[go: up one dir, main page]

JPS63265511A - Hollow pipe for and method of preventing cable duct freezing trouble - Google Patents

Hollow pipe for and method of preventing cable duct freezing trouble

Info

Publication number
JPS63265511A
JPS63265511A JP9849887A JP9849887A JPS63265511A JP S63265511 A JPS63265511 A JP S63265511A JP 9849887 A JP9849887 A JP 9849887A JP 9849887 A JP9849887 A JP 9849887A JP S63265511 A JPS63265511 A JP S63265511A
Authority
JP
Japan
Prior art keywords
pipe
hollow
cable
hollow pipe
freezing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9849887A
Other languages
Japanese (ja)
Inventor
Masaaki Kawase
川瀬 正明
Kenya Fuchigami
渕上 建也
Fumihiro Nihei
二瓶 文博
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP9849887A priority Critical patent/JPS63265511A/en
Publication of JPS63265511A publication Critical patent/JPS63265511A/en
Pending legal-status Critical Current

Links

Landscapes

  • Laying Of Electric Cables Or Lines Outside (AREA)

Abstract

PURPOSE:To obtain a method which is effective also for a cable already provided in a duct, by taking a pipe having a nonselfstanding pipe wall into said duct and thereafter by filling a hollow granular material, which absorbs a cubical expansion pressure of water due to its freezing, into said pipe through air pressure. CONSTITUTION:First, an internal pressure is applied by a compressor 10 to a pipe 9 folded and taken into a duct and composed of a high strength member 7 and a flexible member 8 so that said pipe 9 is formed into a hollow pipe shape in said duct. After that, a hollow granular material 11 is sent into the hollow pipe 9 through compressed air. In this manner, when water enters the duct in a cold area, a gap 4 is filled with water, of which volume increases at the time of its freezing. However, a freezing pressure can be reduced by compression and deformation of said hollow granular material 11.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は寒冷地における地下管路に収容された通信ケー
ブルの・凍結による障害を防止する技術に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a technique for preventing damage due to freezing of communication cables housed in underground conduits in cold regions.

(従来の技術) 寒冷地において、管路内に浸入した水が凍結した場合、
凍結による膨張圧がケーブルに加わりケーブルが破壊し
たり、伝送特性が茗しく損なわれるなどの障害があった
。従来、これを防止する方法として、ケーブル引ぎ込み
時にプラスチック中空パイプを同時に引き込む工法があ
った。
(Conventional technology) In cold regions, when water that has entered the pipes freezes,
Expansion pressure caused by freezing was applied to the cables, causing problems such as destruction of the cables and severe loss of transmission characteristics. Conventionally, a method to prevent this was to pull in a hollow plastic pipe at the same time as the cable was pulled in.

第9図は従来の工法による凍結防止方法の実施例を説明
する図であって、1はケーブル、2は凍結防止用の長手
方向に連続しているプラスチック中空パイプ、3は管路
、4は管路内の空隙である。
FIG. 9 is a diagram illustrating an example of a conventional freezing prevention method, in which 1 is a cable, 2 is a plastic hollow pipe continuous in the longitudinal direction for freezing prevention, 3 is a conduit, and 4 is a This is a void within the pipe.

この方法では、管路内に浸水し、空隙4に充満した水が
凍結した場合、凍結時の体積膨張圧により中空パイプ2
が圧縮されて変形し、ケーブルに膨張圧が加わるのを防
止する効果があった。しかし、このパイプの直径は20
〜30mm+と太いので、すでに管路にケーブルが収容
されている場合、パイプを追加して引き込むのは摩擦力
が大幅に増加して極めて困ガであった。このため、Jで
に管路に収容された通信ケーブルには適用できない欠点
があった。
In this method, when water enters the pipe and the water that fills the void 4 freezes, the volumetric expansion pressure at the time of freezing causes the hollow pipe to 2
This had the effect of preventing expansion pressure from being applied to the cable by compressing and deforming it. However, the diameter of this pipe is 20
Since the pipe is as thick as ~30 mm+, if the cable is already accommodated in the conduit, it is extremely difficult to add and draw in the pipe as the frictional force increases significantly. For this reason, there was a drawback that it could not be applied to communication cables housed in conduits.

(発明が解決しようとづる問題点) 本発明は管路に既設のケーブルに対しても右列な凍結障
害防止方法をli¥供づることにある。
(Problems to be Solved by the Invention) The present invention provides a method for preventing freezing damage even for existing cables in conduits.

(問題点を解決するための手段゛) 本発明は、径方向に連続していない高強tα部材と、こ
れを径方向に連結づるシート等の柔軟な部材で構成した
非自立の管壁を有づるパイ11M造と、このパイプを管
路内に引き込み、その後、凍結による水の休梢膨張圧を
吸収する中空粒状体を空気圧でパイプ内に充填する。
(Means for Solving the Problems) The present invention has a non-self-supporting pipe wall composed of a high-strength tα member that is not continuous in the radial direction and a flexible member such as a sheet that connects the members in the radial direction. This pipe is drawn into the conduit using the Zurupai 11M structure, and then the pipe is filled with air pressure with hollow granules that absorb the residual expansion pressure of water due to freezing.

従来の技術とは自立した管壁をiする長手方向に:連続
したパイプを用いず、小径のパイプを引き込むので、管
路へ引き込む時の1?擦抵抗を小さくできることが異な
る。
The conventional technology is to create a free-standing pipe wall in the longitudinal direction: instead of using a continuous pipe, a small-diameter pipe is drawn in. The difference is that the friction resistance can be reduced.

第1図は木野明の管壁が非自立で折り畳むことのできる
ケーブル費路凍結陣古防止用中空バ・イブの実施例を示
し、(a)は径方向に折り畳んで断面積を小さくした状
態の断面図であり、(b )は内圧を加えてパイプ状と
した場合の断面図である。
Figure 1 shows an example of Akira Kino's hollow tube for preventing freezing of cable routes, which has a non-self-supporting pipe wall that can be folded. (b) is a cross-sectional view when internal pressure is applied to make it into a pipe shape.

第1図において、5はFRI)(III諸強化プラスチ
ック)、ナイロン等の高強度部材、6はPE(ポリエチ
レン)シート等の柔軟な部材で高強度部材5を相互につ
ないでいる。こ゛のような構造になっているので、管路
内に引き込む時には<a >に示ずJ:うに折り畳んで
断面積が小さい状態であるため、F?!擦抵抗抵抗さく
でき、クープル既設管路内に引き込む′ことが可能であ
り、引き込んだ後に空気圧等の内1[を加えることによ
り、(b)に承りようにパイプ形状を保つことができる
。また引込み張力は1強1.lI部材5で分担できる。
In FIG. 1, 5 is a high-strength member such as FRI (III reinforced plastics), nylon, etc., and 6 is a flexible member such as PE (polyethylene) sheet, which interconnects the high-strength members 5. Since it has this structure, when it is drawn into the pipe, it is folded into the shape shown in <a> and has a small cross-sectional area, so F? ! It is possible to reduce the friction resistance and draw the pipe into the existing pipe, and by applying air pressure or the like after drawing it in, the pipe shape can be maintained as shown in (b). In addition, the retraction tension is 1 little more than 1. It can be shared by the II member 5.

第2図は本発明の管壁が非自立のゲープル管路凍結陣害
防止用中空パイプの他の実施例を示し、<a >は径方
向に折り畳んで断面積を小さくした状態の断面図であり
、(b )は内圧を加えてパイプ状とした場合の断面図
である。
Figure 2 shows another embodiment of the hollow pipe of the present invention for preventing freezing damage in a Gaeple pipeline with a non-self-supporting pipe wall. (b) is a cross-sectional view when the pipe is shaped into a pipe by applying internal pressure.

第2図にJ3いて、7は鋼線、FRPなどの高強度部材
、8はPEシート等の柔軟な部材である。
In FIG. 2, J3 indicates a high-strength member such as steel wire or FRP, and 8 a flexible member such as a PE sheet.

このようなM43aになっているので、管路内に引き込
む時には(a )に示すように折り畳んで断面積を小さ
くし、摩擦抵抗を小さくでき、引き込lνだ後、空気圧
等の内圧を加えることにより、(b)に承りようにパイ
プ形状を保つことができる。
Since it is M43a like this, when drawing it into the pipe, it can be folded as shown in (a) to reduce the cross-sectional area and reduce the frictional resistance, and after drawing it in, it is possible to apply internal pressure such as air pressure. This allows the pipe shape to be maintained as shown in (b).

また他の実施例として、これらのパイプの表面にシリコ
ンオイルなどの潤滑材を(J Djしてもよい。
In another embodiment, a lubricant such as silicone oil may be applied to the surface of these pipes.

このように覆れば、パイプの引込み時やケーブル引抜き
時に1?擦抵抗が低減づるので、バイブ引込みやケーブ
ル撤去を、さらに低張力で行うことができる。
If you cover it like this, it will be 1 when pulling in the pipe or pulling out the cable. Since the frictional resistance is reduced, the vibrator can be pulled in and the cable removed with even lower tension.

ff13図は本発明の凍結障害防止方法の一実R例図で
あって、1は既設ケーブル、3は管路、9は管路内に引
き込んだパイプ、10は]ンブレッ(ノー等の圧縮空気
発生体、11は中空粒状体、12は中空粒状体11を供
給するための容器、13は圧縮空気を管路3に導くため
の接続部である。
Fig. ff13 is a practical example of the freezing damage prevention method of the present invention, in which 1 is an existing cable, 3 is a conduit, 9 is a pipe drawn into the conduit, and 10 is a compressed air 11 is a hollow granular body; 12 is a container for supplying the hollow granular body 11; and 13 is a connecting portion for introducing compressed air into the pipe line 3.

このような構成になっているので、まず折り骨まれて管
路3内に引き込まれた第1図(a )・または第2図(
a)に示す高強度部材5または7と、柔軟な部材6また
は8とから成るパイプ9に、コンプレッサー10で内圧
を加えて、該パイプ9を管路内で中空パイプ形状とした
後、中空粒状体11を圧縮空気により中空パイプ内に送
り込むことができる。管路の他端で中空粒状体11の出
てくる聞をX1測し、時間当たりの吐出量と供給量の関
係から中空パイプ内に送り込まれた中空粒状体の分布を
知ることができ、中空粒状体11の所定の量が中空パイ
プ内に充填された時点で供給を終了すればよい。また、
中空パイプの吐出側に中空粒状体のサイズよりも小さな
目のメツシュをかぶせておけば、さらに中空パイプ内へ
の充填口を増やすことができる。
With this configuration, the bones in Figure 1 (a) or Figure 2 (Figure 2) are broken and drawn into the pipe 3.
A compressor 10 applies internal pressure to the pipe 9 made of the high-strength member 5 or 7 and the flexible member 6 or 8 shown in a) to form the pipe 9 into a hollow pipe shape within the conduit, and then into a hollow granular shape. The body 11 can be fed into the hollow pipe by means of compressed air. At the other end of the pipe, the length of the hollow granules 11 coming out is measured by X1, and the distribution of the hollow granules fed into the hollow pipe can be determined from the relationship between the discharge amount and the supply amount per hour. The supply may be terminated when a predetermined amount of the granular material 11 is filled into the hollow pipe. Also,
By covering the discharge side of the hollow pipe with a mesh having a mesh size smaller than the size of the hollow granules, it is possible to further increase the number of filling ports into the hollow pipe.

第4図は中空粒状体を充填した状態の管路の断面図であ
って、1はケーブル、3は管路、4は管路内の空隙、9
は第2図で説明したパイプ、11は充填された中空粒状
体である。
FIG. 4 is a cross-sectional view of a conduit filled with hollow particles, in which 1 is a cable, 3 is a conduit, 4 is a void in the conduit, and 9
1 is the pipe explained in FIG. 2, and 11 is a filled hollow granule.

寒冷地で管路内に浸水した場合、空隙4に水が充満し凍
結時にその体積が増加するが、中空粒状体11が圧縮変
形することにより、凍結圧を低減できる。さらに、管路
内に一時に人聞の水が流入しても、中空粒状体はパイプ
内に収納されているので、水流で押し流されることもな
く、管路内に均等に残存する。
When water enters the pipe in a cold region, the void 4 is filled with water and its volume increases when frozen, but the freezing pressure can be reduced by compressing and deforming the hollow granules 11. Furthermore, even if water flows into the pipe at one time, the hollow particles are housed within the pipe, so they will not be washed away by the water flow and will remain evenly within the pipe.

第5図は中空粒状体を充填した状態の管路の他の例の断
面図であって、1はケーブル、3は管路、4は空隙、9
′は第1図で説明したパイプ、11は充填された中空粒
状体である。第5図に示す例の作用、効果は、第4図の
場合と同様である。管路内に水が流入し、かつパイプ内
にも水がピンホール等から浸水して凍結する場合、中空
粒状体の殻の強度が水の凍結による圧力で容易に変形す
るものとすれば、水の凍結による体積膨張率は約10%
であるので、粒状体の全体積と中空粒状体に内包されて
いる空気の体積比ρ、パイプに充填する中空粒状体の管
路に対する充填率をβとするとき、ρβ>0.1(1−
β)  ・・・(1)を満足するようにパイプ内に中空
粒状体を充填すれば、凍結による圧力はケーブルに加わ
らない。
FIG. 5 is a sectional view of another example of a conduit filled with hollow particles, in which 1 is a cable, 3 is a conduit, 4 is a gap, and 9
' is the pipe explained in FIG. 1, and 11 is a filled hollow granule. The operation and effect of the example shown in FIG. 5 are the same as in the case of FIG. 4. When water flows into the pipe and also enters the pipe through pinholes and freezes, assuming that the strength of the shell of the hollow granule is easily deformed by the pressure caused by the freezing of the water, The volumetric expansion rate due to freezing of water is approximately 10%.
Therefore, when ρ is the volume ratio of the total volume of the granules to the air contained in the hollow granules, and β is the filling ratio of the hollow granules to the pipe, ρβ>0.1(1 −
β) If the pipe is filled with hollow particles so as to satisfy (1), no pressure due to freezing will be applied to the cable.

なお氷の熱膨張係数は5X10−’/’C程度であり、
氷結による体積膨張に比較して極めて小さいので、氷の
温度による体積変化は無視することができる。
The coefficient of thermal expansion of ice is approximately 5X10-'/'C,
The change in volume due to ice temperature can be ignored because it is extremely small compared to the volume expansion due to freezing.

第6図は本発明で用いる中空粒状体の一例の断面図であ
って、14は中空粒状体の殻、15は中空部であり、中
空粒状体はプラスチックやゴム等で実現できる。このよ
うな中空粒状体の外圧による座屈応力Pは次式で示され
る。
FIG. 6 is a cross-sectional view of an example of a hollow granule used in the present invention, where 14 is a shell of the hollow granule, 15 is a hollow portion, and the hollow granule can be made of plastic, rubber, or the like. Buckling stress P of such a hollow granular body due to external pressure is expressed by the following equation.

P=4Et ’/(3r 2 (7−シ)15(23−
ν)(1−ν’ ) )  (kg/ms’ )・・・
(2) ここで、E、νは中空粒状体を構成している材料のヤン
グ率とポアソン比であり、r、tは中空粒状体の内半径
と肉厚である。E = 20kg/ sv+’の低密度
ポリエチレンで中空粒状体を構成する場合のt/rと座
屈応力の関係の計算例を第7図に示す。またケーブル外
被のような円筒の座屈応力Pcは次式で示される。
P=4Et'/(3r2(7-shi)15(23-
ν) (1-ν') ) (kg/ms')...
(2) Here, E and ν are the Young's modulus and Poisson's ratio of the material constituting the hollow granule, and r and t are the inner radius and wall thickness of the hollow granule. FIG. 7 shows a calculation example of the relationship between t/r and buckling stress when hollow granules are made of low-density polyethylene with E = 20 kg/sv+'. Further, the buckling stress Pc of a cylinder such as a cable jacket is expressed by the following equation.

Pc =E (t/r )3/4 (1−ν2)(kg
/gi*2)             ・ ・ ・ 
(3)ここで、E、νは円筒を構成している材料のヤン
グ率とポアソン比であり、「、【は円筒の半径と肉厚で
ある。E −70kg/ as’の高密度ポリエチレン
外被で、r −1011,t−211の例では、座屈応
力は0.18  (kg/1m”)となる。この場合、
第7図からt/rを0.04以下にすれば、ケーブルに
異常が起こる前に中空粒状体が座屈し、凍結による水の
体積膨張圧を吸収することができる。
Pc = E (t/r)3/4 (1-ν2) (kg
/gi*2) ・ ・ ・
(3) Here, E and ν are the Young's modulus and Poisson's ratio of the material constituting the cylinder, and , and are the radius and wall thickness of the cylinder. In the example of r -1011 and t-211, the buckling stress is 0.18 (kg/1 m''). in this case,
As can be seen from FIG. 7, if t/r is set to 0.04 or less, the hollow granules buckle before any abnormality occurs in the cable, making it possible to absorb the volumetric expansion pressure of water due to freezing.

第8図は本発明で用いる中空粒状体の他の例の断面図で
あって、14は中空粒状体の殻、15′は複数の独立し
た気泡であり、発泡ウレタンフオーム等で実現すること
ができる。このように独立した気泡で構成されているの
で、たとえパイプ内に浸−水しても水が気泡内に充満す
ることはなく、スポンジ状であるので、凍結により容易
に変形するとともに復元力にも優れ、ざらに軒昂なため
パイプ内への充填を容易に行うことができる。
FIG. 8 is a cross-sectional view of another example of the hollow granules used in the present invention, where 14 is a shell of the hollow granules, and 15' is a plurality of independent cells, which can be realized by foamed urethane foam or the like. can. Since it is composed of independent air bubbles, even if water enters the pipe, water will not fill the air bubbles, and since it is spongy, it easily deforms when frozen and has no resilience. It has excellent properties and has a rough eaves, making it easy to fill pipes.

なお中空状粒状態の形状は、第6図、第8図に示した形
状のほか、円柱状、楕円球状、基石秋などでもよい。
In addition to the shapes shown in FIGS. 6 and 8, the shape of the hollow particles may be cylindrical, ellipsoidal, spherical, etc.

(発明の効果) 以上説明したように、本発明によるケーブル管路凍結障
害防止用中空パイプおよびケーブル管路凍結障害防止方
法は、凍結によるケーブルへの圧縮力を、パイプ内に充
填した中空粒状体により吸収するので、ケーブル既設管
路に対して適用でき、浸水時に中空粒状体が移動するこ
とがなく、均等な凍結圧力吸収の効果が期待できる。
(Effects of the Invention) As explained above, the hollow pipe for preventing cable conduit freezing damage and the cable conduit freezing damage prevention method according to the present invention utilizes hollow granules filled in the pipe to absorb compressive force on the cable due to freezing. Because it can be applied to existing cable pipelines, the hollow granules do not move when flooded, and the effect of evenly absorbing freezing pressure can be expected.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第2図は本発明のケーブル管路凍結Fll
害防止用中空パイプの実施例図、第3図は本発明の凍結
防止方法の一実施例図、第4図および第5図は本発明に
より管路内に中空粒状体を充填した状態の断面図、第6
図は本発明で用いる中空粒状体の一例の断面図、第7図
は中空粒状体の座屈応力を示す図、第8図は本発明で用
いる中空粒状体の他の例の断面図、第9図は従来の工法
による凍結防止方法の実施例を説明する図である。 1・・・ケーブル 2・・・プラスチック中空パイプ 3・・・管路        4・・・管路内の空隙5
・・・FRP、ナイロン等の高強度部材6・・・PEシ
ート・等の柔軟な部材 7・・・FRP、鋼線等の高強度部材 8・・・PEシート等の柔軟な部材 9・・・パイプ      9′パイプ10・・・コン
プレッサー等の圧縮空気発生体11・・・中空粒状体 12・・・中空粒状体を供給するための容器13・・・
圧縮空気を管路に導くための接続部14・・・中空粒状
体の殻  15・・・中空粒状体の中空部15・・・中
空粒状体の中空部 15′・・・気泡 第1図 (、a) (b) 第2図 <1) 8=−PEンート茸V盪飲なをす才 (b) 第3図 f−−−−ケーフ゛ル 3−−−− IF路 q  =−/eイア 第4図     第5図 4−11!肉″gF!               
      9−00.7.4.。 第6図 f5−−−−東9絃秋(番〇中f舒 第7図 o、ot      aoa       O−f竺堅
杓ml t/ 中t!!頼状体の内生#kr 第8図 15’−−1:t! 第9図
FIG. 1 and FIG. 2 show the frozen cable conduit Fll of the present invention.
An embodiment of a hollow pipe for damage prevention; FIG. 3 is an embodiment of the freezing prevention method of the present invention; FIGS. 4 and 5 are cross-sections of the pipe line filled with hollow granules according to the present invention. Figure, 6th
The figure is a sectional view of an example of a hollow granule used in the present invention, FIG. 7 is a diagram showing buckling stress of the hollow granule, and FIG. FIG. 9 is a diagram illustrating an example of a conventional freezing prevention method. 1... Cable 2... Plastic hollow pipe 3... Conduit 4... Gap in the conduit 5
... High-strength member such as FRP, nylon 6 ... Flexible member such as PE sheet 7 ... High-strength member such as FRP, steel wire 8 ... Flexible member such as PE sheet 9... - Pipe 9' Pipe 10... Compressed air generator such as a compressor 11... Hollow granules 12... Container 13 for supplying hollow granules...
Connecting portion 14 for guiding compressed air to the pipe line... Shell of hollow granular body 15... Hollow part 15 of hollow granular body... Hollow part 15' of hollow granular body... Bubbles in Figure 1 ( , a) (b) Fig. 2<1) 8 = -PE ent mushroom V - ability to drink (b) Fig. 3 Figure 4 Figure 5 4-11! Meat “gF!”
9-00.7.4. . Fig. 6 f5 ---- East 9 Genki (No. -1:t! Figure 9

Claims (1)

【特許請求の範囲】 1、パイプの管壁が、長手方向に連続し、径方向には連
続していない1または複数の高強度部材と、径方向に該
高強度部材を連結し、長手方向に連続している柔軟な非
自立部材とで構成され、かつパイプの全長にわたつて、
径方向に折り畳むことができることを特徴とするケーブ
ル管路凍結障害防止用中空パイプ。 2、前記中空パイプの表面に潤滑材が付着していること
を特徴とする特許請求の範囲第1項記載のケーブル管路
凍結障害防止用中空パイプ。 3、パイプの管壁が、長手方向に連続し、径方向には連
続していない1または複数の高強度部材と、径方向に該
高強度部材を連結し、長手方向に連続している柔軟な非
自立部材とで構成され、かつパイプの全長にわたって、
径方向に折り畳むことができるケーブル管路凍結障害防
止用中空パイプを、ケーブルを収容する管路内に引き込
み、該中空パイプの片端から複数の中空粒状体を空気圧
で該中空パイプ内に圧送して充填することを特徴とする
ケーブル管路凍結障害防止方法。 4、前記中空パイプ内に中空粒状体を充填する場合に、
中空粒状体の体積に対して内包されている空気の体積比
をρ、中空粒状体の管路内空間に対する充填率をβとし
、 ρβ>0.1(1−β) を満足することを特徴とする特許請求の範囲第3項記載
のケーブル管路凍結障害防止方法。 5、前記中空パイプ内に充填する粒状体が複数の独立気
泡を有する発泡体で形成されていることを特徴とする特
許請求の範囲第3項または第4項記載のケーブル管路凍
結障害防止方法。
[Claims] 1. The wall of the pipe is continuous in the longitudinal direction, but is not continuous in the radial direction. One or more high-strength members are connected in the radial direction, and the high-strength members are connected in the longitudinal direction. consisting of a flexible non-self-supporting member that is continuous with the pipe, and that extends over the entire length of the pipe.
A hollow pipe for preventing freezing damage in cable conduits, which is characterized by being able to be folded in the radial direction. 2. The hollow pipe for preventing freezing damage in a cable conduit according to claim 1, wherein a lubricant is attached to the surface of the hollow pipe. 3. A flexible pipe in which the wall of the pipe is continuous in the longitudinal direction and one or more high-strength members that are not continuous in the radial direction, and the high-strength members are connected in the radial direction and are continuous in the longitudinal direction. consisting of non-self-supporting members, and spanning the entire length of the pipe,
A radially foldable hollow pipe for preventing freezing damage in a cable conduit is drawn into a conduit accommodating the cable, and a plurality of hollow granules are pneumatically fed into the hollow pipe from one end of the hollow pipe. A method for preventing freezing damage in a cable conduit, characterized by filling the cable conduit. 4. When filling the hollow pipe with hollow particles,
The volume ratio of the enclosed air to the volume of the hollow granules is ρ, and the filling rate of the hollow granules to the space inside the pipe is β, and the characteristic is that ρβ>0.1(1−β) is satisfied. A method for preventing freezing damage in a cable conduit according to claim 3. 5. The method for preventing freezing damage in a cable conduit according to claim 3 or 4, wherein the granular material filled in the hollow pipe is formed of a foam having a plurality of closed cells. .
JP9849887A 1987-04-23 1987-04-23 Hollow pipe for and method of preventing cable duct freezing trouble Pending JPS63265511A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9849887A JPS63265511A (en) 1987-04-23 1987-04-23 Hollow pipe for and method of preventing cable duct freezing trouble

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9849887A JPS63265511A (en) 1987-04-23 1987-04-23 Hollow pipe for and method of preventing cable duct freezing trouble

Publications (1)

Publication Number Publication Date
JPS63265511A true JPS63265511A (en) 1988-11-02

Family

ID=14221305

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9849887A Pending JPS63265511A (en) 1987-04-23 1987-04-23 Hollow pipe for and method of preventing cable duct freezing trouble

Country Status (1)

Country Link
JP (1) JPS63265511A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6377734B1 (en) * 1998-03-12 2002-04-23 Ernst Mayr Cable network in a system of ducts and pipes having a flowing media and a method of securing the network in the system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6377734B1 (en) * 1998-03-12 2002-04-23 Ernst Mayr Cable network in a system of ducts and pipes having a flowing media and a method of securing the network in the system

Similar Documents

Publication Publication Date Title
JP5249530B2 (en) Insulated pipe conduit
JPH09222182A (en) Method for generating pipe buried under ground
JPH06186440A (en) Optical-fiber inserting method
JPS59104607A (en) Method and apparatus for installing optical fiber cable
US5156376A (en) Laying cables
NO318499B1 (en) Expandable plug and control method
NO754182L (en)
EP3368805B1 (en) Flexible hose
JPS63265511A (en) Hollow pipe for and method of preventing cable duct freezing trouble
US6796547B1 (en) Collapsible duct
US7234492B2 (en) Double-sheath pipe for transporting fluids, provided with a device for limiting propagation of a buckle of the outer tube and method for limiting propagation
CN207195859U (en) Polyethylene fiberglass composite structure drainage pipe
CN114435541B (en) Water-filled towing flow deflector and matched clamp thereof
CN208967245U (en) A kind of anti-skidding double-wall corrugated communications protection pipe of reinforcing
JPH05180375A (en) Flexible fluid transport tube
CN209245499U (en) It is capable of the prefabricated direct-buried plastic, thermal-insulation pipe of flexible coil pipe
KR960014738A (en) Piping system for remote heat transfer
CN109723935A (en) Antifreeze pipe fitting
JPH09230181A (en) Fiber optic cable for cold climates
EP0907854B1 (en) Improved vehicle including freeze stress resistant fluid conducting apparatuses
CN207470940U (en) A kind of buried Gas Pipe of PE high-wearing features
CN216046185U (en) Ice expansion prevention device for water supply pipeline
CN206536801U (en) A kind of helix tube and helix tube production equipment
JPS61149276A (en) Method for lining inner surface of pipeline
JPH0420620A (en) Piping method