B2 (en) | ||
JPH0425681B2 (en) | ||
JPS6329803B2 (en) | ||
JP2656233B2 (en) | Voltage non-linear resistor | |
JPH04139702A (en) | Voltage-dependent nonlinear resistor | |
JPH04245602A (en) | Nonlinearly voltage-dependent resistor | |
JP3830354B2 (en) | Method for manufacturing voltage nonlinear resistor | |
JP3317015B2 (en) | Zinc oxide varistor | |
JPS634681B2 (en) | ||
JPS6236615B2 (en) | ||
JPS5852802A (en) | Zinc oxide nonlinear resistor | |
JPH0574606A (en) | Zinc oxide varistor for low voltage | |
JPS62282410A (en) | Manufacture of voltage nonlinear resistance element | |
JPH0732085B2 (en) | Electrode material for voltage nonlinear resistors | |
JP3089370B2 (en) | Voltage non-linear resistance composition | |
JPS60192302A (en) | Method of producing voltage nonlinear resistor | |
JPS60193304A (en) | Method of producing voltage nonlinear resistor | |
JPH0448703A (en) | Manufacture of voltage nonlinear resistor | |
JPH0513361B2 (en) | ||
JPS62290104A (en) | Electrode material for voltage nonlinear resistance unit |