JPS63292678A - Mos transistor - Google Patents
Mos transistorInfo
- Publication number
- JPS63292678A JPS63292678A JP12782487A JP12782487A JPS63292678A JP S63292678 A JPS63292678 A JP S63292678A JP 12782487 A JP12782487 A JP 12782487A JP 12782487 A JP12782487 A JP 12782487A JP S63292678 A JPS63292678 A JP S63292678A
- Authority
- JP
- Japan
- Prior art keywords
- layer
- sidewall layer
- hot carriers
- sidewall
- injection
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 229910052751 metal Inorganic materials 0.000 claims abstract description 16
- 239000002184 metal Substances 0.000 claims abstract description 16
- 229910021332 silicide Inorganic materials 0.000 claims abstract description 13
- FVBUAEGBCNSCDD-UHFFFAOYSA-N silicide(4-) Chemical compound [Si-4] FVBUAEGBCNSCDD-UHFFFAOYSA-N 0.000 claims abstract description 12
- 239000000969 carrier Substances 0.000 abstract description 20
- 238000002347 injection Methods 0.000 abstract description 11
- 239000007924 injection Substances 0.000 abstract description 11
- 230000005684 electric field Effects 0.000 abstract description 5
- 238000009792 diffusion process Methods 0.000 description 12
- 239000000758 substrate Substances 0.000 description 5
- 238000000034 method Methods 0.000 description 4
- 230000006866 deterioration Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 2
- 238000005530 etching Methods 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 2
- 229920005591 polysilicon Polymers 0.000 description 2
- 239000010936 titanium Substances 0.000 description 2
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000005468 ion implantation Methods 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 238000000206 photolithography Methods 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 230000002040 relaxant effect Effects 0.000 description 1
- -1 silicide compound Chemical class 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 230000037303 wrinkles Effects 0.000 description 1
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
この発明は、MOSトランジスタの構造に関するもので
ある。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to the structure of a MOS transistor.
第3図は、従来のMOSトランジスタの断面構造を示し
たものであり、1は基板、2はゲート電極、3はゲート
絶縁膜、4は高濃度拡散領域(トレイン領域11)、1
0はソース領域である。FIG. 3 shows the cross-sectional structure of a conventional MOS transistor, in which 1 is a substrate, 2 is a gate electrode, 3 is a gate insulating film, 4 is a high concentration diffusion region (train region 11), 1
0 is the source area.
この構造のMOSトランジスタでは、微細化の進行によ
りゲート長が短かくなると、パンチスルー現象や、しき
い値電圧(v+h)の低下という特性劣化現象か発生し
た。また、高濃度拡散領域4の拡散深さXJ+が深いこ
とによる実効チャネル長L2の減少が、さらに特性劣化
を促進した。In a MOS transistor having this structure, as the gate length becomes shorter due to progress in miniaturization, characteristic deterioration phenomena such as punch-through phenomenon and decrease in threshold voltage (v+h) occur. Furthermore, the reduction in the effective channel length L2 due to the deep diffusion depth XJ+ of the high concentration diffusion region 4 further promoted the deterioration of the characteristics.
第4図に示すトランジスタは、このような特性劣化を抑
制する11的で提案されているもので、L D D (
Lighl、Jy Doped Drain)構造を有
する。The transistor shown in FIG. 4 is an eleventh proposed transistor that suppresses such characteristic deterioration.
It has a Lighl, Jy Doped Drain) structure.
すなわち、このトランジスタは、ゲート電極2を形成し
てから比較的不純物濃度が低く、浅い低濃度拡散領域5
を形成し、ついでCVD(Chemical Vapo
r Deposition)法等により全面に絶縁膜を
形成し、直ちにRI E (Reactive Jon
Etching)を施こしてサイドウオール層8を形成
し、しかるのち、不純物の高濃度拡散領域4を形成した
ものである。That is, in this transistor, after forming the gate electrode 2, a shallow low concentration diffusion region 5 with a relatively low impurity concentration is formed.
is formed, and then CVD (Chemical Vapo
An insulating film is formed on the entire surface using a method such as RI E (Reactive Jon Deposition).
A sidewall layer 8 is formed by etching, and then a high impurity concentration diffusion region 4 is formed.
この構造では、低濃度拡散領域5がトレイン近傍の電界
集中を抑制し、実効チャネル長が短かくなりにくいため
、先のような問題は発生しない。In this structure, the low concentration diffusion region 5 suppresses electric field concentration in the vicinity of the train, and the effective channel length is difficult to shorten, so that the above problem does not occur.
しかし、ソース領域10側から走行してきた電荷(キャ
リア)は、トレイン領域11近傍で最犬工ネルギーを得
た上、低濃度拡散領域5を通過しなければならず、この
とき、十分なエネルギーを得たキャリア(ホットキャリ
ア)は、ある確率でサイドウオール層8に注入される(
図中13)。なお、12は走行キャリア路゛Cある。こ
のため、トランジスタの信頼性や特性に変化が生じる。However, the charges (carriers) traveling from the source region 10 side have to obtain the maximum energy near the train region 11 and then pass through the low concentration diffusion region 5, and at this time, they must receive sufficient energy. The obtained carriers (hot carriers) are injected into the sidewall layer 8 with a certain probability (
13) in the figure. Note that 12 is a traveling carrier path ``C''. This causes changes in the reliability and characteristics of the transistor.
このようなLDD構造特有の現象を抑制するため、低濃
度拡散領域5の濃度をわずかに上げてM L D D
(Moderately Lightly Doped
Drain)構造とするとか、第5図のように、中濃
度拡散領域6を、低濃度拡散領域5の下に設けたBLD
D(Buried LDD)構造とする等の方法が採ら
れている。In order to suppress such a phenomenon peculiar to the LDD structure, the concentration of the low concentration diffusion region 5 is slightly increased to
(Moderately Lightly Doped
Drain) structure, or as shown in FIG.
A method such as a Buried LDD (D) structure has been adopted.
しかしながら、これらの構造においても、サイドウオー
ル層8とドレイン領域11の界面に電界か存在し、また
、サイドウオール層8の直下が比較的高い抵抗層である
ことから、ホットキャリアのサイドウオール層8への注
入は完全に抑制されない。However, even in these structures, an electric field exists at the interface between the sidewall layer 8 and the drain region 11, and since there is a relatively high resistance layer directly under the sidewall layer 8, hot carriers in the sidewall layer 8 injection is not completely suppressed.
この発明は、上記のような問題点を解消するためになさ
れたもので、ホットキャリアのサイドウオール層への注
入を抑制することができ、したがって信頼性の高いMO
Sトランジスタを得ることを目的とするものである。This invention was made in order to solve the above-mentioned problems, and it is possible to suppress injection of hot carriers into the sidewall layer, and therefore, it is possible to suppress the injection of hot carriers into the sidewall layer.
The purpose is to obtain an S transistor.
この発明に係るMOSトランジスタは、ゲート電極側面
に絶縁膜よりなるサイドウオール層を設け、かつ、この
サイドウオール層の直下に金属シリサイド層を設けた構
造のものである。The MOS transistor according to the present invention has a structure in which a sidewall layer made of an insulating film is provided on the side surface of the gate electrode, and a metal silicide layer is provided directly below the sidewall layer.
」二記金属シリサイド層は、サイドウオール層とドレイ
ン領域の界面に極低抵抗層を形成し、ホットキャリアの
トレイン領域への走行を助けるので、ホットキャリアの
サイドウオール層への注入を抑制できる。また、金属シ
リサイド層は、サイドウオール層直下に等電位面を形成
し、サイドウオール層直下の電界を緩和し、ドレイン領
域近傍のホットキャリアにエネルギーを与えないように
するので、この面からもホットキャリアのサイドウオー
ル層への注入を抑制できる。The metal silicide layer forms an extremely low resistance layer at the interface between the sidewall layer and the drain region, and helps hot carriers travel to the train region, thereby suppressing injection of hot carriers into the sidewall layer. In addition, the metal silicide layer forms an equipotential surface directly below the sidewall layer, which alleviates the electric field directly below the sidewall layer and prevents energy from being imparted to hot carriers near the drain region. Injection of carriers into the sidewall layer can be suppressed.
以下、この発明の一実施例を第1図によって説明する。 An embodiment of the present invention will be described below with reference to FIG.
なお、第4図と同一または相当部分には同一符号が付し
である。Note that the same or equivalent parts as in FIG. 4 are given the same reference numerals.
この実施例のトランジスタは、第4図のLDD構造のM
OSトランジスタとの比較で言えば、同トランジスタの
サイドウオール層8の直下に、金属シリサイド層7を設
けた構造のものである。The transistor of this embodiment has an LDD structure shown in FIG.
In comparison with an OS transistor, this transistor has a structure in which a metal silicide layer 7 is provided directly under the sidewall layer 8 of the same transistor.
上記トランジスタの製造方法は、第2図によって工程順
に説明すれば、次のとおりである。The method for manufacturing the transistor described above will be explained in the order of steps with reference to FIG. 2 as follows.
(1)まず、基板1の上にゲート絶縁膜3とポリシリコ
ンまたは金属のゲート電極2を熱酸化法、CVD法、写
真製版、エツチング等の技術を用いて形成する(第2図
(a))。(1) First, a gate insulating film 3 and a polysilicon or metal gate electrode 2 are formed on a substrate 1 using techniques such as thermal oxidation, CVD, photolithography, etching, etc. (Fig. 2(a)) ).
(2)基板1に浅い低濃度拡散領域5をイオン注入等に
より形成してから全体に薄い絶縁膜9を(好ましくはゲ
ート絶縁膜3と同程度の膜厚で)形成する(第2図(b
))。(2) After forming a shallow low-concentration diffusion region 5 in the substrate 1 by ion implantation or the like, a thin insulating film 9 (preferably with the same thickness as the gate insulating film 3) is formed over the entire surface (see FIG. 2). b
)).
(3)この絶縁膜9をRIEによりエツチングしてゲー
ト電極2とゲート絶縁膜3の側面に第1のサイドウオー
ル層9として残す(第2図(C))。(3) This insulating film 9 is etched by RIE to leave a first sidewall layer 9 on the side surfaces of the gate electrode 2 and gate insulating film 3 (FIG. 2(C)).
(4)チタン(Ti)、モリブデン(Mo)、白金(p
t)等のシリサイド化合物を形成する金属膜14を全体
に形成する(第2図(d))。(4) Titanium (Ti), molybdenum (Mo), platinum (p
A metal film 14 forming a silicide compound such as t) is formed over the entire surface (FIG. 2(d)).
(5)その直後に熱処理を施してゲート電極2部分(ポ
リシリコンの場合のみ)とソース、ドレイン領域10.
11に金属シリサイド層7を形成し、その後未反応部分
の金属を除去する(第2図(e))。(5) Immediately thereafter, heat treatment is performed to remove the gate electrode 2 portion (only in the case of polysilicon) and the source and drain regions 10.
A metal silicide layer 7 is formed on 11, and then the metal in unreacted portions is removed (FIG. 2(e)).
(6)絶縁膜を形成し、直ちにRIEを行なって第1の
サイドウオール層9の側面に第2のサイドウオール層8
を形成する(第2図(f))。(6) Form an insulating film and immediately perform RIE to form a second sidewall layer 8 on the side surface of the first sidewall layer 9.
(Fig. 2(f)).
(7)基板1に深い高濃度拡散領域4を形成する(第2
図(g))。(7) Forming a deep high concentration diffusion region 4 in the substrate 1 (second
Figure (g)).
(8)サイドウオール層8直下以外の金属シリサイド層
7を除去する(第1図)。なお、この工程は必要に応じ
行なう。(8) Remove the metal silicide layer 7 except directly below the sidewall layer 8 (FIG. 1). Note that this step is performed as necessary.
次に、上記構成に基づく作用を説明する。Next, the operation based on the above configuration will be explained.
上記金属シワサイト層7は、サイドウオール層8とドレ
イン領域11の界面に極低抵抗層を形成し、ホットキャ
リアのトレイン領域11への走行を助ける。このため、
ホットキャリアのサイドウオール層8への注入か抑制さ
れる。The metal wrinkle site layer 7 forms an extremely low resistance layer at the interface between the sidewall layer 8 and the drain region 11, and helps hot carriers travel to the train region 11. For this reason,
Injection of hot carriers into the sidewall layer 8 is suppressed.
また、金属シリサイド層7は、サイドウオール層8の直
下に等電位面を形成し、サイドウオール層直下の電界を
緩和することによって、ドレイン領域11近傍のホット
キャリアにエネルギーを与えないように機能する。した
かって、この面ても、ホットキャリアのサイドウオール
層8への注入か抑制される。Furthermore, the metal silicide layer 7 forms an equipotential surface directly below the sidewall layer 8 and functions to prevent energy from being imparted to hot carriers near the drain region 11 by relaxing the electric field directly below the sidewall layer. . Therefore, in this aspect as well, injection of hot carriers into the sidewall layer 8 is suppressed.
以上述べたように、この発明によれば、サイドウオール
層の直下に低抵抗の金属シリサイド層を設けたので、ホ
ットキャリアのサイドウオール層への注入を抑制し、信
頼性の高いMO3I・ランジスタを得ることかできる。As described above, according to the present invention, since a low-resistance metal silicide layer is provided directly under the sidewall layer, injection of hot carriers into the sidewall layer is suppressed, and a highly reliable MO3I transistor is realized. You can get it.
第1図はこの発明の一実施例の断面図、第2図(a)〜
(g)は実施例によるMOSトランジスタの製造工程を
説明するための断面図、第3図〜第5図は従来のMOS
トランジスタの断面図である。
1は基板、2はゲート電極、3はゲート絶縁膜、4は高
濃度拡散領域、5は低濃度拡散領域、8は第2のサイド
ウオール層、9は第1のサイドウオール層、10はソー
ス領域、11はトレイン領域である。
なお、図中、同一符号は同一または相当部分を示す。FIG. 1 is a sectional view of an embodiment of the present invention, and FIGS.
(g) is a cross-sectional view for explaining the manufacturing process of the MOS transistor according to the embodiment, and FIGS. 3 to 5 are conventional MOS transistors.
FIG. 2 is a cross-sectional view of a transistor. 1 is a substrate, 2 is a gate electrode, 3 is a gate insulating film, 4 is a high concentration diffusion region, 5 is a low concentration diffusion region, 8 is a second sidewall layer, 9 is a first sidewall layer, 10 is a source Area 11 is a train area. In addition, in the figures, the same reference numerals indicate the same or corresponding parts.
Claims (1)
け、かつ、このサイドウォール層の直下に金属シリサイ
ド層を設けたことを特徴とするMOSトランジスタ。A MOS transistor characterized in that a sidewall layer made of an insulating film is provided on a side surface of a gate electrode, and a metal silicide layer is provided directly below the sidewall layer.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12782487A JPS63292678A (en) | 1987-05-25 | 1987-05-25 | Mos transistor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12782487A JPS63292678A (en) | 1987-05-25 | 1987-05-25 | Mos transistor |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS63292678A true JPS63292678A (en) | 1988-11-29 |
Family
ID=14969576
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP12782487A Pending JPS63292678A (en) | 1987-05-25 | 1987-05-25 | Mos transistor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS63292678A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5132757A (en) * | 1990-11-16 | 1992-07-21 | Unisys Corporation | LDD field effect transistor having a large reproducible saturation current |
US5235203A (en) * | 1991-06-27 | 1993-08-10 | Motorola, Inc. | Insulated gate field effect transistor having vertically layered elevated source/drain structure |
US5281841A (en) * | 1990-04-06 | 1994-01-25 | U.S. Philips Corporation | ESD protection element for CMOS integrated circuit |
-
1987
- 1987-05-25 JP JP12782487A patent/JPS63292678A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5281841A (en) * | 1990-04-06 | 1994-01-25 | U.S. Philips Corporation | ESD protection element for CMOS integrated circuit |
US5132757A (en) * | 1990-11-16 | 1992-07-21 | Unisys Corporation | LDD field effect transistor having a large reproducible saturation current |
US5235203A (en) * | 1991-06-27 | 1993-08-10 | Motorola, Inc. | Insulated gate field effect transistor having vertically layered elevated source/drain structure |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9166039B2 (en) | Lateral transistor component and method for producing same | |
JPH0629532A (en) | MOSFET and method of manufacturing the same | |
US5401994A (en) | Semiconductor device with a non-uniformly doped channel | |
US8093665B2 (en) | Semiconductor device and method for fabricating the same | |
JPH0945906A (en) | Semiconductor device and manufacturing method thereof | |
JPH11297984A (en) | LDD type MOS transistor structure and formation method | |
KR20060069064A (en) | Ultra-thin S-o-MOS transistor with recessed source / drain structure and method of manufacturing same | |
JPH06204469A (en) | Field effect transistor and method of manufacturing the same | |
US6605845B1 (en) | Asymmetric MOSFET using spacer gate technique | |
US6180502B1 (en) | Self-aligned process for making asymmetric MOSFET using spacer gate technique | |
JPH0846196A (en) | MOS transistor and manufacturing method thereof | |
JP2005136258A (en) | Semiconductor device and manufacturing method thereof | |
JPS63292678A (en) | Mos transistor | |
JPH07153952A (en) | Semiconductor device and manufacturing method thereof | |
JPH0465549B2 (en) | ||
JPS6025028B2 (en) | Manufacturing method of semiconductor device | |
JPH04346272A (en) | Semiconductor device and manufacture thereof | |
JPH0818042A (en) | Method for manufacturing MOS transistor | |
JP2727590B2 (en) | MIS type semiconductor device | |
JPH0637106A (en) | Manufacture of semiconductor device | |
JP2001053276A (en) | Method of forming vertical semiconductor device having increased source contact area | |
JPS6126264A (en) | Manufacturing method of semiconductor device | |
JPS63292679A (en) | Manufacture of mos transistor | |
JPH07326739A (en) | Insulated-gate field-effect transistor | |
JP2001007331A (en) | Semiconductor device and manufacturing method thereof |