JPS6221242B2 - - Google Patents
Info
- Publication number
- JPS6221242B2 JPS6221242B2 JP55100527A JP10052780A JPS6221242B2 JP S6221242 B2 JPS6221242 B2 JP S6221242B2 JP 55100527 A JP55100527 A JP 55100527A JP 10052780 A JP10052780 A JP 10052780A JP S6221242 B2 JPS6221242 B2 JP S6221242B2
- Authority
- JP
- Japan
- Prior art keywords
- mol
- voltage
- current
- zno
- sno
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 229910006404 SnO 2 Inorganic materials 0.000 claims description 10
- 229910010413 TiO 2 Inorganic materials 0.000 claims description 10
- 229910018072 Al 2 O 3 Inorganic materials 0.000 claims description 5
- 229910015902 Bi 2 O 3 Inorganic materials 0.000 claims description 5
- 229910004298 SiO 2 Inorganic materials 0.000 claims description 4
- 229910052797 bismuth Inorganic materials 0.000 claims description 2
- 239000000203 mixture Substances 0.000 description 10
- 230000000694 effects Effects 0.000 description 4
- VASIZKWUTCETSD-UHFFFAOYSA-N manganese(II) oxide Inorganic materials [Mn]=O VASIZKWUTCETSD-UHFFFAOYSA-N 0.000 description 4
- GNRSAWUEBMWBQH-UHFFFAOYSA-N nickel(II) oxide Inorganic materials [Ni]=O GNRSAWUEBMWBQH-UHFFFAOYSA-N 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- QDOXWKRWXJOMAK-UHFFFAOYSA-N dichromium trioxide Chemical compound O=[Cr]O[Cr]=O QDOXWKRWXJOMAK-UHFFFAOYSA-N 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- UPWOEMHINGJHOB-UHFFFAOYSA-N oxo(oxocobaltiooxy)cobalt Chemical compound O=[Co]O[Co]=O UPWOEMHINGJHOB-UHFFFAOYSA-N 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 230000035939 shock Effects 0.000 description 2
- 239000004372 Polyvinyl alcohol Substances 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 229910052681 coesite Inorganic materials 0.000 description 1
- 229910052906 cristobalite Inorganic materials 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000010304 firing Methods 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 229920002451 polyvinyl alcohol Polymers 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 229910052682 stishovite Inorganic materials 0.000 description 1
- 229910052905 tridymite Inorganic materials 0.000 description 1
Landscapes
- Compositions Of Oxide Ceramics (AREA)
- Thermistors And Varistors (AREA)
Description
【発明の詳細な説明】
本発明は酸化物半導体からなる電圧非直線抵抗
体に関する。
半導体を応用した回路素子の一つに電圧非直線
抵抗体があり、その代表的なものとしてZnOに
種々の酸化物を添加した焼結体を用いたバリスタ
が知られている。この種のバリスタは非直線的な
電圧―電流特性を有しており、電圧の増大に伴な
い抵抗が急激に減少して電流が著しく増加するた
め、異常な電圧の吸収や電圧安定化用に実用化さ
れている。
ところで電圧非直線抵抗体の特性は一般に次の
近似式で示される電圧―電流特性をもつて評価さ
れている。
=(V/C)〓
(但しはバリスタに流れる電流、Vは印加電
圧、Cは定数、αは非直線係数である)従つてバ
リスタの一般特性はCとαの2つの定数で表示す
ることができ、通常はCの代りに1mAにおける
電圧V1で示され、また電圧非直線特性を示す指
数であるα値の大きいことが重視されている。上
記ZnOバリスタ(電圧非直線抵抗体)は前記電圧
―電流特性を任意に調節しうるなど多くの特長を
備えている一方これらZnO系バリスタを電力用避
雷器として使用する場合には次のような欠点があ
つた。すなわち従来のZnO系電圧非直線抵抗体
は、常時課電時における小電流領域の特性変化が
大きく、かつ衝撃電流を印加した場合の変化率が
大きい。又大電流領域における非直線特性も充分
でない欠点がある。又従来ZnO系非直線抵抗体の
欠点を除去するため、一般にはZnOに種々の酸化
物を添加配合した基本組成に対してさらにいくつ
かの酸化物を添加したり、種々のガラス成分を添
加する方法がとられている。しかしながら酸化物
を添加して特性改善がなされた場合は、大電流領
域の非直線特性は改善されても、常時課電又は衝
撃電流等による小電流領域の特性変化が大きく、
信頼性に欠ける。又、種々のガラス成分により特
性改善がなされた場合には、常時課電による小電
流域の特性変化が小さいが衝撃電流特性及び大電
流域の非直線性については効果がなく、電力用避
雷器として使用するには充分でなかつた。
本発明は之等の欠点を改良し、信頼性が高く、
大電流域における非直線性の優れた避雷器に適合
し得る酸化物電圧非直線抵抗体を提供することを
目的とする。
本発明は、ZnOを主成分とし、副成分として
Bi、Co、Sb、Mn、Cr、SiをそれぞれBi2O3、
Co2o3、Sb2O3、MnO、Cr2O3、SiO2に換算して
それぞれ0.05〜2モル%、0.05〜2モル%、0.1〜
3モル%、0.05〜2モル%、0.05〜2モル%、
0.05〜5モル%、NiおよびAlの少なくとも一種を
NiOおよびAl2O3に換算してそれぞれ0.05〜2モ
ル%、0.001〜1モル%配合した原料に対してSn
およびTiの少なくとも一種をSnO2およびTiO2に
換算してそれぞれ0.05〜5モル%、0.05〜5モル
%添加含有せしめた焼結体からなることを特徴と
する酸化物電圧非直線抵抗体に係るものである。
以下本発明を実施例1について説明すれば、
ZnOにBi2O3およびSb2O3をそれぞれ1.0モル%、
Co2O3、NiO、SiO2、MnO、Cr2O3をそれぞれ0.5
モル%、Al2O3を0.01モル%を基本組成とし、さ
らにSnO2およびTiO2の少なくとも一種を0.05〜
5モル%の割合で添加配合し、ボールミルで十分
に混合し調整粉末とする。かくして得られた調整
粉末にポリビニルアルコルを粘結剤として配合
し、圧力1トン/cm2で直径55mmの円板形に成形し
てこれらの成形体を空気雰囲気中1200℃で焼成し
て焼結体を得、両面を平行に研磨して厚さ20mmと
した後その研磨面にAlを熔射して電極を取付け
電圧非直線抵抗体を得た。
この電圧非直線抵抗体の大電流域における非直
線性は抵抗体素子に10KAの電流を流したときの
電圧(V10KA)と素子に1mAの電流を流したとき
の電圧(V1nA)の比(V10KA/V1nA)で表わ
し、基本組成に対するSnO2およびTiO2の添加量
との関係を第1図に示した。曲線aは基本組成に
対してSnO2を添加した場合のものであり、曲線
bは同様にTiO2を添加した場合、曲線CはSnO2
とTiO2をモル比で1:1の割合で複合添加した
場合のものである。
第1図から明らかなように、基本組成に対して
SnO2およびTiO2の少なくとも一種を添加した場
合には大電流域の非直線性が著しく改善されてい
ることがわかる。
第2図に衝撃電流による小電流域の特性の変化
を示した。電圧変化率は素子に10μAの電流を流
したときの電圧V10〓Aの衝撃電流印加前後の変
化率で表わした。なお衝撃電流は8×20μ
S10KAを30秒間隔で10回印加した。第2図から
明らかなように衝撃電流印加による小電流領域の
特性の安定性が著しく改善されていることがわか
る。
第3図は常時課電時における変化率を示すもの
で、本発明では小電流域の特性の安定性も同時に
著しく改善されていることが判る。上記大電流域
における非直線性、衝撃電流特性、常時課電特性
の著しい改善効果は非直線抵抗体を避雷器などに
適用するに際して必要不可欠であり、本実施例の
電圧非直線抵抗体はこれらの要求を充分満足する
ものである。
次に実施例2について説明すればZnOに
Bi2O3、Co2O3、MnO、Cr2O3をそれぞれ0.05〜2
モル%、Sb2O3を0.1〜3モル%、SiO2を0.05〜5
モル%、NiOおよびAl2O3の少くとも1種をそれ
ぞれ0.05〜2モル%、0.001〜1モル%添加配合
した基本組成系に対してSnO2およびTiO2の少く
とも1種をそれぞれ0.5モル%添加配合し、実施
例1の場合と同一条件で従来例をも含めて実験を
行い表に示すような電圧非直線抵抗体の特性デー
タを得た。この表から明らかなように実施例2に
おいても大電流域の非直線性や衝撃電流印加時お
よび常時課電時における小電流域の特性は、既に
説明したように第1図、第2図、第3図に示す実
施例1の結果と同様の効果を発揮していることが
判る。
本発明によれば基本組成をZnOを主成分とし
Bi2O3、Co2O3、MnO、Cr2O3をそれぞれ0.05〜2
モル%、Sb2O3を0.1〜3モル%、SiO2を0.05〜5
モル%とNiOおよびAl2O3の少くとも1種をそれ
ぞれ0.05〜2モル%、0.001〜1モル%と変化し
た場合でもSnO2およびTiO2の少なくとも1種を
添加配合することにより本発明の効果は常に期待
できるものである。
以上説明したように本発明によれば避雷器等に
適する大電流域の非直線性が優れ、さらに衝撃電
流印加および常時課電時における信頼性が優れた
酸化物非直線抵抗体を提供するものである。
【表】DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a voltage nonlinear resistor made of an oxide semiconductor. One of the circuit elements using semiconductors is a voltage nonlinear resistor, and a typical example is a varistor using a sintered body of ZnO with various oxides added. This type of varistor has non-linear voltage-current characteristics, and as the voltage increases, the resistance rapidly decreases and the current increases significantly, so it is useful for absorbing abnormal voltages and stabilizing voltage. It has been put into practical use. By the way, the characteristics of a voltage nonlinear resistor are generally evaluated using the voltage-current characteristics expressed by the following approximate equation. = (V/C) (However, the current flowing through the varistor, V is the applied voltage, C is a constant, and α is a nonlinear coefficient.) Therefore, the general characteristics of a varistor can be expressed using two constants, C and α. It is usually expressed as a voltage V 1 at 1 mA instead of C, and emphasis is placed on a large α value, which is an index indicating voltage nonlinear characteristics. While the above ZnO varistors (voltage nonlinear resistors) have many features such as being able to arbitrarily adjust the voltage-current characteristics, when using these ZnO varistors as power lightning arresters, they have the following drawbacks: It was hot. That is, in the conventional ZnO-based voltage nonlinear resistor, the characteristic change in the small current region when constantly energized is large, and the rate of change when an impact current is applied is large. Another disadvantage is that the nonlinear characteristics in the large current region are not sufficient. In addition, in order to eliminate the drawbacks of conventional ZnO-based nonlinear resistors, it is common to add several oxides or various glass components to the basic composition of ZnO and various oxides. A method is being taken. However, when the characteristics are improved by adding oxides, even if the nonlinear characteristics in the large current region are improved, the characteristics in the small current region due to constant charging or impact current change greatly.
Lacking reliability. In addition, when the characteristics are improved by using various glass components, the change in characteristics in the small current range due to constant energization is small, but there is no effect on the shock current characteristics and nonlinearity in the large current area, and it is not suitable for use as a power surge arrester. It wasn't enough to use. The present invention improves these drawbacks, has high reliability,
The object of the present invention is to provide an oxide voltage nonlinear resistor that is suitable for lightning arresters with excellent nonlinearity in a large current range. The present invention uses ZnO as the main component and as a subcomponent.
Bi, Co, Sb, Mn, Cr, Si respectively Bi 2 O 3 ,
Co 2 O 3 , Sb 2 O 3 , MnO, Cr 2 O 3 , 0.05 to 2 mol %, 0.05 to 2 mol %, 0.1 to 0.1 mol %, respectively, in terms of SiO 2
3 mol%, 0.05 to 2 mol%, 0.05 to 2 mol%,
0.05 to 5 mol%, at least one of Ni and Al
Sn is added to the raw materials containing 0.05 to 2 mol% and 0.001 to 1 mol% in terms of NiO and Al 2 O 3 , respectively.
An oxide voltage nonlinear resistor comprising a sintered body containing at least one of Ti and 0.05 to 5 mol % and 0.05 to 5 mol %, respectively, in terms of SnO 2 and TiO 2 . It is something. The present invention will be explained below with reference to Example 1.
1.0 mol% each of Bi 2 O 3 and Sb 2 O 3 in ZnO,
0.5 each of Co2O3 , NiO, SiO2 , MnO , Cr2O3
The basic composition is 0.01 mol% of Al 2 O 3 , and 0.05 to 0.05 mol% of at least one of SnO 2 and TiO 2 .
Add and blend at a ratio of 5 mol % and thoroughly mix in a ball mill to obtain a prepared powder. The prepared powder thus obtained was blended with polyvinyl alcohol as a binder, molded into a disk shape with a diameter of 55 mm at a pressure of 1 ton/cm 2 , and these molded bodies were sintered by firing at 1200°C in an air atmosphere. A body was obtained, both sides were polished parallel to each other to a thickness of 20 mm, and then Al was sprayed onto the polished surfaces and electrodes were attached to obtain a voltage nonlinear resistor. The nonlinearity of this voltage nonlinear resistor in the large current range is determined by the ratio of the voltage when a current of 10KA is passed through the resistor element (V 10KA ) and the voltage when a current of 1mA is passed through the element (V 1nA ). It is expressed as (V 10KA /V 1nA ), and the relationship between the amounts of SnO 2 and TiO 2 added to the basic composition is shown in FIG. Curve a is when SnO 2 is added to the basic composition, curve b is when TiO 2 is added, and curve C is when SnO 2 is added to the basic composition.
and TiO 2 are added in a molar ratio of 1:1. As is clear from Figure 1, for the basic composition
It can be seen that when at least one of SnO 2 and TiO 2 is added, the nonlinearity in the large current range is significantly improved. Figure 2 shows the change in characteristics in the small current range due to impact current. The rate of voltage change was expressed as the rate of change before and after the application of an impulse current of voltage V 10 〓 A when a current of 10 μA was passed through the element. The impact current is 8×20μ
S10KA was applied 10 times at 30 second intervals. As is clear from FIG. 2, it can be seen that the stability of the characteristics in the small current region due to the application of an impact current is significantly improved. FIG. 3 shows the rate of change during constant power application, and it can be seen that the stability of the characteristics in the small current range is also significantly improved in the present invention. The above-mentioned significant improvement effects in nonlinearity, shock current characteristics, and constant charging characteristics in the large current range are essential when applying nonlinear resistors to lightning arresters, etc., and the voltage nonlinear resistor of this example has these effects. This fully satisfies the requirements. Next, if we explain Example 2, ZnO
Bi 2 O 3 , Co 2 O 3 , MnO, Cr 2 O 3 each from 0.05 to 2
Mol%, Sb 2 O 3 0.1-3 mol%, SiO 2 0.05-5
0.5 mol each of at least one of SnO 2 and TiO 2 for a basic composition system containing 0.05 to 2 mol % and 0.001 to 1 mol % of at least one of NiO and Al 2 O 3 , respectively. % was added and blended, and experiments were conducted under the same conditions as in Example 1, including the conventional example, to obtain characteristic data of voltage nonlinear resistors as shown in the table. As is clear from this table, in Example 2 as well, the nonlinearity in the large current range and the characteristics in the small current range during application of an impact current and during constant voltage application are as shown in FIGS. It can be seen that the same effect as the result of Example 1 shown in FIG. 3 is exhibited. According to the present invention, the basic composition is ZnO as the main component.
Bi 2 O 3 , Co 2 O 3 , MnO, Cr 2 O 3 each from 0.05 to 2
Mol%, Sb 2 O 3 0.1-3 mol%, SiO 2 0.05-5
Even if the mol% and at least one of NiO and Al 2 O 3 are changed from 0.05 to 2 mol% and 0.001 to 1 mol%, respectively, the present invention can be achieved by adding and blending at least one of SnO 2 and TiO 2 . The results are always promising. As explained above, the present invention provides an oxide nonlinear resistor that is suitable for lightning arresters and the like and has excellent nonlinearity in a large current range, and also has excellent reliability when applying an impact current and when being constantly charged. be. 【table】
第1図は本発明のSnO2およびTiO2の添加量と
大電流域の非直線性を示す曲線図、第2図は同じ
く同一添加量と衝撃電流特性の変化率を示す曲線
図、第3図は同じく常時加電特性の変化率を示す
曲線図である。
Figure 1 is a curve diagram showing the added amounts of SnO 2 and TiO 2 of the present invention and non-linearity in the large current range, Figure 2 is a curve diagram showing the same added amount and the rate of change in impulse current characteristics, and Figure 3 The figure is also a curve diagram showing the rate of change in the constant energization characteristics.
Claims (1)
Sb、Mn、Cr、SiをそれぞれBi2O3、Co2O3、
Sb2O3、MnO、Cr2O3、SiO2に換算してそれぞれ
0.05〜2モル%、0.05〜2モル%、0.1〜3モル
%、0.05〜2モル%、0.05〜2モル%、0.05〜5
モル%、NiおよびAlの少なくとも一種をNiOおよ
びAl2O3に換算してそれぞれ0.05〜2モル%、
0.001〜1モル%配合した原料に対してSnおよび
Tiの少なくとも一種をSnO2およびTiO2に換算し
てそれぞれ0.05〜5モル%、0.05〜5モル%添加
含有せしめた焼結体からなることを特徴とする酸
化物電圧非直線抵抗体。1 ZnO is the main component, and Bi, Co, and
Sb, Mn, Cr, and Si are respectively Bi 2 O 3 , Co 2 O 3 ,
Respectively in terms of Sb 2 O 3 , MnO, Cr 2 O 3 , and SiO 2
0.05-2 mol%, 0.05-2 mol%, 0.1-3 mol%, 0.05-2 mol%, 0.05-2 mol%, 0.05-5
mol%, at least one of Ni and Al is 0.05 to 2 mol% each in terms of NiO and Al 2 O 3 ,
Sn and
An oxide voltage nonlinear resistor comprising a sintered body containing at least one type of Ti in an amount of 0.05 to 5 mol % and 0.05 to 5 mol % in terms of SnO 2 and TiO 2 , respectively.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10052780A JPS5726404A (en) | 1980-07-24 | 1980-07-24 | Oxide voltage nonlinear resistor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10052780A JPS5726404A (en) | 1980-07-24 | 1980-07-24 | Oxide voltage nonlinear resistor |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5726404A JPS5726404A (en) | 1982-02-12 |
JPS6221242B2 true JPS6221242B2 (en) | 1987-05-12 |
Family
ID=14276428
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP10052780A Granted JPS5726404A (en) | 1980-07-24 | 1980-07-24 | Oxide voltage nonlinear resistor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5726404A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01118035U (en) * | 1988-01-29 | 1989-08-09 |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60236433A (en) * | 1984-05-09 | 1985-11-25 | Toshiba Corp | Method and device for forming v-shaped wire |
JPH03111432U (en) * | 1990-02-28 | 1991-11-14 | ||
JPH0744090B2 (en) * | 1991-03-28 | 1995-05-15 | 太陽誘電株式会社 | Voltage nonlinear resistor |
JP2007329148A (en) * | 2006-06-06 | 2007-12-20 | Toshiba Corp | Current-voltage nonlinear resistor |
-
1980
- 1980-07-24 JP JP10052780A patent/JPS5726404A/en active Granted
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01118035U (en) * | 1988-01-29 | 1989-08-09 |
Also Published As
Publication number | Publication date |
---|---|
JPS5726404A (en) | 1982-02-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3805114A (en) | Voltage-nonlinear resistors | |
JPS6243326B2 (en) | ||
JPS6221242B2 (en) | ||
JPS6329802B2 (en) | ||
JPH0425681B2 (en) | ||
JPS6329804B2 (en) | ||
JPS6329805B2 (en) | ||
JPS6329801B2 (en) | ||
JPS6329803B2 (en) | ||
JPH04245602A (en) | Nonlinearly voltage-dependent resistor | |
JPH04139702A (en) | Voltage-dependent nonlinear resistor | |
JPS634681B2 (en) | ||
JP3317015B2 (en) | Zinc oxide varistor | |
JPS6236615B2 (en) | ||
JPS6347125B2 (en) | ||
JPH0216003B2 (en) | ||
JPH0732085B2 (en) | Electrode material for voltage nonlinear resistors | |
JPH0519802B2 (en) | ||
KR810000920B1 (en) | Non-linear resistors | |
JPS60192302A (en) | Method of producing voltage nonlinear resistor | |
JPS62282407A (en) | Manufacture of voltage nonlinear resistance element | |
JPS59121801A (en) | Voltage and current nonlinear resistor | |
JPS6195501A (en) | Non-linear resistor | |
JPS62290104A (en) | Electrode material for voltage nonlinear resistance unit | |
JPS622442B2 (en) |