[go: up one dir, main page]

JPS63278025A - Production of liquid crystal display device - Google Patents

Production of liquid crystal display device

Info

Publication number
JPS63278025A
JPS63278025A JP11242287A JP11242287A JPS63278025A JP S63278025 A JPS63278025 A JP S63278025A JP 11242287 A JP11242287 A JP 11242287A JP 11242287 A JP11242287 A JP 11242287A JP S63278025 A JPS63278025 A JP S63278025A
Authority
JP
Japan
Prior art keywords
liquid crystal
substrates
crystal display
glass
polishing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11242287A
Other languages
Japanese (ja)
Other versions
JPH0820634B2 (en
Inventor
Kiyoyuki Echizenya
清行 越前谷
Takaaki Kurihara
栗原 孝明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Toshiba Development and Engineering Corp
Original Assignee
Toshiba Corp
Toshiba Electronic Device Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba Electronic Device Engineering Co Ltd filed Critical Toshiba Corp
Priority to JP62112422A priority Critical patent/JPH0820634B2/en
Publication of JPS63278025A publication Critical patent/JPS63278025A/en
Publication of JPH0820634B2 publication Critical patent/JPH0820634B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Liquid Crystal (AREA)

Abstract

PURPOSE:To reduce the color phase irregularity and the variance of threshold voltage to improve the productivity by constituting a cell after grinding the first principal surface or first and second principal surfaces of a glass substrate. CONSTITUTION:In the production of a liquid crystal display device using the interference color due to double refraction, a process is provided where first principal surfaces 1a and 2a where display electrodes are formed of first and second substrates 1 and 2 constituting the cell or these first principal surfaces 1a and 2a and second principal surfaces 1b and 2b where polarizing plates 11 and 12 are stuck are ground by 1-3mum. Since the extent of grinding is set to 1-3mum, they are ground in a minimum grinding time and the flatness precision and the extent of warp of ground substrates are <=15mum and <=0.1% respectively. Thus, the variance of the gap is eliminated to stabilize various characteristics, and the grinding work of a thin plate glass is rationalized to improve the productivity.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) この発明は複屈折による干渉色を利用した液晶表示器の
!!を造方法に関する。
[Detailed Description of the Invention] [Object of the Invention] (Industrial Application Field) This invention provides a liquid crystal display that utilizes interference color due to birefringence! ! Regarding the manufacturing method.

(従来の技術) 液晶表示器には動作モードによりTN型、DS型、GH
型、DAP型及び熱珈き込み型のもの等多くの種類があ
るが、腕時計、電車及び計測器等を始め、はとんど多く
はTN型液晶表示器が使われている。しかし表示容量の
増大化や表示面積の大型化の要求に伴ない、TN型液晶
表示器ではコントラスト不足や視覚範囲の狭さ等の問題
が出てきており、新しい動作モードによる液晶表示器の
開発が急がれていた。
(Prior art) There are TN type, DS type, and GH type for liquid crystal display depending on the operation mode.
Although there are many types such as type, DAP type, and heat-containing type, TN type liquid crystal displays are used in most products, including wristwatches, trains, and measuring instruments. However, with the demand for increased display capacity and larger display area, problems such as insufficient contrast and narrow visual range have arisen in TN type liquid crystal displays, leading to the development of liquid crystal displays with new operating modes. was urgent.

そして近年、このような要求に応える液晶表示器として
、例えば特開昭60−107020 @公報に記載され
ているSBE (スーパーツイステッドバイアフリンジ
エンスエフェクト)型液晶表示器が注目されている。S
BE型液晶表示器の構成としては、−少なくとも片面側
に透明電極が形成された透明基板を2枚対向させ、斜方
蒸着やラビング等の配向処理を施し、周囲を封着してセ
ルとし、セル内にネマティック液晶を入れている。ネマ
ティック液晶としてはシクロヘキサン系、エステル系、
ビフェニール系及びピリジン系液晶等が使われている。
In recent years, an SBE (super twisted bias fringe effect) type liquid crystal display, which is described in, for example, Japanese Patent Application Laid-Open No. 107020/1983, has been attracting attention as a liquid crystal display that meets such demands. S
The configuration of a BE type liquid crystal display is as follows: - Two transparent substrates each having a transparent electrode formed on at least one side are placed facing each other, subjected to alignment treatment such as oblique vapor deposition or rubbing, and the periphery is sealed to form a cell; A nematic liquid crystal is placed inside the cell. Nematic liquid crystals include cyclohexane, ester,
Biphenyl-based and pyridine-based liquid crystals are used.

ネマティック液晶の中にはカイラル剤が添加され、液晶
分子の分子軸が180°から 360’、好ましくは2
70°の角度に、上下の基板間で捩られている。また液
晶分子は、基板上の配向層の働きにより、分子軸が基板
平面に対し1°より大きい傾斜(プレチルト)を有して
おり、対向基板間の距離は4〜12#程度である。
A chiral agent is added to the nematic liquid crystal so that the molecular axes of the liquid crystal molecules range from 180° to 360', preferably 2
It is twisted between the upper and lower substrates at an angle of 70°. Further, the molecular axes of liquid crystal molecules have an inclination (pretilt) of more than 1° with respect to the plane of the substrate due to the action of an alignment layer on the substrate, and the distance between the opposing substrates is about 4 to 12#.

(発明が解決しようとする問題点) SBE型液晶表示器は極めて高い対向基板間の距離(ギ
ャップ)が要求され、0.1#以内に押える必要がある
。これはわずかなギャップむらでも、しきい値電圧が変
化し、点灯むらになったり、また、干渉現象により顕著
な色むらとなり表示品位を落とす。
(Problems to be Solved by the Invention) The SBE type liquid crystal display requires an extremely high distance (gap) between opposing substrates, which must be kept within 0.1#. Even a slight unevenness in the gap causes a change in the threshold voltage, causing uneven lighting, and also causes noticeable color unevenness due to an interference phenomenon, degrading the display quality.

ギャップ精度に影響を与える条件としては、部品である
ガラス基板の平坦性、ギャップを決定するスペーサ寸法
精度、精密なガラス組立条件が考えられるが、これらの
条件が満足すべき程度であったとしても、最低限、ガラ
ス基板の平坦精度は基板2枚で0.14を越えてはなら
ず、他の条件の許容度を考えると、0.03IM1程度
の平坦性が必要といえる。
Conditions that affect gap accuracy include the flatness of the glass substrate that is the component, the dimensional accuracy of the spacer that determines the gap, and precise glass assembly conditions, but even if these conditions are satisfied, At the minimum, the flatness accuracy of the glass substrates should not exceed 0.14 for two substrates, and considering the tolerances of other conditions, it can be said that a flatness of about 0.03 IM1 is required.

一般に、液晶表示器に用いられる透明基板は、比較的安
価なソーダ石灰ガラス基板が普通である。
In general, transparent substrates used in liquid crystal displays are usually relatively inexpensive soda lime glass substrates.

しかしながら、これはアルカリの溶出度が高いため、通
常、5I02等をブロッキング材としてアンダーコート
した上に透明電極を形成する。また、ソーダ石灰ガラス
の製法としては、例えばコルバーン法やフロート法があ
るが、いずれも製法に起因する凹凸が存在し、その平坦
性は平坦精度0.1〜0.15塵が限界がある。
However, since this has a high degree of alkali elution, a transparent electrode is usually formed on an undercoat of 5I02 or the like as a blocking material. Furthermore, methods for producing soda-lime glass include, for example, the Colburn method and the float method, but both have unevenness due to the manufacturing method, and the flatness is limited to a flatness accuracy of 0.1 to 0.15 dust.

故に、SBE型液晶表示器にこのような基板を用いると
、基板の表面が粗いため、前述したような対向基板間距
離の精度が得られない。例えば、配向処理としてSiO
の斜方蒸着を行った場合、蒸着むらとなって所望のチル
ト角が得られなかったり、アンダーコート処理や透明導
電膜を蒸着するとき、膜厚むらが生じるため、色むらや
しきい値電圧むらが発生し、視認性を著しく低下させて
いた。
Therefore, when such a substrate is used in an SBE type liquid crystal display, the surface of the substrate is rough, so that the accuracy of the distance between the opposing substrates as described above cannot be obtained. For example, as an orientation treatment, SiO
When performing oblique evaporation, the desired tilt angle may not be obtained due to uneven evaporation, and unevenness in film thickness may occur during undercoating or when depositing a transparent conductive film, resulting in uneven color and threshold voltage. This caused unevenness and significantly reduced visibility.

この発明は、基板の平坦精度と研磨量の最適化を行うこ
とにより、極めて高価になりやすかった薄板ガラスの研
磨加工を合理化し、生産性の向上を実現することを目的
としている。
The purpose of this invention is to streamline the polishing process of thin glass, which tends to be extremely expensive, and improve productivity by optimizing the flatness accuracy of the substrate and the amount of polishing.

[発明の構成] (問題点を解決するための手段) この発明は、複屈折制御型の液晶表示器の製造方□法で
あり、セルを構成する第1及び第2基板の表示電極が形
成された側の第1主面或いはこの第1主面及び偏光板が
被着された側の第2主面を合わせて、1迦乃至3声研磨
する工程を備えている。
[Structure of the Invention] (Means for Solving the Problems) The present invention is a method for manufacturing a birefringence control type liquid crystal display, in which display electrodes of first and second substrates constituting a cell are formed. The method includes a step of polishing the first principal surface on the side to which the polarizing plate has been applied, or the first principal surface and the second principal surface on the side to which the polarizing plate is attached, one to three times.

(作 用) この発明は、研磨量を実験の結果から1即乃至3摩と設
定することにより、最小の研磨時間で被研磨基板の平坦
精度を0.154以下、そりを0.1%以下に押えるこ
とができ、ギャップむらもなく諸特性が安定する。
(Function) This invention sets the amount of polishing to 1 to 3 polishes based on the results of experiments, thereby increasing the flatness accuracy of the substrate to be polished to 0.154 or less and warping to 0.1% or less with the minimum polishing time. The characteristics can be stabilized without any uneven gaps.

(実施例) 以下この発明の詳細を図面を参照して説明する。(Example) The details of this invention will be explained below with reference to the drawings.

液晶表示器に用いられるガラス基板は、安価なソーダラ
イムガラスとよばれているもので、種々の製法が存在す
るが、コルバーン法とフロート法が一般的であり、この
2種類について検討を行った。また、以俵、平坦精度と
称するものは、例えば触針計の針を2m動かしたときに
観測される最も高い部分と最も低い部分の差を、基板全
面で平均化した値である。
The glass substrates used in liquid crystal displays are made of inexpensive soda-lime glass, and there are various manufacturing methods, but the most common are the Colburn method and the float method, and we investigated these two methods. . Furthermore, what is hereinafter referred to as flatness accuracy is a value obtained by averaging the difference between the highest and lowest parts observed over the entire surface of the substrate when, for example, the needle of a stylus meter is moved by 2 m.

上記の2種類のガラス基板の製法のうち、コルバーン法
は、溶融ガラスを垂直に引き上げた後、ベンディングロ
ーラーと呼ばれるローラーで水平方向に曲げられながら
、薄板化されていく。ガラスの平面性を決定するのは、
溶融ガラスと接しソ′いるベンディングローラーの平面
性であり、この結果、ガラスには極めて細かい波が存在
する。これにより、一般的なコルバーン法の平坦精度は
O、a7mと大きいもので、製造法のノウハウや選別に
よりよいものを選んだとしても、0.1〜0.151I
Ir1が限界とされている。
Of the two types of glass substrate manufacturing methods mentioned above, in the Colburn method, molten glass is pulled up vertically and then bent horizontally using a roller called a bending roller to form a thin plate. What determines the flatness of glass is
The flatness of the bending roller in contact with the molten glass results in the presence of extremely fine waves in the glass. As a result, the flatness accuracy of the general Colburn method is as high as 0.7m, and even if a better one is selected based on manufacturing know-how and selection, it is 0.1 to 0.151I.
Ir1 is said to be the limit.

一方、フロート法は溶融ガラスを溶融スズの上に流し、
スズの自由界面上で平面度を決定する。
On the other hand, in the float method, molten glass is poured onto molten tin.
Determine the flatness on the free interface of tin.

自由界面であるため、平面性はコルバーン法より勝るが
、薄板にするため所定の速度で引張るとき、引張り方向
に平行な波うちが生じ、これにより通常のガラスの平坦
精度は0゜1〜0.154とされている。
Since it is a free interface, the flatness is better than the Colburn method, but when it is pulled at a predetermined speed to make a thin plate, undulations parallel to the pulling direction occur, and as a result, the flatness accuracy of ordinary glass is 0°1 to 0. It is said to be .154.

いずれの製法のガラスでも、この平坦精度では液晶表示
器とすると色むらや表示むらが生じた。
Regardless of the glass manufacturing method, color unevenness and display unevenness occurred when used in a liquid crystal display with this level of flatness accuracy.

特に、コルバーン法のガラスでは無秩序な色むら、フロ
ート法のガラスでは1.5〜2.0腐ピツチで色むらの
しまといりた、セル時において特徴的な現象を呈する。
In particular, glass produced by the Colburn process exhibits characteristic phenomena such as disordered color unevenness, and glass produced by the float process exhibits stripes of color unevenness at a corrosion pitch of 1.5 to 2.0.

故に、これらの現象を解決し、0.037!#m以下の
平坦精度を得るため、Siウェハー、ガラスマスク及び
レンズ等に用いられている研磨加工という技術を適用す
るということを考えた。この研磨も単に削ればよいとい
うものではなく、種々な加工構成要素が存在する。即ち
、研磨量を単に増やした場合、平面性は上がるわけだが
、削りすぎるとガラス厚が変わり、製品としての総厚や
製造時にも影響を及ぼす。例えば加工時間が長くなり、
加工の合理性やコスト性が悪化するン この発明では研磨量を考える場合、次の3点を考慮する
ことにした。
Therefore, by solving these phenomena, 0.037! In order to obtain flatness accuracy of #m or less, we considered applying a polishing technique used for Si wafers, glass masks, lenses, etc. This polishing is not just a matter of cutting, but there are various processing components. That is, if the amount of polishing is simply increased, the flatness will improve, but if the amount of polishing is increased, the glass thickness will change, which will affect the total thickness of the product and the manufacturing process. For example, machining time becomes longer,
In this invention, when considering the amount of polishing, the following three points are taken into consideration.

■ガラス厚 ■研磨されるガラスのそり ■研磨されるガラスの平坦精度 このうち■は、多数個取りが一般的とされている液晶表
示器用基板としての大板ガラスで1.11JM程度の研
磨が可能か否かの検討が必要であり、■と■はこれらの
値により研磨量と研磨時間が決定されることから、必要
なパラメーターである。
■Glass thickness ■Warp of the glass to be polished ■Flatness accuracy of the glass to be polished Among these, (■) can be polished to approximately 1.11 JM for large glass plates used as substrates for liquid crystal display devices, where multi-piece molding is common. It is necessary to consider whether or not the polishing amount and the polishing time are determined by these values, so they are necessary parameters.

次に示す第1表は、コルバーン法で製造されたガラスで
片面を研磨したものを使用してセルを構成した場合の表
示の観察結果を表している。
Table 1 below shows the observed results of the display when a cell was constructed using glass manufactured by the Colburn method and polished on one side.

*O等はセル時の評価結果 0:良好 O:極めて良好 △:やや劣る X:劣る 第1表− 同表におけるガラスの研磨は、オスカ一方式の片面研磨
機或いはウェハー等用に用いられるものと同方式の両面
研磨機で行った。ガラスの大きさは、研磨機で研磨可能
な最大寸法の300 am角とし、厚さは通常に用いら
れる厚さく1.IJllll>より薄い方をみて0.5
5 m、  0.77Ill、  1.1mmについて
行った。そりはガラスの長手方向の寸法(300,)と
最下長に対するガラスの最大のうきとの比を%で表した
値で示し、0.1%未満のもの、0.1%、0.15%
のものとした。平坦精度は、コルバーン法のガラスで0
.4m、  0.2u11.0−15g!11及び0.
1珈のもの、フロート法のガラスで0.1571111
. 0.15!II及び0.081111のものを使用
し、研磨量は測定しながら0.5mm、1mms  2
m及び31mと変えていった。
*O, etc. are the evaluation results at cell time: 0: Good O: Very good △: Slightly poor This was done using the same type of double-sided polishing machine. The size of the glass is 300 mm square, which is the maximum size that can be polished with a polishing machine, and the thickness is 1 mm, which is the commonly used thickness. IJllll>0.5 when looking at the thinner side
5 m, 0.77 Ill, 1.1 mm. Warpage is expressed as a value expressed as a percentage of the longitudinal dimension of the glass (300,) and the ratio of the maximum height of the glass to the lowest length, and those less than 0.1%, 0.1%, 0.15 %
It was made into a thing. Flatness accuracy is 0 for Colburn method glass.
.. 4m, 0.2u11.0-15g! 11 and 0.
1 piece, float method glass 0.1571111
.. 0.15! II and 0.081111, and the amount of polishing was 0.5mm and 1mms2 while measuring.
m and 31m.

そして、これらの基板を使用して複屈折型の液晶表示器
を構成し、セルの色むらを確認するとともに研磨時間も
チェックした。
A birefringent liquid crystal display was constructed using these substrates, and the color unevenness of the cell was confirmed as well as the polishing time.

同表かられかるように、ガラス厚が0.55mmの′の
も9は、研磨条件を変えたがすべて破損し研磨できなか
ったのに対し、0.7jllIと1.1jIIIのもの
ではあまり差はない。また、平坦精度が最も良好なもの
においては、ガラスのそりは0.1%以下が極めて良好
であり、0.1%を越えると破損したり、厚みが片減り
し芳しくない。
As can be seen from the same table, even though the polishing conditions were changed for 'Mo9' with a glass thickness of 0.55 mm, all of them were damaged and could not be polished, whereas there was not much difference between 0.7jllI and 1.1jIII. There isn't. In addition, in the case of the glass having the best flatness accuracy, a glass warpage of 0.1% or less is extremely good, and if it exceeds 0.1%, it may be damaged or the thickness may be unevenly reduced, which is not good.

コルバーン法とフロート法の差はほとんどないが、やや
フロート法の方が削りにくく、所望の研磨量が出るまで
1〜2分多くかかることがわかった。両面研磨の場合は
研磨面が二面ということもあって、研磨時間は2倍かか
った。
Although there is almost no difference between the Colburn method and the float method, it was found that the float method was slightly more difficult to remove and took 1 to 2 minutes longer to achieve the desired amount of polishing. In the case of double-sided polishing, there were two polished surfaces, so the polishing time took twice as long.

故に、これらの結果より研磨時間等を考慮すると、最適
な研磨条件は、 ■平坦精度≦0.15即 ■ガラス素材のそり50.1% ■研磨量 1〜3塵 ■ガラス厚 0.7〜1.1μs であると考えられる。
Therefore, considering the polishing time and other factors from these results, the optimal polishing conditions are: ■ Flatness accuracy ≦ 0.15 immediately ■ Warpage of glass material 50.1% ■ Polishing amount 1 to 3 dust ■ Glass thickness 0.7 to It is considered to be 1.1 μs.

第1図はこの発明の一実施例を示す断面図であり、製造
工程に従って説明する。まず、2枚のコルバーン法で製
造された日本板硝子(株)製ソーダライムガラス(1,
1m厚、平坦精度0.15m>の−主面を、オスカ一方
式研磨機を用いて約7分間研磨することにより、第1及
び第2基板(1)。
FIG. 1 is a sectional view showing an embodiment of the present invention, and will be explained according to the manufacturing process. First, two pieces of soda lime glass (1,
The first and second substrates (1) were polished by polishing the main surfaces of 1 m thick and with a flatness accuracy of 0.15 m for about 7 minutes using an Oska single-pole polishing machine.

(2)を得る。第1及び第2基板(1) 、 (2)で
研磨されたのは第1主面(1a)、 (2a)側であり
、研磨量は約2虜である。続いて、第1及び第2!!板
(1)。
(2) is obtained. In the first and second substrates (1) and (2), the first principal surfaces (1a) and (2a) were polished, and the amount of polishing was approximately 2 mm. Next, the first and second! ! Board (1).

(2)の第1主面(la)、 (2a)側に、それぞれ
例えば5fOaからなるアンダーコートII(3) 、
 (4)と例えばI To (Indium Tin 
0xide) カラなル導電電極(5) 、 (6)を
順次形成する。次に、第1及び第2基板(1) 、 (
2)の第1主面(1a)、 (2a)側に、導電電極(
3) 、 (4)を覆うように、それぞれ例えばポリイ
ミドからなる配向層(7) 、 (8)が形成する。そ
して、第1及び第2基板(1) 、 (2)は各々の第
1主面 (1a)、 (2a)が対向した状態で約71
mmの間隔に保たれるように、液晶の注入口となる部分
を除いた周囲を、例えば紫外線硬化型の接着剤からなる
封着剤(9)により封止する。次に、第1及び第2基板
(1) 、 (2)’間に、カイラル剤が添加されたネ
マティック液晶(10)を注入した後に注入口を封止す
る。こうしてネマティック液晶(1G)は第1及び第2
基板(1) 、 (2)間に挟持され、その分子軸はカ
イラル剤の働きにより第1及び第2基板(1) 、 (
2)間で1800から360°の範囲例えば270°の
捩れをもつとともに、配向層(7) 、 (8)の働き
により第1及び第2基板(1) 、 (2)の平面に対
し、1°より大きい角度例えば20”の角度の傾斜を有
している。そして、第1基板(1)の第゛2主面(1b
)側には偏光板(11)、第2基板(2)の第2主面(
2b)側には偏光板(12)と反射板(13)が被着す
る。ここで偏光板(11)、 (12)の配置角度は、
偏光板(11)、 (12)の透過軸が第1基板(1)
の配向方向に対して、それぞれ右回りに約30°、右回
りに約20”となるように設定しである。
On the first principal surface (la) and (2a) of (2), undercoat II (3) consisting of, for example, 5fOa, respectively,
(4) and, for example, I To (Indium Tin
0xide) Color conductive electrodes (5) and (6) are sequentially formed. Next, the first and second substrates (1), (
2), conductive electrodes (
Alignment layers (7) and (8) made of polyimide, for example, are formed to cover 3) and (4), respectively. The first and second substrates (1) and (2) are approximately 71 cm long with their respective first principal surfaces (1a) and (2a) facing each other.
The periphery except for the portion that will become the injection port for the liquid crystal is sealed with a sealing agent (9) made of, for example, an ultraviolet curing adhesive so that the distance is maintained at a distance of mm. Next, a nematic liquid crystal (10) added with a chiral agent is injected between the first and second substrates (1) and (2)', and then the injection port is sealed. In this way, the nematic liquid crystal (1G)
The molecular axes of the substrates (1) and (2) are sandwiched between the first and second substrates (1) and (2) due to the action of the chiral agent.
2) with a twist of 1800° to 360°, for example, 270°, and due to the action of the alignment layers (7) and (8), 1 to the plane of the first and second substrates (1) and (2). The second main surface (1b
) side includes a polarizing plate (11) and a second main surface (2) of the second substrate (2).
A polarizing plate (12) and a reflecting plate (13) are attached to the 2b) side. Here, the arrangement angle of the polarizing plates (11) and (12) is
The transmission axes of the polarizing plates (11) and (12) are aligned with the first substrate (1)
With respect to the orientation direction of , the angles are set to be about 30 degrees clockwise and about 20'' clockwise, respectively.

この実施例では、第1主面(1a)、 (2a)を研磨
された第1及び第2基板(1) 、 (2)を使用する
ことにより、基板表面上の平坦精度を向上させて、アン
ダーコートを堆積するときに生じる堆積むらやITOを
蒸着するときに生じる蒸着むらを低減させ、同時に配向
処理時としての斜方蒸着時の蒸着むらを低減させること
ができ、また、対向基板間距離の精度を高めることがで
きた。この結果、完成した液晶表示器は色むらやしきい
値電圧むらが低減され、視認性を向上させることができ
た。
In this example, by using the first and second substrates (1) and (2) whose first principal surfaces (1a) and (2a) have been polished, the flatness accuracy on the substrate surfaces is improved. It is possible to reduce the uneven deposition that occurs when depositing an undercoat and the uneven deposition that occurs when depositing ITO, and at the same time reduce the uneven deposition during oblique vapor deposition during alignment processing, and also reduce the distance between opposing substrates. We were able to improve the accuracy of As a result, the completed liquid crystal display had reduced color unevenness and threshold voltage unevenness, and was able to improve visibility.

なお今までは、液晶表示器の第1主面(1a)、 (2
a)側のみ研磨した例について述べたが、第1主面(1
a)、 (2a)と第2主m(1b)、 (2b)の両
面を研磨したものであっても、同様の効果を有すること
は言うまでもない。
Until now, the first principal surface (1a), (2
Although we have described an example in which only the a) side was polished, the first principal surface (1
It goes without saying that even if both surfaces of a), (2a) and the second main m(1b), (2b) are polished, similar effects can be obtained.

[発明の効果] この発明は、複屈折による干渉色を利用した液晶表示器
の製造方法であり、ガラス基板の第1主面、或いは第1
及び第2主面を研磨した後にセルを構成することにより
、従来は不十分であった視感による視認性の向上を行う
ことができた。
[Effects of the Invention] The present invention is a method for manufacturing a liquid crystal display using interference color due to birefringence, and includes
By configuring the cell after polishing the second main surface, it was possible to improve the visibility due to visual sensation, which was insufficient in the past.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例を示す図である。 (1)・・・・・・第1基板 (2)・・・・・・第2基板 FIG. 1 is a diagram showing an embodiment of the present invention. (1)...First board (2)...Second board

Claims (3)

【特許請求の範囲】[Claims] (1)第1主面側に導電電極が形成された第1及び第2
基板と、分子軸が前記第1及び第2基板の平面に対し1
°より大きい傾斜を有し且つ前記第1及び第2基板間で
180°から360°の範囲の捩れをもって挟持されて
いるネマティック液晶と、前記第1及び第2基板の第2
主面側に偏光板とを備えた液晶表示器の製造方法におい
て、前記第1及び第2基板の第1主面或いは第1及び第
2主面を合わせて1μm乃至3μm研磨する工程を備え
ていることを特徴とする液晶表示器の製造方法。
(1) First and second electrodes with conductive electrodes formed on the first main surface side
a substrate, the molecular axis being 1 with respect to the plane of the first and second substrates;
a nematic liquid crystal having an inclination larger than
A method for manufacturing a liquid crystal display including a polarizing plate on the main surface side, comprising the step of polishing the first main surface of the first and second substrates or the first and second main surfaces together by 1 μm to 3 μm. A method for manufacturing a liquid crystal display device, characterized in that:
(2)前記第1及び第2基板はコルバーン法或いはフロ
ート法で形成されたソーダライムガラスであり、平坦精
度0.15μm以下、そり0.1%以下であることを特
徴とする特許請求の範囲第1項記載の液晶表示器の製造
方法。
(2) The first and second substrates are soda lime glass formed by a Colburn method or a float method, and have a flatness accuracy of 0.15 μm or less and a warpage of 0.1% or less. 2. The method for manufacturing a liquid crystal display according to item 1.
(3)研磨前の前記第1及び第2基板の厚さは0.7m
m乃至1.1mmであることを特徴とする特許請求の範
囲第1項記載の液晶表示器の製造方法。
(3) The thickness of the first and second substrates before polishing is 0.7 m.
2. The method of manufacturing a liquid crystal display according to claim 1, wherein the thickness is 1.1 mm to 1.1 mm.
JP62112422A 1987-05-11 1987-05-11 Liquid crystal display manufacturing method Expired - Fee Related JPH0820634B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62112422A JPH0820634B2 (en) 1987-05-11 1987-05-11 Liquid crystal display manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62112422A JPH0820634B2 (en) 1987-05-11 1987-05-11 Liquid crystal display manufacturing method

Publications (2)

Publication Number Publication Date
JPS63278025A true JPS63278025A (en) 1988-11-15
JPH0820634B2 JPH0820634B2 (en) 1996-03-04

Family

ID=14586252

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62112422A Expired - Fee Related JPH0820634B2 (en) 1987-05-11 1987-05-11 Liquid crystal display manufacturing method

Country Status (1)

Country Link
JP (1) JPH0820634B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5347766A (en) * 1991-07-18 1994-09-20 Mitsui Toatsu Chemicals, Inc. Method for polishing surface of transparent substrate layer of color filter unit

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55157719A (en) * 1979-05-28 1980-12-08 Nec Corp Liquid crystal display panel
JPS57205343A (en) * 1981-06-15 1982-12-16 Toshiba Corp Surface treatment of glass
JPS58145627A (en) * 1982-02-24 1983-08-30 Sharp Corp Manufacture of glass substrate
JPS60107020A (en) * 1983-07-12 1985-06-12 ビ−ビ−シ− アクチエンゲゼルシヤフト ブラウン ボヴエリ ウント コムパニ− lcd display
JPS6266234A (en) * 1985-09-18 1987-03-25 Sharp Corp Liquid crystal display element
JPS62146121U (en) * 1986-03-11 1987-09-16

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55157719A (en) * 1979-05-28 1980-12-08 Nec Corp Liquid crystal display panel
JPS57205343A (en) * 1981-06-15 1982-12-16 Toshiba Corp Surface treatment of glass
JPS58145627A (en) * 1982-02-24 1983-08-30 Sharp Corp Manufacture of glass substrate
JPS60107020A (en) * 1983-07-12 1985-06-12 ビ−ビ−シ− アクチエンゲゼルシヤフト ブラウン ボヴエリ ウント コムパニ− lcd display
JPS6266234A (en) * 1985-09-18 1987-03-25 Sharp Corp Liquid crystal display element
JPS62146121U (en) * 1986-03-11 1987-09-16

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5347766A (en) * 1991-07-18 1994-09-20 Mitsui Toatsu Chemicals, Inc. Method for polishing surface of transparent substrate layer of color filter unit

Also Published As

Publication number Publication date
JPH0820634B2 (en) 1996-03-04

Similar Documents

Publication Publication Date Title
US6642985B2 (en) Fringe field mode LCD shielded from electrostatic disturbances
JP5313216B2 (en) Liquid crystal display
KR100319467B1 (en) Liquid Crystal Display device
KR20010095244A (en) Liquid crystal display device
JP2856466B2 (en) Liquid crystal display device
JP5797487B2 (en) Liquid crystal display
JPS63278025A (en) Production of liquid crystal display device
CN104950533A (en) Display panel
US6943860B2 (en) Liquid crystal display
CN102466927B (en) Liquid crystal display cells
JPH0521056Y2 (en)
CN101038404B (en) Liquid crystal display element
JP2003057684A (en) Liquid crystal display device having stairs type driving signal
JP3252294B2 (en) Liquid crystal display device
JPH07107589B2 (en) Liquid crystal display element manufacturing method
KR100264165B1 (en) Lcd device
JPH0695120A (en) Liquid crystal display device
JP2726283B2 (en) Liquid crystal display
JPS6233575B2 (en)
JP2002350831A (en) Transmission type liquid crystal display panel
JPH082896Y2 (en) Touch switch and display with touch switch
JPH112794A (en) Liquid crystal display panel
JP5926314B2 (en) Liquid crystal display
JP3473735B2 (en) Method for manufacturing active matrix type liquid crystal display element
JPH03211523A (en) Optical modulating element

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees