[go: up one dir, main page]

JPS63284469A - Method for measuring basic fluid water volume of mixture composed of liquid, powder and grain and method for deciding characteristics of various kinds of compounds in said mixture system and method for preparing said mixture - Google Patents

Method for measuring basic fluid water volume of mixture composed of liquid, powder and grain and method for deciding characteristics of various kinds of compounds in said mixture system and method for preparing said mixture

Info

Publication number
JPS63284469A
JPS63284469A JP11703787A JP11703787A JPS63284469A JP S63284469 A JPS63284469 A JP S63284469A JP 11703787 A JP11703787 A JP 11703787A JP 11703787 A JP11703787 A JP 11703787A JP S63284469 A JPS63284469 A JP S63284469A
Authority
JP
Japan
Prior art keywords
powder
mixture
granules
water
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11703787A
Other languages
Japanese (ja)
Other versions
JPH0833385B2 (en
Inventor
Yasuro Ito
伊東 靖郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP11703787A priority Critical patent/JPH0833385B2/en
Publication of JPS63284469A publication Critical patent/JPS63284469A/en
Publication of JPH0833385B2 publication Critical patent/JPH0833385B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Curing Cements, Concrete, And Artificial Stone (AREA)
  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Abstract

PURPOSE:To make rational elucidation promptly responding with the actual state of a kneaded mixture by determining the critical relative adsorptive water rate of the grain in a mixture composed of liquid, powder and grain and determining the moisture content in the capillary range of the powder. CONSTITUTION:The critical adsorptive water rate of the grain and the moisture content in the capillary range of the powder are determined in the mixture composed of the powder of cement, etc., the grain such as sand and the liquid such as water in the packed matter of the most closely packed state obtd. by subjecting the above-mentioned mixture to compacting and packing operations. The water volumes obtd. by subtracting the respective weights of the grain and powder in the closest packed matter and likewise the critical adsorptive water volumes obtd. by multiplying the above-mentioned weight of the grain by the critical adsorptive water volume and multiplying the above-mentioned weight of the powder by the above-mentioned moisture content in the capillary range respectively from the weight per unit volume of the above-mentioned packed matter in the most closely packed state are determined as the basic water volumes governing the flowability and other characteristics in the above-mentioned closest packed matter. The characteristics of the above-mentioned mixture are exactly recognized by preparing said mixture with the basic fluid water volume as an index.

Description

【発明の詳細な説明】 「発明の目的」 本発明は液体、粉体および粒体による基本流動水量測定
法および該混合系における各種配合物の特性判定法とそ
れら混合物の調整法に係り、セメント混練物などの液体
と粉体および粒体との混合物、特に粒体として砂などの
天然産出粒子や破砕加工した粒子などを用いた混合物に
ついて基本流動水量を測定し、又該混合系における配合
変化時の特性を判定し、更にほこのような混合物におい
て合理的な混合物の調整法を提供しようとするものであ
る。
DETAILED DESCRIPTION OF THE INVENTION Object of the Invention The present invention relates to a basic flow water measurement method using liquids, powders, and granules, a method for determining the characteristics of various compounds in the mixing system, and a method for preparing the mixtures. The basic flowing water amount is measured for mixtures of liquids such as kneaded materials and powders and granules, especially mixtures using naturally occurring particles such as sand or crushed particles as the granules, and composition changes in the mixing system are measured. The purpose of this study is to determine the characteristics of the mixture and to provide a method for rationally adjusting the mixture.

(産業上の利用分野) セメント、フライアッシュなどの粉体と水その他の液体
および砂その他の細骨材などの粒体および必要に応じて
砂利などの塊体を配合して得られる混合物に関してワー
カビリティ、プリージング、流動性などの特性を測定し
、当該混合系りこおける配合変化時の特性を判定し、更
にはこのような混合物に関し流動性その他の特性を最高
状態として安定に得しめることのできる調整技術。
(Industrial field of application) Workers are asked about mixtures obtained by blending powders such as cement and fly ash with water and other liquids, granules such as sand and other fine aggregates, and lumps such as gravel if necessary. It is possible to measure properties such as stability, pleating, and fluidity, and to determine the properties when the composition changes in the mixed system, and to stably obtain the best fluidity and other properties of such mixtures. Adjustment technology.

(従来の技術) 各種土木、建築などに関してセメントなどの水硬性物質
粉末を用い、これに水を主体とした液体と共に砂その他
の細骨材を配合したモルタルを利用することの多いこと
は周知の通りであり、又これに砂利や砕石などの粗骨材
や繊維材などをも配合したコンクリートに関してもその
特性としては上記3者の混合物において基本的に求める
ことが可能で、適宜に添加剤を配合しても同じ関係があ
る。同様のことは各種窯業製品を製造し或いはその他の
物理的、化学的製品を得るための資料調整に関して不可
欠的に必要であるが、斯様な調整に際しては前記したよ
うな資料粉粒の液体存在下における吸着現象(その反面
における分散現象)などがあり、所期する均斉な調整物
を得ることができないことは周知の通りである。このよ
うな現象はそうした調整物を用いて目的製品を得る場合
における成形性ないし充填性、プリージング性ないし分
離性、更には該混練物の成形硬化によって得られる製品
の強度その他の特性に影響し、又該調整物の搬送その他
の荷役取扱いに影響する。同様のことは新しい配合調整
物のみならず、粘土、石粉、スラッジやヘドロその他に
おいてもそれに混入した砂粒や繊維材その他の骨材的物
質との間に認められるところであって、その搬送、荷役
あるいは貯蔵などに関し種々の問題を有し、更には降雨
時などにおける崖や山地などの崩壊の如きにおいても基
本的には前記粉体、液体および粒体による混合物の挙動
であって、その特性如何が大きく影響する。
(Prior art) It is well known that in various civil engineering and construction projects, powdered hydraulic substances such as cement are used, and mortar is often used, which is a mixture of water-based liquid and sand or other fine aggregate. As for concrete, which also contains coarse aggregate such as gravel and crushed stone, and fiber materials, its properties can basically be obtained from a mixture of the three materials mentioned above, and additives can be added as appropriate. The same relationship exists even if they are mixed. The same thing is essential for the preparation of materials for manufacturing various ceramic products or obtaining other physical and chemical products, but in such preparation, the presence of liquid in the material powder as described above is essential. It is well known that the desired homogeneous prepared product cannot be obtained due to the adsorption phenomenon (on the other hand, the dispersion phenomenon). Such phenomena affect the moldability or filling property, pleadability or separation property when obtaining the desired product using such a prepared product, as well as the strength and other properties of the product obtained by molding and curing the kneaded product. It also affects the transportation and other cargo handling of the prepared product. The same thing can be observed not only in new formulations, but also in clay, stone powder, sludge, sludge, and other mixed materials such as sand grains, fibers, and other aggregate materials. There are various problems related to storage, etc., and even when cliffs and mountains collapse during rain, etc., it is basically the behavior of the mixture of powder, liquid, and granules, and its characteristics. It has a big impact.

従ってこの吸着現象などに関してはそれなりに検討が加
えられているが、従来では単に理論的ないし定性的に理
解するものである。このような従来一般の技術的状態に
おいて、本発明者等は嚢に特願昭58−5216号(特
開昭59−131164号)や特願昭58−24523
3号(特開昭60−139407号)のような提案をな
し、特にコンクリートないしモルタルに用いられる細骨
材表面における吸着液の定量化に関する試験測定法ない
しそのような試験測定結果を利用した混練物の調整に関
する1連の手法を提案した。即ちこれらの先願技術は前
記のような粒子ないし粉体表面に耐着介在する水などの
液体に関し、毛細管現象的に粉粒間に保留停滞されたも
のと粉粒表面に吸着されたものに区分して考察し、特に
その後者について定量的に試験測定しようとするもので
、しかも複数個の試料に対し同一遠心力条件による能率
的な測定が可能であり、それだけに上記したようなコン
クリートやモルタルなどの調整に°関し従来の湯熱とし
て同じ液体と理解把握されているものを区分して理解し
、しかもその測定結果を夫々の条件下に即応して定量的
に得しめるものであることからその混練、調整上画期的
な改善結果を得しめている。
Therefore, although some studies have been made regarding this adsorption phenomenon, conventionally it has only been understood theoretically or qualitatively. In such a conventional general technical state, the inventors of the present invention have published Japanese Patent Application No. 58-5216 (Japanese Unexamined Patent Publication No. 59-131164) and Japanese Patent Application No. 24523-1988 in the bag.
No. 3 (Japanese Unexamined Patent Application Publication No. 139407/1982) proposed a test and measurement method for quantifying adsorbed liquid on the surface of fine aggregate used in concrete or mortar, and a kneading method using such test and measurement results. We proposed a series of methods for adjusting objects. In other words, these prior art technologies are concerned with liquids such as water that adhere to the surfaces of particles or powders as described above, and which are divided into those that are retained between the particles due to capillary action and those that are adsorbed on the surfaces of the particles. The purpose of this method is to analyze the latter separately, and to quantitatively test and measure the latter in particular.Moreover, it is possible to efficiently measure multiple samples under the same centrifugal force conditions. Regarding the adjustment of water temperature, etc., it is possible to separate and understand what is understood to be the same liquid as conventional hot water, and to obtain the measurement results quantitatively in response to each condition. We have achieved revolutionary improvements in kneading and adjustment.

(発明が解決しようとする問題点) 前記したような従来一般的な技術は、JIS規定の如き
により細骨材に関し、例えば表面乾燥飽水状態による吸
水率と粗粒率、実績率等の測定データを用い上記したよ
うな混練物等の液分を把握調整しようとするものであっ
て、具体的な混練物の調整に当ってはその物性を的確に
把握し制御することができない。即ちこのような混練物
に関しては分離プリージング性ないしワーカビリティ、
圧送性、締固め性等の物性が必要であることは周知の通
りであるが、これらの物性は同じ砂であってもセメント
が異ることによってその特性が異り、又反対にセメント
が同じであっても砂が異ることにより得られた混練物の
特性はやはり変動する。
(Problems to be Solved by the Invention) Conventional general techniques as described above are related to finer aggregates as specified by JIS, for example, measuring the water absorption rate, coarse particle rate, actual rate, etc. in a surface dry saturated state. This method attempts to understand and adjust the liquid content of the above-mentioned kneaded materials using data, but it is not possible to accurately understand and control the physical properties when adjusting a specific kneaded material. In other words, for such a kneaded material, separation pleasurability or workability,
It is well known that physical properties such as pumpability and compaction properties are necessary, but these physical properties differ depending on the cement even if the same sand is used. Even so, the characteristics of the resulting kneaded product will still vary due to the difference in sand.

更に斯うした混練物を密実に充填成形するためには振動
その他の圧密処理を加えることが一般的であるが、そう
した振動その他の圧密処理に際して混練物の示す挙動な
いし変化は同じJIS規定による測定値のものであって
も大幅に異っていることが殆んどである。又厚層にコン
クリート打ちをなし或いは型枠を縦形としてコンクリー
トを打設充填した場合において打設充填された生コンク
リートまたはモルタルの示す様相は種々に変動したもの
となる。ところで本発明者等は斯かる混純のための配合
水を分割し、その特定範囲における一部を均等に細骨材
へ耐着させてからセメントを添加して1次混練し、次い
で残部の水を加えて2次混練することにより、プリージ
ングや分離が少く、しかもワーカビリティにおいて優れ
た混練物を得しめ、又それによって得られる成形体の強
度その他を同じ配合条件において相当に高めることの士
きる有利な技術を開発し業界の好評を得ているが、そう
した新技術を採用しても細骨材が異ることによって具体
的に得られる混練物における前記したような諸効果の程
度は種々に異ったものとなる。
Furthermore, in order to densely fill and mold such a kneaded material, it is common to apply vibration or other compaction treatments, but the behavior or changes of the kneaded product during such vibration or other compaction processing must be measured according to the same JIS regulations. In most cases, even the values differ significantly. In addition, when concrete is cast in a thick layer or when concrete is cast and filled using a vertical formwork, the appearance of the poured and filled fresh concrete or mortar varies in various ways. By the way, the present inventors divided the blended water for such mixing and purification, made part of it in a specific range evenly adhere to the fine aggregate, added cement and mixed it for the first time, and then mixed the remaining part. By adding water and performing secondary kneading, it is possible to obtain a kneaded material with less precipitating and separation and excellent workability, and to considerably increase the strength and other properties of the resulting molded product under the same compounding conditions. However, even if such new technology is adopted, the degree of the above-mentioned effects in the concretely obtained kneaded material varies depending on the fine aggregate used. will be different.

このような問題点を解決すべく本発明者等によって提案
された前記先願技術では粒子表面における吸着液と、そ
うでないものとを区分するだけでなく、その吸着液に関
して定量的な解明を図るものであって、頗る有効な手法
と言えるが、この技術に関して具体的な測定をなし、そ
の結果を用いてコンクリートやモルタルの調整をなした
多数の結果について仔細を検討したところ、夫々のモル
タルやコンクリートなどの調整において、なおそれなり
の的確性を有し得ない傾向が認められた。
In order to solve such problems, the above-mentioned prior art proposed by the present inventors not only distinguishes between the adsorbed liquid on the particle surface and the other adsorbed liquid, but also attempts to quantitatively clarify the adsorbed liquid. However, after conducting specific measurements regarding this technology and examining the details of numerous results in which concrete and mortar were adjusted using the results, we found that each mortar and mortar It was observed that there was still a tendency for accuracy to not be achieved when adjusting concrete, etc.

即ちこれらの実験結果によると、細骨材のような骨材類
と粉体間の相互干渉性(セメントと骨材間のなじみ)お
よび骨材(細骨材を含む)の制御を確保することが容易
でない。つまりこれら資材の表面粗度、材質、形状、表
面吸着力等、従来のJIS規定などで解明できない骨材
の性質がコンクリートやモルタルの分離ブリージング性
、ワーカビリティ、圧送性、締固め性などに大きく関与
しているものと推定されるが、このような関係を的確に
解明し、合理的な混練物を得ることができない。
In other words, according to these experimental results, it is necessary to ensure mutual interaction between aggregates such as fine aggregate and powder (compatibility between cement and aggregate) and control of aggregates (including fine aggregate). is not easy. In other words, the characteristics of aggregates that cannot be explained by conventional JIS regulations, such as the surface roughness, material quality, shape, and surface adsorption power of these materials, have a large effect on the separation and breathing properties of concrete and mortar, workability, pumping properties, compaction properties, etc. Although it is presumed that this relationship is involved, it is not possible to accurately elucidate such a relationship and obtain a rational kneaded product.

従って具体的には試し練りを繰返し、できるだけ有利な
配合混線条件を決定することとなるが、斯うした試し練
りは1つの結果を得るために相当の工数と時間を必要と
し、例えば得られる製品の強度まで求めようとすると一
般的に4週間をも必要とする。況して繰返して調整し試
験するとすれば著しい長時間が消費され、具体的施工に
即応できない、この故にこの試し練りは基本的には夫々
の作業者等による経験ないし勘により、又比較的短時間
内に測定結果の求められるもののみを試験して全般を推
定するようなこととならざるを得ず、合理性を欠くと共
に的確な合致を得ることができず、相当の誤差範囲を見
込むことが必要である。
Therefore, specifically, trial kneading is repeated to determine the most advantageous blending and mixing conditions, but such trial kneading requires a considerable amount of man-hours and time to obtain a single result. Generally, it takes 4 weeks to reach the strength. If the conditions were to be adjusted and tested repeatedly, it would take a considerable amount of time, and it would not be possible to respond immediately to specific construction work.Therefore, this trial practice is basically based on the experience or intuition of each worker, and can be completed within a relatively short period of time. However, it is necessary to test only those items for which measurement results are required in order to estimate the overall result, which lacks rationality and makes it impossible to obtain accurate agreement, and it is necessary to allow for a considerable margin of error. It is.

「発明の構成」 (問題点を解決するための手段) セメント類やフライアッシュ、スラグ粉末、粘土などの
粉体と、砂や粒状スラグ、人工細骨材、ガラス球その他
の粒体および水その他の液体を加えた混合物を用い、該
混合物を圧密充填操作した最密状態の充填物に関し前記
混合物における上記粒体の限界相対吸着水率を求めると
共に前記粉体のキャピラリー域における含水率を求め、
上記した最密状態充填物の単位容積当り重量よりその粒
体重量と粉体重量および粒体重量に前記限界相対吸着水
率を乗じた粒体吸着水量と前記粉体重量に上記キャピラ
リー域含水率を乗じた粉体吸着水量とを差引いた水量を
前記最密状態充填物における基本流動水量として求める
ことを特徴とする液体、粉体および粒体による混合物の
基本流動水量測定法。
"Structure of the invention" (Means for solving the problem) Powder such as cement, fly ash, slag powder, clay, sand, granular slag, artificial fine aggregate, glass spheres and other granules, water, etc. Using a mixture to which a liquid is added, the limit relative adsorption water content of the granules in the mixture is determined with respect to a packing in a close-packed state in which the mixture is compacted and packed, and the water content in the capillary region of the powder is determined,
From the weight per unit volume of the above-mentioned close-packed packing, the particle weight and powder weight, and the particle adsorption water amount multiplied by the particle weight and the above-mentioned limit relative adsorption water rate, and the above-mentioned powder weight and the above-mentioned capillary region water content. A method for measuring the basic flowing water amount of a mixture of liquid, powder, and granules, characterized in that the basic flowing water amount in the close-packed packing is obtained by subtracting the amount of water adsorbed by the powder multiplied by .

セメント類やフライアッシュ、スラグ粉末、粘土などの
粉体と、砂や粒状スラグ、人工細骨材、ガラス球その他
の粒体および水その他の液体を加えた混合物を用い、該
混合物を圧密充填操作した最密状態の充填物に関し前記
混合物における上記粒体の限界相対吸着水率を求めると
共に前記粉体のキャピラリー域における含水率を求め、
上記した最密状態充填物の単位容積当り重量よりその粒
体重量と粉体重量および粒体重量に前記限界相対吸着水
率を乗じた粒体吸着水量と前記粉体重量に上記キャピラ
リー域含水率を乗じた粉体吸着水量とを差引いた水量を
前記最密状態充填物における基本流動水量として求め、
この基本流動水量を利用し各種配合物に関し夫々の基本
流動水量に相関した流動水量を求めることを特徴とする
液体、粉体および粒体による混合物の特性判定法。
Using a mixture of powder such as cement, fly ash, slag powder, clay, sand, granular slag, artificial fine aggregate, glass spheres and other granules, and water and other liquids, the mixture is subjected to a compaction filling operation. Determining the critical relative adsorption water content of the granules in the mixture with respect to the most densely packed packing, and determining the water content in the capillary region of the powder;
From the weight per unit volume of the above-mentioned close-packed packing, the particle weight and powder weight, and the particle adsorption water amount multiplied by the particle weight and the above-mentioned limit relative adsorption water rate, and the above-mentioned powder weight and the above-mentioned capillary region water content. Determine the amount of water by subtracting the amount of powder adsorbed water multiplied by the amount of water multiplied by
A method for determining characteristics of mixtures of liquids, powders, and granules, which is characterized by using this basic flowing water amount to obtain flowing water amounts that are correlated to the respective basic flowing water amounts for various compounds.

セメント類やフライアッシュ、スラグ粉末、粘土などの
粉体と、砂や粒状スラグ、人工細骨材、ガラス球その他
の粒体および水その他の液体を加えた混合物を調整する
に当り、該混合物を圧密充填操作した最密状態の充填物
に関し前記混合物における上記粒体の限界相対吸着水率
を求めると共に前記粉体のキャピラリー域における含水
率を求め、上記した最密状態充填物の単位容積当り重量
よりその粒体重量と粉体重量および粒体重量に前記限界
相対吸着水率を乗じた粒体吸着水量と前記粉体重量に上
記キャピラリー域含水率を乗じた粉体吸着水量とを差引
いた基本流動水量が零状態となる条件下で第1次の混練
を行い、次いで目的とする混練物に必要とされる流動性
その他の特性値によって求められた基本流動水量と相関
流動水量による液体を添加して第2次の混練をなすこと
を特徴とする液体、粉体および粒体による混合物の調整
法。
When preparing a mixture of powder such as cement, fly ash, slag powder, clay, sand, granular slag, artificial fine aggregate, glass spheres and other granules, and water and other liquids, the mixture is Regarding the packed material in the close-packed state that has been compacted, determine the critical relative adsorption water content of the granules in the mixture, determine the water content in the capillary region of the powder, and calculate the weight per unit volume of the packed material in the closest-packed state. Then, the basic value is calculated by subtracting the particle weight, the powder weight, the particle adsorption water amount obtained by multiplying the particle weight by the above-mentioned limit relative adsorption water rate, and the powder adsorption water amount obtained by multiplying the above-mentioned powder weight by the above-mentioned capillary zone water content. First kneading is carried out under conditions where the amount of flowing water is zero, and then liquid is added according to the basic flowing water amount and correlated flowing water amount determined based on the fluidity and other characteristic values required for the target kneaded product. 1. A method for preparing a mixture of liquid, powder and granules, characterized by performing secondary kneading.

セメント類やフライアッシュ、スラグ粉末、粘土などの
粉体と、砂や粒状スラグ、人工細骨材、ガラス球その他
の粒体および水その他の液体と共に砂利、砕石その他の
粗骨材ないし塊状体を加えた混合物を調整するに当り、
該混合物を圧密充填操作した最密状態の充填物に関し前
記混合物における上記粒体の限界相対吸着水率を求める
と共に前記粉体のキャピラリー域における含水率を求め
、上記した最密状態充填物の単位容積当り重量よりその
粒体重量と粉体重量および粒体重量に前記限界相対吸着
水率を乗じた粒体吸着水量と前記粉体重量に上記キャピ
ラリー域含水率を乗じた粉体吸着水量とを差引いた基本
流動水量を絶乾状態の粒体に関する間隙率として求める
と共に塊状体に関する間隙率を求め、この塊状体に関す
る間隙率とスランプ値を図表化された相関関係から得し
めることを特徴とする液体、粉体および粒体による混合
物の調整法。
Powder such as cement, fly ash, slag powder, clay, sand, granular slag, artificial fine aggregate, glass spheres and other granules, water and other liquids, as well as gravel, crushed stone and other coarse aggregates or lumps. When adjusting the added mixture,
Regarding the close-packed packing obtained by compaction-packing the mixture, the critical relative adsorption water content of the granules in the mixture is determined, and the water content in the capillary region of the powder is determined, and the unit of the close-packed packing described above is determined. From the weight per volume, the particle weight and powder weight, the particle adsorption water amount obtained by multiplying the particle weight by the above-mentioned limit relative adsorption water rate, and the powder adsorption water amount obtained by multiplying the above-mentioned powder weight by the above-mentioned capillary region water content. The method is characterized in that the subtracted basic flowing water amount is determined as the porosity of the granules in an absolutely dry state, the porosity of the agglomerates is determined, and the porosity and slump value of the agglomerates are obtained from the graphed correlation. Methods for preparing mixtures with liquids, powders and granules.

(作用) セメント類などの粉体と砂などの粒体および水などの液
体による混合物を圧密充填操作した最密状態の充填物に
おいて、前記混合物における粒体の限界吸着水率と粉体
のキャピラリー域含水率を求め、上記した最密状態充填
物の単位容量当り重量から該最密状態充填物中の粒体お
よび粉体の各重量と前記粒体重量に限界吸着水率を乗じ
た粒体の限界的吸着水量と前記粉体重量に上記キャピラ
リー域含水率を乗じた粉体の同じく限界的吸着水量を夫
々差引いた水量は上述した最密状態充填物における流動
性その他の特性を支配する基本的な水量として求められ
る。
(Function) In a packing in a close-packed state in which a mixture of powder such as cement, granules such as sand, and liquid such as water is compacted and packed, the limit adsorption water rate of the granules in the mixture and the capillary of the powder Calculate the regional water content, calculate the weight per unit volume of the above-mentioned close-packed packing, add each weight of the granules and powder in the closest-packed packing, and multiply the above-mentioned particle weight by the limit adsorption water content. The critical amount of adsorbed water and the amount of water obtained by subtracting the same critical amount of adsorbed water of the powder obtained by multiplying the powder weight by the capillary region water content are the basics that govern the fluidity and other properties of the close-packed packing described above. It is calculated as the amount of water.

前記基本的流動水量は前記最密状態充填物の成形性、プ
リージング、凝結後における強度発現などに有意な相関
関係を示し、この基本的流動水量を指標として前記混合
物を調整することにより当該混合物の特性を的確に把握
することができる。
The basic flowing water amount shows a significant correlation with the formability, pleating, strength development after setting, etc. of the close-packed packing, and by adjusting the mixture using this basic flowing water amount as an index, the mixture can be improved. Characteristics can be accurately grasped.

前記した混練物の調整に関して上記した基本流動水量が
零状態となる水量を用いて第1次の混練をなすことによ
り粒体周面にセメント等の粉体を最も安定した状態に覆
着させることができる。又このようにして1次混練され
たものに対して添加される2次混練水量は得られる混練
物の流動性その他の特性に有効に影響し、目的としたそ
れらの特性値から求められる基本流動水量を添加した2
次混練で所期の特性が的確に求められる。
Regarding the preparation of the kneaded material described above, the powder such as cement is coated on the periphery of the granules in the most stable state by performing the first kneading using the amount of water at which the basic flowing water amount described above becomes zero. Can be done. In addition, the amount of secondary kneading water added to the primary kneaded product in this way effectively affects the fluidity and other properties of the resulting kneaded product, and the basic fluidity determined from the intended characteristic values. Added amount of water 2
In the next kneading process, the desired properties can be accurately determined.

粗骨材などの洗体を配合したコンクリートの場合におい
ては粒体間間隙率と現体間間隙率の関係を複合して適用
することにより同様に好ましい結果がもたらされる。
In the case of concrete mixed with a cleaning material such as coarse aggregate, similarly favorable results can be obtained by applying the relationship between the intergranular porosity and the solid porosity in combination.

(実施例) 上記したような本発明について更に説明すると、本発明
者等は上記したような粒体、粉体および液体から成る混
練物について、その配合混線条件により得られる混練物
ないし該混練物によって成形された製品の特性などを的
確に予測し、合理的に混練物を調整することについて多
年に亘る実地的検討と推考を重ねた結果、このような混
練物の最密状態充填を形成したものについてその単位容
積当り重量からその粒体および粉体の各重量と粒体につ
いての限界相対吸着水量と粉体についての限界相対吸着
水量とを夫々差引いた残部水量を該最密状態充填物の基
本流動水量として把握することができ、このような新し
い基本流動水量と前記最密状態充填物における緩み(な
いし充填)率との間に整然たる関係の存することを発見
し、このような関係を利用して配合混線条件を決定する
ことにより得られる混練物の特性を的確に解明し、予測
することに成功した。
(Example) To further explain the present invention as described above, the present inventors have developed a kneaded product or a kneaded product obtained by mixing and mixing conditions for a kneaded product consisting of granules, powder, and liquid as described above. As a result of many years of practical study and speculation on how to accurately predict the characteristics of products molded by molding and rationally adjust the kneaded material, we have created this type of close-packed kneaded material. The remaining water amount obtained by subtracting the respective weights of the granules and powder, the limit relative adsorption water amount for the granules, and the limit relative adsorption water amount for the powder from the weight per unit volume of the object is calculated as the remaining water amount of the close-packed packing. It can be grasped as the basic flowing water amount, and it was discovered that there is an orderly relationship between this new basic flowing water amount and the loosening (or filling) rate in the close-packed packing, and such a relationship was established. We succeeded in accurately elucidating and predicting the characteristics of the resulting kneaded product by determining the mixing conditions using this method.

本発明における粉体としてはポルトランドセメント類、
アルミナセメント、マグネシアセメント、石こう類、消
石灰などの石灰類、高炉スラグ、膨張セメントなどの特
殊セメント、フライアッシュ、シリカヒユーム、石粉、
粘土ないし泥分その他の無機または有機質の充填ないし
増量目的で用いられる粉状体がある。又粒体としては川
砂や海砂、山砂、砕砂、粒状スラグ、人工細骨材などの
細骨材や金属繊維、無機繊維などの繊維材、更に塊状体
として砂利、砕石などの粗骨材があり、又これら粒体な
いし塊状体としては遮音や断熱あるいは耐火性、原子力
遮断性、軽量性、重量性などを附与するために用いられ
る各種骨材類などがある。
In the present invention, the powder includes Portland cements,
Alumina cement, magnesia cement, gypsum, limes such as slaked lime, blast furnace slag, special cements such as expanded cement, fly ash, silica hume, stone powder,
There are powders used for filling or bulking clay, mud, or other inorganic or organic substances. In addition, granules include fine aggregates such as river sand, sea sand, mountain sand, crushed sand, granular slag, and artificial fine aggregate, and fibrous materials such as metal fibers and inorganic fibers, and coarse aggregates such as gravel and crushed stone as granules. These granules or lumps include various aggregates used to impart sound insulation, heat insulation, fire resistance, nuclear insulation, lightness, weight, etc.

更に液体としては水が代表的であるが、これに減水剤、
急結剤、プラスチック類などの各種助剤ないし添加剤を
混合したものが広(用いられる。
Furthermore, water is a typical liquid, but water reducing agents,
Mixtures of various auxiliaries or additives such as quick setting agents and plastics are widely used.

然して本発明者は上記したような細骨材などの粒体に関
して、充分且つ大量に水分を耐着含有させたものに遠心
力などの脱水力を作用させることによりその含水量が脱
水力増大に伴って次第に低下することとなるが、ある一
定限度に達するとそれ以上に脱水力が増大しても殆んど
含水量を低下することのない限界相対吸着水率の存する
ことを確認しており、同様に粉体に関しても粉体相互が
実質的に接触し且つ粉体粒子間に水が充満していてしか
も空気が実質的に存しないキャピラリー域に達した状態
において該粉体の限界的吸着水率の存することが確めら
れている。更に前記粒体についての限界相対吸着水率測
定に関して粉体を併用することにより粒体間における接
点液の如きによる影響を回避し的確な測定結果の得られ
る手法などを確立している。
However, the inventors of the present invention have proposed a method for increasing the dewatering force by applying dewatering force such as centrifugal force to particles such as fine aggregate as described above, which contain a sufficient amount of water to prevent adhesion. However, it has been confirmed that once a certain limit is reached, there is a critical relative adsorption rate at which the water content hardly decreases even if the dehydration power increases further. Similarly, regarding powders, the limit adsorption of the powders is reached when the powders are in substantial contact with each other and the capillary region is filled with water between the powder particles and is substantially free of air. It has been confirmed that water content exists. Furthermore, regarding the measurement of the critical relative adsorption rate of the granules, a method has been established that avoids the influence of contact liquid between the granules and obtains accurate measurement results by using the powder in combination.

本発明においてはこれらの本発明者等による新規開発技
術に加えて前述したように最密状態充填物についての解
明を重ね、前記した基本的流動水量を求めるものである
。即ち本発明者等は上記したような細骨材等の骨材に関
してその吸着液量を求めるに当って粉体を併用すること
により骨材間における接点液の如きによる影響を該粉体
の保液量として排除して的確な測定結果を得しめる。又
このような骨材の如き粒状ないし繊維状体と粉体および
液体から成る混合系に対し遠心力を作用させて脱液処理
するならば、作用する遠心力の変化によって吸着液量が
変化し、つまり遠心力の増大に従って骨材に対する吸着
液量が次第に低減することとなるが、斯うした脱液処理
の遠心力がある一定値を超えると、それ以上に遠心力を
増加させても吸着液量に殆んど変動することがなくなり
、前記したような吸着液量の低減傾向の変曲するポイン
トの存することを確認し、このような吸着液低減傾向の
変更点を限界吸着水率として理解することができる。然
してこのような限界吸着水率は用いられた骨材、粉体あ
るいは液体の何れか1つまたは2つ以上が変化すること
によってそれなりに変化し、従って具体的に得られる吸
着水率は相対限界吸着水率となるが、斯うした限界基準
吸着水率なるものは多数の実験結果からどのような混合
系においても存在し、又同じ混合組成のものにおいては
常に一定である。例えば富士月産川砂(Ql、49、F
、M、: 2.65、比重表乾ρ。
In the present invention, in addition to these newly developed techniques by the present inventors, we have repeatedly investigated the close-packed packing as described above, and determined the basic flowing water amount as described above. In other words, the inventors of the present invention used powder together to determine the amount of adsorbed liquid for aggregates such as fine aggregate as described above, thereby reducing the influence of the contact liquid between the aggregates on the powder. Exclude as liquid volume to obtain accurate measurement results. Furthermore, if centrifugal force is applied to a mixed system consisting of granular or fibrous materials such as aggregate, powder, and liquid to remove liquid, the amount of adsorbed liquid will change due to changes in the applied centrifugal force. In other words, as the centrifugal force increases, the amount of adsorbed liquid on the aggregate gradually decreases, but once the centrifugal force of such deliquing treatment exceeds a certain value, even if the centrifugal force is increased beyond that, the amount of adsorbed liquid will decrease. After confirming that there is almost no fluctuation in the amount of adsorbed liquid and that there is a point of inflection in the decreasing trend of the amount of adsorbed liquid as described above, this point of change in the decreasing trend of adsorbed liquid is set as the limit adsorbed water rate. I can understand. However, this limit adsorbed water rate varies depending on one or more of the aggregates, powders, or liquids used, and therefore the specific adsorbed water rate that can be obtained is the relative limit. Regarding the adsorbed water rate, such a limit standard adsorbed water rate exists in any mixture system, and is always constant for mixtures having the same composition, as shown by numerous experimental results. For example, Fujitsuki river sand (Ql, 49, F
, M: 2.65, specific gravity surface dry ρ.

: 2.58、ρ、1.52、ρv:1.739、ε:
31%、Sm: 65.3cal/g)と普通ポルトラ
ンドセメントおよび代表的液体である水を用い、砂セメ
ント比(S/C)をOll、2.3と変化させた各試料
について本発明者等が嚢に提案した特願昭58−245
233号(特開昭60−139407号)の方法により
遠心力30G(Gは重力)より100OGに亘る多様な
脱水処理を行った結果は、S/Cが0であるセメントペ
ーストの含水率WP/Cは前記したように作用する遠心
力の如何によってそれなりに異ると共に、これに砂が混
合され、S/Cの値が高くなるに従って含水率が高(な
るが、上記セメントペーストの場合を基点としてS/C
の上昇に伴い含水率の上昇する度合は、一定速心力(例
えば150G〜200G)以上となってもその遠心力増
大にも拘わらず殆んど変化がない。即ち100G以下の
ような重力の比較的低い領域においては30G、60G
、80G、100Gの如く相当に少い遠心力差条件を以
て処理測定しているのに対して、200G以上において
は100G以上のような大きい遠心力差条件で処理測定
したものであるが、150Gから200Gとなることに
よって何れのS/Cの場合においても比較的大きい含水
率の低下があり、それより重力条件が大となることによ
ってもこの含水率低下の程度が大幅に低減する様相が示
され、しかもそのS/Cの増加に伴う図表上の上昇傾斜
角θ1は略一定であって、殆んど変化がない。例えば4
38Gと100OGとでは500G以上の重力増大があ
るに拘わらずその上昇傾斜角θ、は一定状態であり、2
00Gの場合においても上記1000Gの場合と実質的
に平行状態である。
: 2.58, ρ, 1.52, ρv: 1.739, ε:
The present inventors used ordinary Portland cement (31%, Sm: 65.3 cal/g) and water as a representative liquid, and varied the sand-cement ratio (S/C) to 2.3. Patent application proposed to Fukuro in 1982-245
The results of various dehydration treatments ranging from centrifugal force of 30G (G is gravity) to 100OG using the method of No. 233 (Japanese Unexamined Patent Publication No. 60-139407) show that the water content of cement paste with S/C of 0 is WP/ C varies to some extent depending on the centrifugal force acting as described above, and when sand is mixed with it, the higher the S/C value, the higher the water content (but based on the case of the cement paste mentioned above) as S/C
The degree to which the water content increases as the centrifugal force increases remains almost unchanged even when the centrifugal force increases above a constant speed (for example, 150 G to 200 G). In other words, in areas of relatively low gravity such as 100G or less, 30G, 60G
, 80G, and 100G, whereas processing and measurement were performed under conditions of a considerably small centrifugal force difference such as 100G or more for 200G or more, but from 150G 200G causes a relatively large drop in water content in all S/C cases, and it appears that the extent of this drop in water content is significantly reduced by increasing the gravity condition. , Moreover, the upward slope angle θ1 on the diagram as the S/C increases is approximately constant and hardly changes. For example 4
At 38G and 100OG, even though there is an increase in gravity of more than 500G, the upward inclination angle θ remains constant, and 2
Even in the case of 00G, the state is substantially parallel to the above-mentioned case of 1000G.

前記したような結果について、その遠心力作用後の全含
水量をW2とし、Cをセメント量、Sを砂量とすると共
に遠心力作用後の粉体の含水量をWP、また遠心力作用
後の砂の含水量をWSとなし、更に遠心力処理後の前記
傾斜角θ、の正接(tan θ1)をβとすると、上記
Wz /Cは次の1式のようになる。
Regarding the above results, the total water content after the action of centrifugal force is W2, C is the amount of cement, S is the amount of sand, and the water content of the powder after the action of centrifugal force is WP, and after the action of centrifugal force, Let WS be the water content of the sand, and let β be the tangent (tan θ1) of the inclination angle θ after centrifugal force treatment, then the above Wz /C becomes as shown in the following equation.

W、/C=W、/C+βS/C・・・ ■又、βは次の
■式のように表わされる。
W, /C=W, /C+βS/C... ■Also, β is expressed as in the following formula (■).

従って前記W、は、 W3 =W−WP       ”’  ■従ってβは
砂の含水量を砂量で除した含水率となり、これを骨材の
限界相対吸着水率とする。然して具体的にW、/Cを1
式によって求めると共にその精度(r2)を検討すると
、次の第1表の如(であった。
Therefore, W3 = W-WP ''' ■ Therefore, β is the water content obtained by dividing the water content of sand by the amount of sand, and this is taken as the limit relative adsorption water rate of the aggregate.Specifically, W, /C to 1
When calculated using the formula and examining its accuracy (r2), it was as shown in Table 1 below.

第1表 即ち精度rtは少くとも0.98以上であることが確認
され、頗る高精度のものであることが確認された。
It was confirmed that the accuracy rt in Table 1 was at least 0.98 or more, and it was confirmed that the accuracy was extremely high.

又このような結果について、その遠心力Gと前記β、即
ちW! /Sの関係は前記した200Gまでは相対吸着
水率βが次第に低下するが、200Gを超えることによ
り殆んど相対吸着水率βが低下しないで略水平状の直線
的な脱水結果が得られる様相は明かである。即ち上記し
た200Gまでの相対吸着水率β低下が200G以上の
遠心力作用時における略水平状直線とのなす角度θ2が
求められ、このθ2は夫々の骨材によってそれなりに異
ることになるが、θ2の角度如何は夫々の骨材における
脱水エネルギーの大きさによる脱水特性を代表するIG
当りの界面脱水率ということができる。前記のように遠
心力が増大しても相対吸着水率に殆んど変化のない値は
当該骨材に関する限界吸着水率(β。)と言うことがで
きる。又最大相対吸着水率β。waxはθ2の傾斜直線
と重力0点との交点であり、骨材の全相対吸着水率βG
Also, regarding such a result, the centrifugal force G and the above β, that is, W! /S relationship is that the relative adsorbed water rate β gradually decreases up to 200G, but by exceeding 200G, the relative adsorbed water rate β hardly decreases and a substantially horizontal linear dehydration result can be obtained. The situation is clear. In other words, the angle θ2 between the relative adsorbed water rate β decrease up to 200G and the substantially horizontal straight line when a centrifugal force of 200G or more is applied is determined, and this θ2 will vary depending on each aggregate. , the angle of θ2 is an IG representing the dewatering characteristics depending on the magnitude of dewatering energy in each aggregate.
It can be said to be the interfacial dehydration rate. As mentioned above, a value in which the relative adsorbed water rate hardly changes even if the centrifugal force increases can be said to be the limit adsorbed water rate (β) for the aggregate. Also, the maximum relative adsorption water rate β. wax is the intersection of the slope line of θ2 and the zero gravity point, and the total relative adsorption water rate βG of the aggregate
.

は限界吸着水率β。にβ。waxを加えたものとなり、
遠心力処理によって、該吸着水率β。maxが脱水され
る関係をなすものであり、又、前記のように遠心力増大
により吸着水率の実質的に変化しない遠心力値をG r
aaxとして求めることができる。
is the critical adsorbed water rate β. β to. Added wax,
By centrifugal force treatment, the adsorbed water rate β. G r
It can be obtained as aax.

一方粉体のペーストに関してキャピラリー域における含
水率が混練操作時におけるトルクの最高値近辺となるこ
とについては同じく本発明者等により特開昭58−56
815号公報の第4図などに発表されている(該公報で
はファニキュラーないしキャピラリーとされているが、
その後の検討によりキャピラリー域たることが確認され
ている)。
On the other hand, regarding the fact that the water content in the capillary region of a powder paste is close to the maximum torque value during the kneading operation, the present inventors also reported in Japanese Patent Application Laid-Open No. 58-56
It is announced in Figure 4 of Publication No. 815 (in this publication, it is referred to as a funicular or capillary, but
Subsequent studies confirmed that it is a capillary region).

即ち絶乾状態の粉体に対し次第に加水しながら混練した
場合において、その加水量が次第に増加するに従って混
練トルクは増大するが、斯うして水量増加に伴い次第に
増加したトルクがトルク最高点に達した後に更に水量が
増加するならば今度は次第にトルクが減少することとな
る。これはペースト中における水が粉体粒子間の空隙を
完全状態に満たしてスラリー状態となり、しかもその粉
体粒子間水量が次第に増加することによって流動性が大
となることによるものである。つまり粉体粒子間の空隙
が完全に水で満たされる(スラリーとなる)直前のキャ
ピラリー域においては混練トルクが最大状態となるわけ
で、このような混練トルク最大状態で調整された混練物
を用いるときはブリージング水の発生を有効に縮減し、
斯うした混練物による製品は強度その他の特性において
卓越したものとなることが前記公開公報に示されており
、本発明ではこのようなキャピラリー域の含水率(WP
/C)をαとし、前記限界吸着水率β。
In other words, when powder in an absolutely dry state is kneaded while gradually adding water, the kneading torque increases as the amount of water added gradually increases, but the torque that gradually increases as the amount of water increases reaches the maximum torque point. If the amount of water increases further after that, the torque will gradually decrease this time. This is because the water in the paste completely fills the voids between the powder particles to form a slurry, and the fluidity increases as the amount of water between the powder particles gradually increases. In other words, the kneading torque is at its maximum in the capillary region just before the voids between powder particles are completely filled with water (becoming a slurry), and the kneaded material adjusted to the maximum kneading torque is used. Effectively reduces the generation of breathing water,
It is shown in the above-mentioned publication that a product made from such a kneaded product has excellent strength and other properties, and in the present invention, the water content (WP) in the capillary region is
/C) is α, and the above-mentioned limit adsorption water rate β.

と共に重要なファクターとして採用するものである。This is also adopted as an important factor.

ところで本発明者は上述したような粉体、粒体および液
体からなる混練物について前記のようにそれ以上に作用
力を増大しても吸着水率βの実質的に低下しない状態を
遠心力で実施した場合を検討した結果、その遠心力が例
えば150〜200G(粒体の性状によって夫々の場合
に若干の差がある)のように高いことから充填組織内に
気孔が発生し、単に脱水する場合は兎も角としても実際
の充填打設組織と異なることになることに鑑み、上記の
ような気孔を発生しない遠心力以外の方法により前記遠
心力150〜200Gを作用せしめたものと同じ状態を
形成することについて検討した結果、突き固め方式によ
っても同等の状態を形成し得ることを確認した。即ちこ
のような方法として本発明者は多くの細骨材とセメント
粉体との組合わせについて仔細に検討した結果、直径が
11.4cmで高さが9.8 cmの容量1000cc
を有する円筒形容器(容重マス)に練り上がった試料約
500 ccを装入してから重量500gのテーブルフ
ロー用突き棒で容器内全般に亘って平均に25回以上の
突き固め操作を行い、次いで支持台面から2〜3CIm
上げて落下させるスタンピング操作を3回以上行って突
き固め充填状態を平均化し、その後更に約500 cc
の試料を装入して同じ突き固め操作とスタンピングを行
う方法が好ましいものであって、この方法で同じS/C
による試料に対しW/Cを次第に変化させた各種のもの
について検討するな“らば、得られた突き固め充填物に
おいてそのW/Cが特定の値を採った場合に最高の容重
値が得られる。例えば細骨材たる砂の粒径組成と合致し
、しかも形状的に揃った基準材として0.075〜5m
mの径を有するガラス球を用い、これにポルトランドセ
メントを、S/C=1として配合した試料についてW/
Cを順次且つ種々に変化させて上記突き固め方式による
充填を行った場合には次の第2表のような結果が得られ
、W/Cを28%としたものが容重ρにおいて2235
gであって最高状態の充填状態を得しめ、これよりW/
Cが低くても高くても容重ρが小となる。
By the way, the present inventor used centrifugal force to achieve a state in which the adsorbed water ratio β does not substantially decrease even if the acting force is increased further with respect to the kneaded material consisting of powder, granules, and liquid as described above. As a result of examining the cases in which it was carried out, it was found that the centrifugal force was high, for example, 150 to 200 G (there are slight differences in each case depending on the properties of the particles), and pores were generated in the packed tissue, resulting in simple dehydration. In this case, considering that both the rabbit and the horn will be different from the actual filling structure, the condition is the same as that in which the centrifugal force of 150 to 200 G is applied by a method other than the centrifugal force that does not generate pores as described above. As a result of examining the possibility of forming a solid state, it was confirmed that the same condition could be formed using the tamping method. That is, as a method of this invention, the inventor of the present invention has carefully studied many combinations of fine aggregate and cement powder, and as a result, a combination of 11.4 cm in diameter and 9.8 cm in height with a capacity of 1000 cc was developed.
Approximately 500 cc of the kneaded sample is charged into a cylindrical container (volume/weight mass), and then tamped with a table flow ramming rod weighing 500 g over the entire interior of the container an average of 25 times or more. Next, 2 to 3 CIm from the support surface.
Perform the stamping operation of raising and dropping three times or more to equalize the tamped filling state, and then add approximately 500 cc
The preferred method is to charge the same S/C sample and perform the same tamping operation and stamping.
If we consider various samples with gradually varying W/C, we will find that the highest volume/weight value is obtained when the W/C of the resulting tamped filling is at a specific value. For example, as a standard material that matches the particle size composition of sand, which is fine aggregate, and has a uniform shape, 0.075 to 5 m
Using a glass bulb with a diameter of m, for a sample in which Portland cement was mixed with S/C = 1, W/
When filling is performed by the above-mentioned tamping method while changing C sequentially and variously, the results shown in Table 2 below are obtained, and when W/C is 28%, the volumetric weight ρ is 2235.
g, the highest filling state is obtained, and from this W/
The volumetric weight ρ becomes small whether C is low or high.

第2表 同様に同じガラス球とポルトランドセメントを用い、S
/Cを3とした場合にはW/Cが33%程度のときに容
重ρが2227gであって、このW/C値より1%高く
なり或いは低くなった場合には夫々に容重ρの低くなる
様相は第2表の場合と同じであり、更にS/Cを6とし
た場合にはW/Cが48%程度のときに容重ρが最高値
を示し、これよりW/C値が変動することにより高くな
っても低くなっても容重ρは低下する。
As in Table 2, using the same glass bulbs and Portland cement, S
When /C is set to 3, the volumetric weight ρ is 2227g when the W/C is about 33%, and when the volumetric weight ρ becomes 1% higher or lower than this W/C value, the volumetric weight ρ becomes lower. The situation is the same as in Table 2, and furthermore, when S/C is set to 6, the volumetric weight ρ reaches its maximum value when W/C is about 48%, and from this the W/C value fluctuates. By doing so, the capacity weight ρ decreases whether it becomes high or low.

斯うした様相は上記基準材としてのガラス球が細骨材と
して一般的に用いられている天然砂(川砂や海砂、山砂
)、人工砂(砕砂やスラグ粒)の場合においても全く同
様であって、このようなW/C値との関係でピーク点の
存在する様相は粉体(セメント)について混練トルクの
ピーク点の存在する様相と共通するものがあり、しかも
上記のように容重ρがピーク点を示すW/Cが前記した
150G〜200Gの遠心力処理したときのそれと実質
的に同じであって測定誤差範囲内の差しか認められない
This situation is exactly the same in the case of natural sand (river sand, sea sand, mountain sand) and artificial sand (crushed sand and slag grains), where glass spheres as the reference material are generally used as fine aggregate. Therefore, the appearance of a peak point in relation to the W/C value is similar to the appearance of a peak point of kneading torque for powder (cement), and as mentioned above, The W/C, where ρ indicates the peak point, is substantially the same as that obtained when the centrifugal force of 150 G to 200 G is applied as described above, and only a difference within the measurement error range is observed.

即ち本発明においてはこのような手法による充填状態を
最密充填状態となし、この状態が実際のこの種混練物の
充填打設状態によく合致していることから好ましい代表
的試験方法として利用することとし、突き棒による突き
固めは上下各層について25回、スタンピングは各層毎
に3回の夫々一定のものとして実施した。
That is, in the present invention, the filling state obtained by such a method is considered to be the closest packing state, and this state is used as a preferred representative test method because it closely matches the actual filling and casting state of this type of kneaded product. This year, tamping with a ramming rod was carried out 25 times for each of the upper and lower layers, and stamping was carried out 3 times for each layer.

ところで斯うした最密充填状態による試験測定を多くの
混練物試料について実施した結果、この種混練物におけ
る水量に関してそのセメント量、砂量に対し、前記した
α値およびβ値を以てしても解明することのできない要
因の存することを発見した。即ち斯うした要因は、セメ
ントおよび砂を種々に変化させたどのような試料におい
ても求められるものであるが、後述する測定例における
と同じガラス球、相撲用砕砂および富士川砂を粒体とし
て用い、これに普通ポルトランドセメントを粉体として
採用し、S/Cを種々に変化させた多様な混練物を準備
して前記最密充填状態を夫々形成したものにおける水量
W/Cを、そのセメント1に対して前述したようなα、
βにより計算して求めた結果と、実際の混練物について
の実測値とを対比し要約的に示すと第9図の如くである
By the way, as a result of carrying out test measurements in such a close-packed state on many samples of kneaded materials, it was found that the amount of water in this kind of kneaded material could not be explained using the α and β values described above for the amount of cement and sand. We discovered that there are factors that make it impossible to do so. In other words, such factors can be found in any sample with various changes in cement and sand, but the same glass balls, crushed sumo sand, and Fujikawa sand used as granules were used in the measurement examples described later. , the amount of water W/C in each of the above-mentioned close-packed state was determined by preparing a variety of kneaded materials using ordinary Portland cement as powder and varying the S/C. α as mentioned above for
Fig. 9 shows a summary of the comparison between the results calculated using β and the actual values measured for the actual kneaded material.

つまりソリッドの測定点で示された計算値に対して、ブ
ランクの測定点を以て示された実測値は相当にずれてお
り、α、β以外の第3の要因が、斯うしたそれ以上に操
作力を与えても実質的に含水量に変動を来さない最密充
填状態において存在するものと言える。評言すると、成
程S/Cが1程度の相対的に砂の少ない状態においては
砂粒子間において粉体(セメント)が多量に存在するか
ら、そのような多量に存在するセメントが斯うした第3
の要因であるかのように考えられるとしても、このS/
Cが2ないし3以上となって粉体(セメント)が少ない
状態となってもこのような計算値と実測値との間の偏差
は全(減少しないで、規則的に増加する傾向を示すこと
は図示の通りである。
In other words, the actual measured value shown at the blank measurement point deviates considerably from the calculated value shown at the solid measurement point, and a third factor other than α and β may cause the operation to be more than that. It can be said that it exists in a close-packed state in which the water content does not substantially change even when force is applied. To make a comment, in a state where there is relatively little sand with a process S/C of about 1, a large amount of powder (cement) exists between the sand particles, so the cement present in such a large amount is 3
Even if this S/
Even if C is 2 or 3 or more and the amount of powder (cement) is small, the deviation between the calculated value and the actual value will not decrease but will tend to increase regularly. is as shown.

即ちこのような粉体、粒体および液体よりなる混練物に
おける液体においては前記α、βのみならず、更に第3
の要因が作用することは明確である。
In other words, in the liquid in such a kneaded material consisting of powder, granules, and liquid, not only the above-mentioned α and β but also the third
It is clear that these factors are at play.

そこで本発明者等はこのような第3の要因を解明するこ
とについて検討を重ねた結果、この第3の要因は結局に
おいて充填された混練物の構造ないし組織に原因して内
部に保持される水分と言うべきであるが、このような混
練物の充填組織に関し斯かる構造ないし組織を考察する
場合において、その骨格的機能ないし構造をなすものは
砂であることが明らかであって、そのような骨格的機能
ないし構造を形成している砂のような粒体間の間隙度合
(緩み率ないし充填状態)が支配的機能をなすものと考
えられる。然るにこのような混練物用原料として入手さ
れる砂のような粒体においては前記のような骨格的機能
ないし構造をなさない程度の微粒分(微砂分)を耐着混
入することが不可避であって、斯うした微粒分(微砂分
)を差引いたものを用いなければ適切な解明をなし得な
い。
Therefore, the inventors of the present invention conducted repeated studies to elucidate this third factor, and found that this third factor is ultimately retained within the filled kneaded material due to the structure or texture of the filled kneaded material. It should be called water, but when considering the structure or structure of the packed structure of such a kneaded product, it is clear that the substance that forms the skeletal function or structure is sand, and such It is thought that the dominant function is the degree of porosity (looseness rate or filling state) between grains such as sand that form the skeletal function or structure. However, in the grains such as sand obtained as raw materials for such kneaded products, it is unavoidable to mix in fine particles (fine sand) to the extent that they do not have the above-mentioned skeletal function or structure to prevent adhesion. Therefore, proper elucidation cannot be achieved unless such a result is obtained by subtracting the fine grain content (fine sand content).

然して斯うした微粒分(微砂分)を何を以て、どのよう
に求めることが妥当であるかについては従来において細
小フルイ目による分別を行うようなことで考慮されてい
るとしても的確性を有するものでない。本発明者は砂の
実積率測定を従来の絶乾締固め方法の締固め状態におけ
る空隙率を満たす程度の湿潤状態で実施した場合にその
実績率が大きくなる事実を発見したが、これは前記微粒
分(微砂分)によるものであり、この微粒量に関する微
粒率(微粉率)Msは具体的に次の1式によって求める
こととした。
However, it is not accurate to know what to use and how to determine the fine grain content (fine sand content), even though it is conventionally considered to be based on classification using fine sieves. It's not something. The present inventor discovered the fact that when measuring the actual area ratio of sand in a moist state that satisfies the porosity in the compacted state of the conventional bone-dry compaction method, the actual area ratio increases. This is due to the fine grain content (fine sand content), and the fine grain ratio (fine powder ratio) Ms regarding this fine grain amount is specifically determined by the following formula.

ρS 但し、ρ8は湿潤状態の嵩比重であり、ρ0は絶乾状態
の嵩比重である。
ρS However, ρ8 is the bulk specific gravity in a wet state, and ρ0 is the bulk specific gravity in an absolutely dry state.

更に上記のようにして微粒率(微粉率)を求めた場合に
おいて、前述したような第3の要因として重要な骨格的
機能を果たす砂のような粒体間の間隙率!、は、現実に
は湿潤状態 〔甲、h = (1−−)xlOO) ρ− であるとしても、絶乾状態を基準として補正されたもの
となるべきで、この絶乾状態の粒体間間隙率甲、Dは次
の■式のようになる。
Furthermore, when determining the fine grain ratio (fine powder ratio) as described above, the third factor mentioned above is the porosity between grains such as sand, which plays an important skeletal function! , should be corrected based on the absolute dry state, even if it is actually in the wet state [A, h = (1--)xlOO) ρ-, and the The porosity A and D are expressed by the following formula (■).

甲so  =  (t−−)xtOO(%)・・・・・
・■ρD 又絶乾単位容積重量の測定は上記の容器(マス)に絶乾
砂を3層に分けて入れ、その各1層毎に左右両側面を各
10回(計20回)木槌で軽く叩き、充填終了後その上
面を角部を3角状とした定木で平面状に均らし、その重
量を測定した。
Kso = (t--)xtOO(%)...
・■ρD Also, to measure the bone dry unit weight, put bone dry sand in three layers in the container (mass) mentioned above, and pound each layer with a mallet on both the left and right sides 10 times (20 times in total). After filling was completed, the top surface was leveled with a piece of wood with triangular corners, and its weight was measured.

更に水中単位容積重量の測定は、500IIllのメス
シリンダーに水を用意し、前記容器(マス)に1ooa
/!の水を入れ、次に容器深さの3分の1に相当した絶
乾砂を入れ、棒でよく攪拌した後左右両側面を各10回
(計20回)木槌で軽く叩き、更に3分の2までの深さ
に相当した砂を入れて同様に攪拌し木槌で合計20回軽
く叩き、この時水が砂の上面に数籠出るように必要に応
じて注水する。同様容器上面から2〜3 mm下となる
ように砂と水を交互に入れ、20回叩き、次に容器上面
で砂面と水面とが同一になるように砂だけを入れ、又必
要に応じては注水するか、ピペットで水を吸い取るかし
、吸い取った水はメスシリンダーに戻すような操作をな
し、容器上面で砂面と水面とが同一で且つ平滑になるよ
うに金べらなどで均らし、その全型ffi (W)を測
定して次式により水中単位容積ρ。を求める。
Furthermore, to measure the unit volume weight in water, prepare water in a 500IIll graduated cylinder, and add 1ooa to the container (mass).
/! of water, then add bone-dry sand equivalent to one-third of the depth of the container, stir well with a stick, then tap both left and right sides 10 times each (20 times in total) with a mallet, and then 3 times more. Add sand equivalent to half the depth, stir in the same way, and tap lightly with a mallet 20 times in total. At this time, water is poured as necessary so that several baskets of water appear on the top of the sand. In the same way, alternately add sand and water 2 to 3 mm below the top of the container, tap it 20 times, then add only sand so that the sand level and water level are the same on the top of the container, and as needed. Either pour in water or suck up the water with a pipette. Return the sucked up water to the measuring cylinder, and level it with a metal spatula so that the sand surface and water surface are even and smooth on the top of the container. Then, measure the total type ffi (W) and calculate the unit volume of water ρ using the following formula. seek.

但し、a:容器の風袋。However, a: Tare of the container.

b:メスシリンダーに残った水量。b: Amount of water remaining in the graduated cylinder.

上記したような゛答方法で、径0.075〜5mのガラ
ス球、富士川砂および相撲用砕砂を用い砂(ガラス球)
/セメントの重量比(S/C) をO〜6とした各試料
について測定した結果は次の第3表から第5表に示す如
くである。
Using the method described above, glass balls with a diameter of 0.075 to 5 m, Fuji River sand, and crushed sumo sand were used to create sand (glass balls).
The results of measurements for each sample with a weight ratio of cement/cement (S/C) of 0 to 6 are shown in Tables 3 to 5 below.

なおこれら第3表〜第5表において、W、はセメントの
キャピラリー域含水量、Slは砂の限界相対吸着水量で
あって、WP X CX 100が前記αであり、又S
。/5X100が前記βである。
In Tables 3 to 5, W is the capillary water content of cement, Sl is the critical relative adsorption water content of sand, WP X CX 100 is the above α, and S
. /5×100 is the β.

更にW8は前記セメント(C)、砂(S)とそれらのα
およびβ以外構造内水量であって、その如何が具体的に
流動ないし成形化するか否かは兎も角として、少なくと
も流動ないし成形に潜在的に寄与するものであるからワ
ーカプル水量と言うべきである。更にρ。は正確にはp
SVDとも言うべきものであって、砂の絶乾嵩比重であ
り、これに対するρ8はpsJとも言うべきものであっ
て、ρ、の絶乾条件のものとは反対に砂の湿潤状態にお
ける嵩比重である。
Furthermore, W8 is the cement (C), sand (S) and their α
It is the amount of water in the structure other than β and β, and it is unclear whether or not it will specifically flow or form, but since it at least potentially contributes to flow or forming, it should be called the amount of water in the structure. be. Furthermore ρ. is exactly p
SVD is the absolute dry bulk specific gravity of sand, and ρ8 is also known as psJ, which is the bulk specific gravity of sand in a wet state, as opposed to ρ, which is in an absolute dry state. It is.

然して上記のようにして本発明者の採用した新しい概念
!、Dを用いて得られた上述第3〜5表のような測定結
果を整理解析したところ、頗る明解な解明をなし得るこ
とを確認した。即ち既述した第3〜5表の測定結果につ
いて、この新しし、)甲、Dとワーカプル水MW1との
関係を要約して示したものが第1図であって、粒体が前
記のようにガラス球、川砂および砕砂という材質的、性
状的に明かに異るものであるに拘わらず、このW。
However, this is a new concept adopted by the inventor as described above! , D was used to organize and analyze the measurement results shown in Tables 3 to 5 above, and it was confirmed that a very clear explanation could be achieved. That is, regarding the measurement results in Tables 3 to 5 mentioned above, Fig. 1 summarizes the relationship between this fresh powder, A), D, and the worker water MW1. Although the materials and properties of glass bulbs, river sand, and crushed sand are clearly different, this W.

と甲、Dとの間には整然として殆んど変化のない所定の
関係が得られるものであることを発見した。
It was discovered that a predetermined relationship can be obtained between , A, and D that is orderly and has almost no change.

つまりこの第1図のような結果によるときは、対数回帰
式または指数回帰式による全回帰曲線または個別回帰曲
線の如きを求めることが可能であり、斯うした結果を用
いることによりこのような混練物において甲、Dが求め
られるならばワーカプル水IW%1を略適切に求めるこ
とが可能であり、従って又そのブリージング水量ないし
流動性更には成形体における強度その他の特性の如きを
も有効に判定することが可能である。
In other words, when the results shown in Figure 1 are obtained, it is possible to obtain a total regression curve or an individual regression curve using a logarithmic regression equation or an exponential regression equation, and by using such results, such kneading If A and D are required for a product, it is possible to approximately appropriately determine the work pull water IW%1, and therefore, it is also possible to effectively determine the amount of breathing water or fluidity, as well as the strength and other properties of the molded product. It is possible to do so.

即ち前記全回帰曲線の1例については対数回帰式による
ものが第1図に併せてA・・・A曲線として示しである
が、このような全回帰曲線によるときはこのような混練
物において目的の特性値を得るための略的確な配合関係
を用いられた砂粒子の如何に拘わらず判定することがで
きる。特にV2Oが10〜30%程度の混練物において
は殆んど的中状態と言える。
That is, as for one example of the total regression curve, one based on the logarithmic regression equation is shown as A...A curve in conjunction with FIG. 1, but when such a total regression curve is used, the purpose It is possible to determine an approximately accurate blending relationship for obtaining the characteristic value regardless of the type of sand particles used. In particular, it can be said that most of the kneaded products containing V2O of about 10 to 30% are on the mark.

なおこの第1図のものにおいて富士川砂の場合は他の2
者に対し’PsDが低い範囲においてW%4が高目とな
っており、これは第3〜5表において示されたような微
粒率(微砂率)の差異によるものと認められ、富士川砂
はM、が6%に近いものであるのに対し、ガラス球およ
び相撲用砕砂によるものは何れもM、が約3%である。
In addition, in the case of Fuji River sand in this figure 1, other 2
W%4 is high in the range where 'PsD is low, and this is recognized to be due to the difference in the fine grain rate (fine sand rate) as shown in Tables 3 to 5. The M content is close to 6%, whereas the M content for both glass balls and crushed sumo sand is approximately 3%.

従ってこのような微粒率(M、)関係をも考慮して補正
し、あるいは具体的に採用する砂についての第1図に示
したような曲線(ガラス球、相撲用砕砂および富士川砂
の夫々によるもの)に従うならば全回帰曲線よりも一層
精度が向上することとなる。
Therefore, the fine particle ratio (M) relationship should be taken into consideration and corrected, or the curves shown in Figure 1 for the specifically adopted sand (glass ball, crushed sumo sand, and Fujikawa sand, respectively) should be corrected. ), the accuracy will be even better than the total regression curve.

更に前記第1図のように全回帰曲線が求められ基本流動
水1wuが求められるならば、前記した特開昭60−1
39407号公報による遠心力処理設備を有しない条件
下においても前述した粒体の限界相対吸着水率βを求め
ることが可能である。
Furthermore, if the total regression curve is determined as shown in FIG. 1, and 1 wu of basic flowing water is determined, then
It is possible to determine the above-mentioned limit relative adsorption water rate β of the granules even under conditions without the centrifugal force treatment equipment according to Publication No. 39407.

即ち、前記最密充填状態形成のための試料調整でS/C
およびW/Cが判明しており、従ってCv(セメントの
単位容積)、Sv (砂の単位容積)も当然に求められ
、これらに加えて該試料の混練調整時におけるトルク最
高点からα・Cも求められる。即ちCvSSv、α・C
とW。が求められるわけであるから、前記第3〜5表に
おいて示した、Σ=Cv+Sv+α・C+β・Sの式に
おけるβ・S以外の要因が求め得られ、一方、W、1=
1000−Σの式におけるWl、Iが前記のように指数
化された全回帰曲線より求められたわけであるから、こ
れらの式から WW +cv +Sv+α−C+β−3=1000とな
り、この式に上記のように求められている各位を代入し
てβ・Sが得られる。
That is, in the sample preparation for forming the closest packed state, S/C
Since Cv (unit volume of cement) and Sv (unit volume of sand) are known, in addition to these, α・C is also required. That is, CvSSv, α・C
and W. Therefore, factors other than β and S in the formula Σ=Cv+Sv+α・C+β・S shown in Tables 3 to 5 can be found, and on the other hand, W, 1=
Since Wl and I in the formula of 1000-Σ were obtained from the total regression curve indexed as described above, from these formulas, WW +cv +Sv+α-C+β-3=1000, and this formula is written as above. By substituting each value required for , β·S can be obtained.

即ちβ値を求めるために既述したような遠心力処理設備
を有しない条件下においても最密充填状態におけるW。
That is, W in the closest packed state even under conditions without the centrifugal force processing equipment as described above for determining the β value.

を求めることよりβ値も求められる。The β value can also be determined by determining .

β値は細骨材の特性を解明する上において重要であるこ
とは本発明者等の前記先願において明らかにされている
通りであり、このようなβ値が特殊な遠心力処理設備を
必要としないで求め得ることは工業的な利用価値が大き
い。
The β value is important in elucidating the characteristics of fine aggregate, as clarified in the above-mentioned prior application by the present inventors, and such a β value requires special centrifugal force processing equipment. What can be obtained without doing so has great industrial utility value.

本発明によるものの具体的な関係について更に説明する
と以下の如くである。
The specific relationship according to the present invention will be further explained as follows.

真比重(ρC)が3.16でキャピラリー域における含
水率(α: WP / C)が25%のポルトランドセ
メントを用いると共に、真比重(ρ3)が2.6で表乾
比重(ρN)が2.63、吸水率(Q)が1.2、F−
Mが2.82、絶乾嵩比重(ρV)が1.748、空隙
率(εV)が乾燥状態で32.8%であって、限界相対
吸着水率(β: SW /s)が4.11%の大井用F
砂を用い、S/Cを1.2.3.4.5および7として
、本発明者等の提案に係るダブルミキシング法(例えば
特開昭55−104958号公報)により混練調整した
混練物についてそのW/Cとフロー値とを測定した結果
は第2図の如くである。即ちこの第2図のような結果に
おいてはフロー値がばらばらであって、同じ流動特性(
フロー値)をもったモルタルを求めることができないと
いうべきである。
Portland cement with a true specific gravity (ρC) of 3.16 and a water content (α: WP/C) of 25% in the capillary region was used, and a true specific gravity (ρ3) of 2.6 and a surface dry specific gravity (ρN) of 2. .63, water absorption rate (Q) is 1.2, F-
M is 2.82, absolute dry bulk specific gravity (ρV) is 1.748, porosity (εV) is 32.8% in dry state, and critical relative adsorption water rate (β: SW /s) is 4. 11% F for Oi
Regarding the kneaded product prepared by using sand and adjusting the S/C to 1.2.3.4.5 and 7 by the double mixing method proposed by the present inventors (for example, Japanese Patent Application Laid-open No. 104958/1982). The results of measuring the W/C and flow value are shown in FIG. In other words, in the results shown in Fig. 2, the flow values are scattered, and the same flow characteristics (
It should be said that it is not possible to obtain mortar with a flow value).

然しこの第2図の測定結果に対し、その縦軸における等
フロー値線と各S/Cの測定点を結んだ直線との交点の
W/C値を求めた結果は次の第6表の如くであって、目
的とするフロー値をもったモルタルを得る場合の各S/
C配合条件下でのW/C値として理解することができる
However, for the measurement results shown in Figure 2, the W/C value at the intersection of the equal flow value line on the vertical axis and the straight line connecting the measurement points of each S/C is calculated as shown in Table 6 below. When obtaining mortar with the desired flow value, each S/
It can be understood as the W/C value under C blending conditions.

第6表 又この第6表の結果を第1図におけると同じに甲、Dと
ワーカプル水1w。との関係において整理し、前記第1
図の結果(ソリッドの測定点)と併せて示したものが第
3図であって、第1図に示した最密充填状態による結果
とこの等フロー曲線とが有意な相関関係を有しているこ
とは明かである。
Table 6 also shows the results of this Table 6 as in Figure 1 for A, D and Workapur water 1w. Organized in relation to the above first
Figure 3 is shown together with the results shown in the figure (solid measurement points), and there is a significant correlation between the results for the closest packing state shown in Figure 1 and this isoflow curve. It is clear that there are.

特にこの第3図のものについて言うならば、S/Cが1
.2.3.5.7の場合の各直線の延長は′P3Dが1
00%で、W8が10004のポイントを指向している
ものと言うことができ、従って集れん設計が可能となる
ことを示している。
Especially regarding the one in Figure 3, the S/C is 1
.. In the case of 2.3.5.7, the extension of each straight line is 'P3D is 1
At 00%, it can be said that W8 is oriented toward the 10004 point, which indicates that a convergence design is possible.

つまりこのような集れん設計は配合関係を設計する基点
が既に決定していることであって、どのようなS/Cを
採用してもその全般の関係が解明されているものと言う
べく、材料特性値の定量化を得しめて頗る容易に、しか
も適切な配合設計を可能ならしめることは明らかである
In other words, in this type of convergence design, the base point for designing the compounding relationship has already been determined, and no matter what S/C is adopted, the overall relationship can be said to be clarified. It is clear that by quantifying material property values, it becomes possible to design appropriate formulations with great ease.

更に前記したモルタルについて、そのフロー値と混練物
の内部において発生する内部ブリージングを測定した結
果は第4図の如くであって、このような測定点自体から
は整然たる関係を求め得ないことは第2図のものと同じ
である。
Furthermore, the results of measuring the flow value and internal breathing that occurs inside the kneaded material for the mortar described above are as shown in Figure 4, and it is clear that a well-ordered relationship cannot be determined from such measurement points themselves. It is the same as that in Figure 2.

然しこの第4図のものにおいてそれらS/C毎の測定結
果を結んだ直線と180龍〜240鶴の範囲での20龍
毎の等フロー線との交点を求めた結果は次の第7表の如
くである。
However, in this figure 4, the intersection points of the straight line connecting the measurement results for each S/C and the isoflow line for every 20 dragons in the range of 180 dragons to 240 cranes are shown in Table 7 below. It's like this.

第7表 然してこの第7表の結果に基いて前記第1.3図と同様
に甲、Dを横軸としそのプリージング率との関係を整理
して示したものが第5図であって、この第5図には第1
図の最密充填状態による結果自体は示さなかったが第3
図の場合と全く同様にその最密充填状態による結果との
間に有意な相関関係を有していることが明かである。
7. Based on the results of Table 7, FIG. 5 organizes and shows the relationship with the pleading rate with A and D on the horizontal axis, as in FIG. 1.3 above, This figure 5 shows the first
Although the results for the closest packing state in the figure are not shown, the third
It is clear that there is a significant correlation with the results obtained from the closest packing state, just as in the case shown in the figure.

更に上記したような大井用F砂を用い、S/Cを1〜5
および7として調整された各モルタルについて、これを
成形して得られる供試体に関し28日後の圧縮強度(σ
c28)を測定し、その測定結果と用いられたモルタル
のW/Cとの関係 。
Furthermore, using F sand for Oi as described above, S/C is 1 to 5.
For each mortar adjusted as 7 and 7, the compressive strength (σ
c28) and the relationship between the measurement results and the W/C of the mortar used.

を要約して示したものが第6図であって、S/Cが相当
に大幅な範囲で変動しているにも拘わらず、略整然とし
た関係を採っていて、所定の配合条件下において得られ
る製品強度を適切に判定することができる。
Figure 6 summarizes the results, and shows that even though S/C fluctuates over a fairly wide range, it follows a generally orderly relationship, and the results obtained under the specified blending conditions. It is possible to appropriately determine the strength of the product.

本発明において前記した第1図のように常数化された結
果を利用して前記β値を求める具体例は以下の如くであ
る。
A specific example of determining the β value using the result converted into a constant as shown in FIG. 1 in the present invention is as follows.

FM:2.80、吸水率2.96%、表乾比重が2.6
0で絶乾比重が2.53であり、単位容積重量が172
0kg/rrr(438Gによる相対表面吸着水率β。
FM: 2.80, water absorption rate 2.96%, surface dry specific gravity 2.6
0, the absolute dry specific gravity is 2.53, and the unit volume weight is 172.
0 kg/rrr (relative surface adsorption water rate β by 438G).

が後述のように4.34%)の相撲川砂を用い、S/C
を2.0、W/Cを39.7%としたモルタル(セメン
ト665kg/n?、砂1330kg/d、水263.
9 kg/ nf) ニツイテlk密充填状uノ!、D
は、 であり、一方β、即ちWwは前記した第1図において、
この’PsD= 22.7%に相当した全回帰曲線の交
点を縦軸におけるW。の値として求めると、38、5 
J程度となる。又このW8を具体的に計算すると、 β=16°3.6−40.1 ・loge 22.7 
= 38.642となり、第1図の図表から求めた値と
略合致する。
As described below, using Sumo river sand (4.34%), S/C
2.0, W/C 39.7% mortar (cement 665 kg/n?, sand 1330 kg/d, water 263.
9 kg/nf) Closely packed U-no! ,D
is, and on the other hand, β, that is, Ww is as shown in FIG.
The intersection point of all the regression curves corresponding to this 'PsD = 22.7% is W on the vertical axis. When calculated as the value of , it is 38,5
It will be about J. Also, when calculating this W8 specifically, β=16°3.6-40.1 ・loge 22.7
= 38.642, which approximately matches the value obtained from the diagram in FIG.

このようにして甲、DおよびW、1が求められるならば
、βの値が計算によって求め得ることとなり、即ちβの
算出式は、 但し、Cv :セメントの容量=C/3.16Sv :
砂の容量=S/2.53 α・C:セメントの吸着水率=25% であるから、 と計算され、この値は前記した438Gの遠心力処理に
よるβ。値4.34%と実質的に同じであって、遠心力
処理を実施することなしにβ値を求めることができる。
If A, D, and W, 1 are obtained in this way, the value of β can be obtained by calculation, that is, the formula for calculating β is as follows: Cv: Capacity of cement = C/3.16Sv:
Capacity of sand = S/2.53 α・C: Adsorbed water rate of cement = 25%, so it is calculated as follows, and this value is β due to the centrifugal force treatment of 438G described above. The value is substantially the same as 4.34%, and the β value can be determined without performing centrifugal force treatment.

なお従来において前記βを求めるにはS/Cを種々に変
化させた複数個の試料について夫々30分程度の遠心力
処理をなし、得られた結果を回帰式によって計算して求
めるもので、そのような遠心力設備ないし処理操作を必
要としないで求められる本発明によるものの有利性は明
らかである。
Conventionally, in order to obtain the above β, multiple samples with various S/C values are subjected to centrifugal force treatment for about 30 minutes each, and the obtained results are calculated using a regression equation. The advantage of the present invention, which requires no such centrifugal equipment or processing operations, is obvious.

父上記のようにしてβが求められるならば、S/Cが種
々に変化したちのその他の解明も頗る簡易であることは
言うまでもない。
It goes without saying that if β can be found as described above, other explanations for various changes in S/C will be extremely simple.

上記したところはモルタルについてのものであるが、こ
のようなモルタルに対し更に粗骨材をも配合したコンク
リートについても検討した。
Although the above discussion concerns mortar, we also investigated concrete containing coarse aggregate added to such mortar.

即ち前記した大井用F砂と普通ポルトランドセメントお
よび水と共に、最大25鶴で、絶乾比重2.62、表乾
比重2.69、粗粒率6.96で吸水率が0.67%、
単位容重1632ksr/n?の砕石を用い、その混練
方法としては、砂および砕石に1次水を添加して30秒
混合してからセメントを投入して60秒間混合し、次い
で2次水を添加して30秒間混練し、更に花王石鹸社製
造販売に係る減水剤マイ与イをセメント量の1.0%添
加して60秒間の混練をなしたもので、斯うした方法で
S/Cを1.5〜4.0の範囲で種々に変え調整した各
種生コンクリートに関する特性値を要約して示すと次の
第8表の如くである。
That is, together with the above-mentioned Oi F sand, ordinary Portland cement, and water, a maximum of 25 Tsuru has an absolute dry specific gravity of 2.62, a surface dry specific gravity of 2.69, a coarse grain ratio of 6.96, and a water absorption rate of 0.67%.
Unit volume weight 1632ksr/n? The method of kneading is to add primary water to sand and crushed stone, mix for 30 seconds, then add cement and mix for 60 seconds, then add secondary water and mix for 30 seconds. Furthermore, 1.0% of the water reducing agent Maiyoi manufactured and sold by Kao Soap Co., Ltd. was added to the amount of cement and kneaded for 60 seconds, and by this method the S/C was 1.5 to 4. The following Table 8 summarizes the characteristic values of various fresh concretes that were varied and adjusted within the range of 0.

であり、前記混練において用いられた1次水の量は前記
したv、Dが零状態の水量となし、2次水については第
8表に示した各W/C値を満足するための残部水量を採
用したものである。
The amount of primary water used in the kneading is the amount of water when v and D are zero, and the amount of secondary water is the remaining amount to satisfy each W/C value shown in Table 8. This is based on the amount of water.

然してこの第8表のような結果を要約して示したものが
第7図であって、S/C,W/CおよびS/aが夫々に
変化する多様に変動する条件下においても、′PGとス
ランプ値との間に高度の相関関係の存することは明かで
あり、v、、を求めることにより得られた生コンクリー
トのスランプ値を略適切に判定することができる。特に
用いられたモルタルのS/CおよびW/Cが特定された
条件下(第7図における同一形状の測定点の場合)にお
いては略直線状をなすものと言うことができ、即ち用い
られたモルタルの組成が特定ないし解明された条件下に
おいては非常に高精度の判定をなすことができる。
However, Fig. 7 summarizes the results shown in Table 8, and shows that even under various conditions where S/C, W/C, and S/a vary, ' It is clear that there is a high degree of correlation between PG and slump value, and by determining v, the obtained slump value of fresh concrete can be approximately appropriately determined. In particular, it can be said that the S/C and W/C of the used mortar form a substantially straight line under the specified conditions (in the case of the measurement points of the same shape in Fig. 7). Under conditions where the composition of mortar is specified or clarified, judgments can be made with very high accuracy.

又上記のようにして調整された各コンクリートに関して
、夫々成形体となし、材令28日の圧縮強度を測定した
結果を要約して示しているのが第8図であって、S /
 C= 2.0でW/Cが41%のものにおいて若干の
ばらつきがあるとしても全般的には30〜100kg/
aaの比較的狭い範囲でのばらつきしか有しておらず、
しかもそのS/C値との関係において高い圧縮強度を有
していることが明かであって、頗る優れたコンクリート
の得られていることが確認された。
In addition, Fig. 8 summarizes the results of measuring the compressive strength of each concrete prepared in the above manner by molding it into a compact and measuring the compressive strength after 28 days of age.
Even if there is some variation in the case where C = 2.0 and W/C is 41%, overall it is 30 to 100 kg/
It has only a relatively narrow range of variation in aa,
Moreover, it was clear that the concrete had a high compressive strength in relation to its S/C value, and it was confirmed that an extremely excellent concrete was obtained.

又本発明者等はこの大井用F砂と砕石を用いた場合のみ
ならず、その他の相撲用、鬼怒用、富士月産川砂や水洗
して準備された海砂および山砂を細骨材として用い、粗
骨材についても各地の河川から得られた多くの川砂利な
どに関して上記した第7表ないし第6.7図の結果に基
いて多様な検討をなし、且つ目的とする生コンクリート
の特性値を得るための配合混線条件を決定して実施した
が、何れも上記したところに準じた結果が得られ、又予
想判定された特性値に対して誤差が極めて少い生コンク
リートを得ることができた。
In addition, the present inventors have not only used this F sand and crushed stone for Oi, but also used other sumo, Kinu, Fujitsuki river sand, sea sand and mountain sand prepared by washing with water as fine aggregate. Regarding the coarse aggregate used, various studies were conducted based on the results shown in Table 7 to Figure 6.7 above regarding many river gravels obtained from rivers in various places, and the characteristics of the target ready-mixed concrete were determined. The mixing conditions for obtaining the values were determined and carried out, but the results were similar to those described above, and it was possible to obtain ready-mixed concrete with extremely small errors in relation to the predicted characteristic values. did it.

「発明の効果」 以上説明したような本発明によるときは、粉体、粒体お
よび液体による混合物に関し従来法における如き試し練
りの繰返しや統計的手法から脱却し、その水などの液体
について新しい粉体のキャピラリー域における含水率や
粒体の限界相対吸着水率と共に最密状態充填物における
基本流動水量、更にはこのような漸新且つ特異な要因と
の関係における流動必要水、ブリージング水などを定量
的に仔細に解明し、実際の混合物、特にコンクリートや
モルタルの如き混練物の実態に即応した合理的な解明を
なし、ばらつきの少い安定した品質を有する製品を予測
し且つ適切に得ることができるなどの効果を有しており
、工業的にその効果の大きい発明である。
"Effects of the Invention" According to the present invention as explained above, it is possible to break away from the repeated trial kneading and statistical methods used in conventional methods for mixtures of powder, granules, and liquids, and to develop new powders for liquids such as water. In addition to the water content in the capillary region of the body and the critical relative adsorption water rate of the granules, the basic flowing water amount in the close-packed packing, as well as the necessary flowing water, breathing water, etc. in the relationship with such gradual and unique factors. To elucidate in detail quantitatively, to perform rational elucidation immediately responsive to the actual condition of actual mixtures, especially kneaded materials such as concrete and mortar, and to predict and appropriately obtain products with stable quality with little variation. This invention is industrially very effective.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明の技術的内容を示すものであって、第1図
は粒体の粒子間緩み率とワーカプル水量との関係を要約
して示した図表、第2図はポルトランドセメントと大井
用下砂を用いたモルタルについてのW/Cとフロー値と
の関係を要約して示す図表、第3図はこの第2図におけ
る等フロー値線と各S/Cの測定点を結んだ交点のW/
C値を第1図と同様に粒子間緩み率とワーカプル水量と
の関係で整理した図表、第4図は前記モルタルの内部ブ
リージング率とフロー値との関係を要約した図表、第5
図はこの第4図のものにおいて等フロー値線と各S/C
毎の測定結果を結んだ直線との交点について粒子間緩み
率とブリージング率との関係を整理して示した図表、第
6図は上記のように調整されたモルタルを用い成形した
供試体に関し、その28日後における圧縮強度をW/C
との関係で要約して示した図表、第7図は各種S/C1
W/CおよびS / aによって得られた生コンクリー
トについて粗骨材間緩み率!。とスランプ値との関係を
要約して示した図表、第8図は第7図のように調整され
た各生コンクリートについて材令28日の圧縮強度を要
約して示した図表、第9図は最密充填状態混合物におけ
るW/CとS/Cの変化状態を計算値と実測値について
併せて示した図表である。
The drawings show the technical contents of the present invention, and Fig. 1 is a diagram summarizing the relationship between the interparticle loosening rate of granules and the amount of work pull water, and Fig. 2 is a graph showing the relationship between the interparticle loosening rate of granules and the amount of water in the work pull. Figure 3 is a diagram summarizing the relationship between W/C and flow value for mortar using sand. /
Similar to Figure 1, the C value is organized in terms of the relationship between the interparticle loosening rate and the amount of work pull water; Figure 4 is a diagram summarizing the relationship between the internal breathing rate of the mortar and the flow value;
The figure shows the isoflow value line and each S/C in this figure 4.
Figure 6 is a chart showing the relationship between the interparticle loosening rate and the breathing rate with respect to the intersection with the straight line connecting the measurement results for each measurement. W/C compressive strength after 28 days
Figure 7 summarizes the relationship between various S/C1
Coarse aggregate loosening rate for fresh concrete obtained by W/C and S/a! . Figure 8 is a diagram summarizing the relationship between slump value and slump value, Figure 8 is a diagram summarizing the compressive strength at 28 days of age for each ready-mixed concrete adjusted as shown in Figure 7, and Figure 9 is a diagram summarizing the compressive strength at 28 days. It is a chart showing the state of change in W/C and S/C in a close-packed mixture together with calculated values and actually measured values.

Claims (1)

【特許請求の範囲】 1、セメント類やフライアッシュ、スラグ粉末、粘土な
どの粉体と、砂や粒状スラグ、人工細骨材、ガラス球そ
の他の粒体および水その他の液体を加えた混合物を用い
、該混合物を圧密充填操作した最密状態の充填物に関し
前記混合物における上記粒体の限界相対吸着水率を求め
ると共に前記粉体のキャピラリー域における含水率を求
め、上記した最密状態充填物の単位容積当り重量よりそ
の粒体重量と粉体重量および粒体重量に前記限界相対吸
着水率を乗じた粒体吸着水量と前記粉体重量に上記キャ
ピラリー域含水率を乗じた粉体吸着水量とを差引いた水
量を前記最密状態充填物における基本流動水量として求
めることを特徴とする液体、粉体および粒体による混合
物の基本流動水量測定法。 2、最密状態充填物における基本流動水量を粒体間間隙
率との関係において求める特許請求の範囲第1項に記載
の液体、粉体および粒体による混合物の基本流動水量測
定法。 3、粒体間間隙率を絶乾状態の粒体に関する間隙率とし
て求める特許請求の範囲第2項に記載の液体、粉体およ
び粒体による混合物の基本流動水量測定法。 4、混練物に用いられた粒体に関し微粒量により補正す
る特許請求の範囲第1項から第3項の何れか1つに記載
の液体、粉体および粒体による混合物の基本流動水量測
定法。 5、最密充填状態を形成するに当り、用いられた試料か
ら粉体量、粒体量を求めると共に混練時のトルク最高点
から前記粉体のキャピラリー域における含水率を求め、
しかも最密充填状態における粒子間間隙率と基本流動水
量をそれらの指数化された関係から得しめ、該基本流動
水量と前記した粉体量、粒体量およびキャピラリー域に
おける粉体含水率から上記粒体の限界相対吸着水量を求
める特許請求の範囲第1項から第4項の何れか1つに記
載の液体、粉体および粒体による混合物の基本流動水量
測定法。 6、セメント類やフライアッシュ、スラグ粉末、粘土な
どの粉体と、砂や粒状スラグ、人工細骨材、ガラス球そ
の他の粒体および水その他の液体を加えた混合物を用い
、該混合物を圧密充填操作した最密状態の充填物に関し
前記混合物における上記粒体の限界相対吸着水率を求め
ると共に前記粉体のキャピラリー域における含水率を求
め、上記した最密状態充填物の単位容積当り重量よりそ
の粒体重量と粉体重量および粒体重量に前記限界相対吸
着水率を乗じた粒体吸着水量と前記粉体重量に上記キャ
ピラリー域含水率を乗じた粉体吸着水量とを差引いた水
量を前記最密状態充填物における基本流動水量として求
め、この基本流動水量を利用し各種配合物に関し夫々の
基本流動水量に相関した流動水量を求めることを特徴と
する液体、粉体および粒体による混合物の特性判定法。 7、基本流動水量を絶乾状態の粒体間間隙率として求め
ると共に混練物に用いられた粒体に関して微粒量により
補正する特許請求の範囲第6項に記載の液体、粉体およ
び粒体による混合物の特性判定法。 8、絶乾状態の粒体に関する間隙率に対する基本流動水
量を対数回帰式または指数対数回帰式などによる回帰曲
線によって求める特許請求の範囲第6項に記載の液体、
粉体および粒体による混合物の特性判定法。 9、セメント類やフライアッシュ、スラグ粉末、粘土な
どの粉体と、砂や粒状スラグ、人工細骨材、ガラス球そ
の他の粒体および水その他の液体を加えた混合物を調整
するに当り、該混合物を圧密充填操作した最密状態の充
填物に関し前記混合物における上記粒体の限界相対吸着
水率を求めると共に前記粉体のキャピラリー域における
含水率を求め、上記した最密状態充填物の単位容積当り
重量よりその粒体重量と粉体重量および粒体重量に前記
限界相対吸着水率を乗じた粒体吸着水量と前記粉体重量
に上記キャピラリー域含水率を乗じた粉体吸着水量とを
差引いた基本流動水量が零状態となる条件下で第1次の
混練を行い、次いで目的とする混練物に必要とされる流
動性その他の特性値によって求められた基本流動水量と
相関流動水量による液体を添加して第2次の混練をなす
ことを特徴とする液体、粉体および粒体による混合物の
調整法。 10、基本流動水量を絶乾状態の粒体間間隙率として求
めると共に混練物に用いられた粒体に関して微粒量によ
り補正する特許請求の範囲第9項に記載の液体、粉体お
よび粒体による混合物の調整法。 11、絶乾状態の粒体間間隙率に対する基本流動水量を
対数回帰式または指数対数回帰式などによる回帰曲線に
よって求める特許請求の範囲第9項に記載の液体、粉体
および粒体による混合物の調整法。 12、基本流動水量と粒体間間隙率の関係を常数式化し
、この常数式化されたものを用い目的とする混合物特性
を得るための配合関係を決定し混練する特許請求の範囲
第10項から第12項の何れか1つに記載の液体、粉体
および粒体による混合物の調整法。 13、セメント類やフライアッシュ、スラグ粉末、粘土
などの粉体と、砂や粒状スラグ、人工細骨材、ガラス球
その他の粒体および水その他の液体と共に砂利、砕石そ
の他の粗骨材ないし塊状体を加えた混合物を調整するに
当り、該混合物を圧密充填操作した最密状態の充填物に
関し前記混合物における上記粒体の限界相対吸着水率を
求めると共に前記粉体のキャピラリー域における含水率
を求め、上記した最密状態充填物の単位容積当り重量よ
りその粒体重量と粉体重量および粒体重量に前記限界相
対吸着水率を乗じた粒体吸着水量と前記粉体重量に上記
キャピラリー域含水率を乗じた粉体吸着水量とを差引い
た基本流動水量を絶乾状態の粒体に関する間隙率として
求めると共に塊状体に関する間隙率を求め、この塊状体
に関する間隙率とスランプ値を図表化された相関関係か
ら得しめることを特徴とする液体、粉体および粒体によ
る混合物の調整法。 14、基本流動水量が零状態となる条件下で第1次の混
練を行い、次いで目的とする混練物に必要とされる流動
性その他の特性値によって求められた基本流動水量と相
関流動水量による液体を添加して第2次の混練をなす特
許請求の範囲第13項に記載の液体、粉体および粒体に
よる混合物の調整法。 15、混練物に用いられた粒体に関し微粒量により補正
する特許請求の範囲第13項および第14項の何れか1
つに記載の液体、粉体および粒体による混合物の基本流
動水量測定法。
[Claims] 1. A mixture of powder such as cement, fly ash, slag powder, clay, sand, granular slag, artificial fine aggregate, glass spheres and other granules, and water and other liquids. The limit relative adsorption water content of the granules in the mixture is determined, and the moisture content in the capillary region of the powder is determined for the close-packed packing obtained by compaction-packing the mixture. From the weight per unit volume of A method for measuring the basic flowing water amount of a mixture of liquid, powder, and granules, characterized in that the amount of water obtained by subtracting the above is determined as the basic flowing water amount in the close-packed packing. 2. A method for measuring the basic flowing water amount of a mixture of liquid, powder, and granules according to claim 1, in which the basic flowing water amount in a close-packed packing is determined in relation to the intergranular porosity. 3. The method for measuring the basic flow rate of a mixture of liquid, powder, and granules according to claim 2, in which the intergranular porosity is determined as the porosity of the granules in an absolutely dry state. 4. Basic flow water measurement method for a mixture of liquid, powder, and granules according to any one of claims 1 to 3, in which the granules used in the kneaded material are corrected by the amount of fine particles. . 5. In forming the closest packed state, determine the amount of powder and granules from the sample used, and determine the water content in the capillary region of the powder from the highest torque point during kneading,
Moreover, the interparticle porosity and basic flowing water content in the closest packed state are obtained from their indexed relationship, and the above-mentioned basic flowing water content, the powder amount, the granular amount, and the powder water content in the capillary region are 5. A method for measuring the basic flow water content of a mixture of liquid, powder, and granules according to any one of claims 1 to 4, which determines the critical relative adsorption water content of granules. 6. Using a mixture of powders such as cement, fly ash, slag powder, and clay, and adding sand, granular slag, artificial fine aggregate, glass spheres, other granules, and water and other liquids, the mixture is consolidated. Regarding the packed material in the most dense state that has been filled, the critical relative adsorption water content of the granules in the mixture is determined, and the water content in the capillary region of the powder is determined, and from the weight per unit volume of the packed material in the most dense state described above. The water amount obtained by subtracting the particle weight, the powder weight, the particle adsorption water amount obtained by multiplying the particle weight by the above-mentioned limit relative adsorption water rate, and the powder adsorption water amount obtained by multiplying the above-mentioned powder weight by the above-mentioned capillary region moisture content. A mixture of liquids, powders, and granules, characterized in that the basic flowing water amount in the close-packed packing is determined, and using this basic flowing water amount, the flowing water amount that correlates to the basic flowing water amount for various compounds is determined. Characteristic determination method. 7. Based on the liquid, powder, and granules according to claim 6, in which the basic flowing water amount is determined as the inter-granular porosity in an absolutely dry state, and the granules used in the kneaded product are corrected by the amount of fine particles. Method for determining the properties of mixtures. 8. The liquid according to claim 6, in which the basic flowing water amount with respect to the porosity of the granules in an absolutely dry state is determined by a regression curve using a logarithmic regression equation, an exponential logarithmic regression equation, etc.
Method for characterizing mixtures of powders and granules. 9. When preparing a mixture of powder such as cement, fly ash, slag powder, clay, and sand, granular slag, artificial fine aggregate, glass spheres and other granules, and water and other liquids, Regarding the close-packed packing obtained by compaction-packing the mixture, determine the critical relative adsorption water rate of the granules in the mixture, determine the water content in the capillary region of the powder, and calculate the unit volume of the close-packed packing described above. From the per weight, subtract the particle weight, the powder weight, the particle adsorption water amount obtained by multiplying the particle weight by the above-mentioned limit relative adsorption water rate, and the powder adsorption water amount obtained by multiplying the above-mentioned powder weight by the above-mentioned capillary region water content. The first kneading is carried out under conditions where the basic flowing water amount is zero, and then the liquid is mixed according to the basic flowing water amount and the correlated flowing water amount determined from the fluidity and other characteristic values required for the target kneaded product. 1. A method for preparing a mixture of liquid, powder, and granules, characterized by performing secondary kneading by adding. 10. Based on the liquid, powder, and granules according to claim 9, in which the basic flowing water amount is determined as the inter-granular porosity in an absolutely dry state and corrected by the amount of fine particles with respect to the granules used in the kneaded product. Method for preparing mixtures. 11. A mixture of liquid, powder, and granules according to claim 9, in which the basic flowing water amount with respect to the intergranular porosity in an absolutely dry state is determined by a regression curve using a logarithmic regression equation or an exponential-logarithmic regression equation. Adjustment method. 12. Claim 10, in which the relationship between the basic flowing water amount and the intergranular porosity is expressed as a constant expression, and this constant expression is used to determine and knead the blending relationship to obtain the desired mixture properties. A method for preparing a mixture using liquid, powder, and granules according to any one of Item 12. 13. Powder such as cement, fly ash, slag powder, clay, sand, granular slag, artificial fine aggregate, glass spheres and other granules, water and other liquids, as well as coarse aggregate or lumps such as gravel, crushed stone, etc. When preparing a mixture in which powder is added, the critical relative adsorption water content of the granules in the mixture is determined with respect to the most dense packing obtained by compaction-packing the mixture, and the water content in the capillary region of the powder is determined. From the weight per unit volume of the closest-packed packing described above, calculate the particle weight and powder weight, and the particle adsorption water amount obtained by multiplying the particle weight by the limit relative adsorption water rate, and the powder weight by the capillary area. The basic flowing water amount, which is obtained by subtracting the powder adsorption water amount multiplied by the water content, is determined as the porosity of the completely dry granules, the porosity of the agglomerates is determined, and the porosity and slump value of the agglomerates are plotted. A method for preparing mixtures of liquids, powders and granules characterized by obtaining the correlation between the two. 14. Perform the first kneading under conditions where the basic flowing water amount is zero, and then use the basic flowing water amount and the correlated flowing water amount determined from the fluidity and other characteristic values required for the target kneaded product. 14. The method for preparing a mixture of liquid, powder, and granules according to claim 13, wherein a liquid is added to perform secondary kneading. 15. Any one of claims 13 and 14, in which the granules used in the kneaded material are corrected by the amount of fine particles.
Basic flow rate measurement method for mixtures of liquids, powders, and granules as described in .
JP11703787A 1987-05-15 1987-05-15 Basic fluid flow measurement method for mixtures of liquids, powders and granules Expired - Lifetime JPH0833385B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11703787A JPH0833385B2 (en) 1987-05-15 1987-05-15 Basic fluid flow measurement method for mixtures of liquids, powders and granules

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11703787A JPH0833385B2 (en) 1987-05-15 1987-05-15 Basic fluid flow measurement method for mixtures of liquids, powders and granules

Related Child Applications (3)

Application Number Title Priority Date Filing Date
JP2122888A Division JPS63314465A (en) 1988-02-02 1988-02-02 Physical property measurement pertaining to particulate material for obtaining mortar of concrete
JP7097711A Division JP2731798B2 (en) 1995-03-31 1995-03-31 Physical property measurement method for granules to obtain mortar or concrete
JP9771295A Division JP2704251B2 (en) 1995-03-31 1995-03-31 Method for determining the characteristics of a mixture using liquids, powders and granules, and method for adjusting the mixture

Publications (2)

Publication Number Publication Date
JPS63284469A true JPS63284469A (en) 1988-11-21
JPH0833385B2 JPH0833385B2 (en) 1996-03-29

Family

ID=14701873

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11703787A Expired - Lifetime JPH0833385B2 (en) 1987-05-15 1987-05-15 Basic fluid flow measurement method for mixtures of liquids, powders and granules

Country Status (1)

Country Link
JP (1) JPH0833385B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0921796A (en) * 1995-03-31 1997-01-21 Yasuro Ito Method for measuring grain physical property for obtaining mortar or concrete
CN107144489A (en) * 2017-05-26 2017-09-08 佛山柯维光电股份有限公司 A kind of method for determining inorganic particle water imbibition
CN109612871A (en) * 2019-01-15 2019-04-12 东莞维科电池有限公司 Method for testing mixing uniformity of lithium battery negative electrode material

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3924458B2 (en) * 2001-12-11 2007-06-06 パシフィックシステム株式会社 High fluidity concrete quality control system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0921796A (en) * 1995-03-31 1997-01-21 Yasuro Ito Method for measuring grain physical property for obtaining mortar or concrete
CN107144489A (en) * 2017-05-26 2017-09-08 佛山柯维光电股份有限公司 A kind of method for determining inorganic particle water imbibition
CN109612871A (en) * 2019-01-15 2019-04-12 东莞维科电池有限公司 Method for testing mixing uniformity of lithium battery negative electrode material
CN109612871B (en) * 2019-01-15 2021-09-21 东莞维科电池有限公司 Method for testing mixing uniformity of lithium battery negative electrode material

Also Published As

Publication number Publication date
JPH0833385B2 (en) 1996-03-29

Similar Documents

Publication Publication Date Title
Arora et al. Material design of economical ultra-high performance concrete (UHPC) and evaluation of their properties
Abdullahi Effect of aggregate type on compressive strength of concrete
US5452213A (en) Process and apparatus for preparing mixture comprising granular materials such as sand, powder such as cement and liquid
JPS63284469A (en) Method for measuring basic fluid water volume of mixture composed of liquid, powder and grain and method for deciding characteristics of various kinds of compounds in said mixture system and method for preparing said mixture
JP6347514B2 (en) Method for manufacturing cast-in-place porous concrete
US3338563A (en) Method of mixing high-strength concrete
JP2704251B2 (en) Method for determining the characteristics of a mixture using liquids, powders and granules, and method for adjusting the mixture
JPS63314465A (en) Physical property measurement pertaining to particulate material for obtaining mortar of concrete
JPS6159452B2 (en)
JP2731798B2 (en) Physical property measurement method for granules to obtain mortar or concrete
JP3211006B2 (en) Mixing or adjusting a mixture of powder, granules and water
JP2819288B2 (en) Preparation method of mixture with granular material such as sand and powder and liquid such as cement
JP2597835B2 (en) Method for measuring relative water absorption of aggregate between powder and aggregate in the presence of liquid and method for adjusting kneaded material based on measurement results
JP4249176B2 (en) Determination method of primary water volume in split kneading method
CN113912347A (en) Grading method of ultra-high performance concrete
RU2165394C1 (en) Method of preparation of concrete mix
Ouellet et al. Aggregate Source Effects on RCC Green Properties
CN116008515B (en) A test method for evaluating slurry homogeneity
Lunkad Simultaneous enhancement of fluidity and thixotropy of vibration-free concrete
JP3191227B2 (en) Preparation method of non-separable mixture using powder and liquid
JP2869663B2 (en) Method of measuring relative absorption liquid ratio of powder and granule and preparation of powder and granule mixture
JPS58217455A (en) Anhydrous gypsum composition for cast flooring and its construction method
Smith¹ —Uniformity and Workability
CN118053524A (en) Method for preparing high-workability concrete by using thickness of serosity layer and thickness of water film layer
Blackstone Properties of Centrifugally Cast Concrete

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080329

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080329

Year of fee payment: 12