JPS6326344B2 - - Google Patents
Info
- Publication number
- JPS6326344B2 JPS6326344B2 JP56119141A JP11914181A JPS6326344B2 JP S6326344 B2 JPS6326344 B2 JP S6326344B2 JP 56119141 A JP56119141 A JP 56119141A JP 11914181 A JP11914181 A JP 11914181A JP S6326344 B2 JPS6326344 B2 JP S6326344B2
- Authority
- JP
- Japan
- Prior art keywords
- piezoelectric element
- sensor
- flaw detection
- electric signal
- electric circuit
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 238000001514 detection method Methods 0.000 claims description 12
- 230000003321 amplification Effects 0.000 claims description 6
- 238000003199 nucleic acid amplification method Methods 0.000 claims description 6
- 230000000007 visual effect Effects 0.000 claims description 6
- 239000002184 metal Substances 0.000 description 7
- 229910052751 metal Inorganic materials 0.000 description 7
- 238000010586 diagram Methods 0.000 description 6
- 239000007769 metal material Substances 0.000 description 4
- 238000001028 reflection method Methods 0.000 description 4
- 239000012790 adhesive layer Substances 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 3
- 230000007547 defect Effects 0.000 description 3
- 239000011120 plywood Substances 0.000 description 3
- 230000000694 effects Effects 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 229910052755 nonmetal Inorganic materials 0.000 description 2
- 239000000523 sample Substances 0.000 description 2
- JOYRKODLDBILNP-UHFFFAOYSA-N Ethyl urethane Chemical compound CCOC(N)=O JOYRKODLDBILNP-UHFFFAOYSA-N 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000009430 construction management Methods 0.000 description 1
- 238000013016 damping Methods 0.000 description 1
- 238000007598 dipping method Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 239000012774 insulation material Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 150000002843 nonmetals Chemical class 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 230000000644 propagated effect Effects 0.000 description 1
- 238000003908 quality control method Methods 0.000 description 1
- 239000007779 soft material Substances 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 238000002604 ultrasonography Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N29/00—Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
- G01N29/04—Analysing solids
- G01N29/06—Visualisation of the interior, e.g. acoustic microscopy
- G01N29/0609—Display arrangements, e.g. colour displays
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N29/00—Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
- G01N29/04—Analysing solids
- G01N29/11—Analysing solids by measuring attenuation of acoustic waves
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2291/00—Indexing codes associated with group G01N29/00
- G01N2291/01—Indexing codes associated with the measuring variable
- G01N2291/014—Resonance or resonant frequency
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2291/00—Indexing codes associated with group G01N29/00
- G01N2291/04—Wave modes and trajectories
- G01N2291/044—Internal reflections (echoes), e.g. on walls or defects
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2291/00—Indexing codes associated with group G01N29/00
- G01N2291/10—Number of transducers
- G01N2291/102—Number of transducers one emitter, one receiver
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2291/00—Indexing codes associated with group G01N29/00
- G01N2291/26—Scanned objects
- G01N2291/267—Welds
- G01N2291/2675—Seam, butt welding
Landscapes
- Physics & Mathematics (AREA)
- Acoustics & Sound (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
Description
【発明の詳細な説明】
この発明は、非金属物の内部構造を反射法で非
破壊的に検査することができる超音波探傷装置に
関する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an ultrasonic flaw detection device capable of non-destructively inspecting the internal structure of a non-metallic object using a reflection method.
従来のこの種超音波探傷装置は、同調回路を有
する衝撃電気信号発生装置に接続した圧電素子を
備えた送信センサと、同調増幅電気回路に接続し
た圧電素子を備えた受信センサと、前記送信セン
サへの衝撃電気信号及び前記受信センサから前記
同調増幅電気回路を経て選別増幅した電気信号を
共に変換して視認するための視認装置とより構成
してある。そして前記送信センサより発信した周
波数帯域数MHzの超音波が、鋼材や溶接構造体な
どの金属被検査物内を伝播し境界面や内部の欠陥
部で反射した反射波を前記受信センサで捕促し、
電気信号に変換する。この電気信号を同調増幅電
気回路を経て視認装置に送り、反射波の波形や伝
播時間を測定することで被検査物を検査するもの
であつて、金属素材の品質管理や構造体の施工管
理に著しく寄与している。 A conventional ultrasonic flaw detection device of this kind includes a transmitting sensor equipped with a piezoelectric element connected to an impact electric signal generator having a tuned circuit, a receiving sensor equipped with a piezoelectric element connected to a tuned amplification electric circuit, and the transmitting sensor. and a visual recognition device for converting and visually recognizing both the impact electric signal applied to the electric signal and the electric signal selectively and amplified from the receiving sensor through the tuned amplification electric circuit. Ultrasonic waves with a frequency band of several MHz transmitted from the transmitting sensor propagate within the metal object to be inspected, such as steel materials or welded structures, and the reflected waves reflected from the interface or internal defects are captured by the receiving sensor. ,
Convert to electrical signal. This electrical signal is sent to a visual recognition device via a tuned amplification circuit, and the waveform and propagation time of the reflected wave are measured to inspect the object to be inspected.It is useful for quality control of metal materials and construction management of structures. It has contributed significantly.
この技術は非金属物にも広く活用することが求
められているが、しかしながら非金属物はその構
成分子自体が金属よりも大きく、また独立微小気
泡含有率も大きいから数100KHz以上の高周波超
音波では散乱が烈しく、一方、より低い周波数を
利用しようとしても従来の厚み振動子を用いた場
合は金属探傷に比べ著しく厚くしなければならな
いから、ダンピングのききが悪くパルス幅が非常
に広くなり分解能が著しく落ちる、更に厚さと径
方向の寸法が類似するため厚み振動によつて輪郭
振動を著しく誘発し表面波を助長させるなどの問
題点があり、反射法による非金属物の探傷は全く
不可能であつた。 This technology is required to be widely applied to non-metallic materials, but since the constituent molecules of non-metallic materials themselves are larger than those of metals, and the content of closed microbubbles is large, high-frequency ultrasonic waves of several 100 KHz or higher are applied to non-metallic materials. On the other hand, even if you try to use a lower frequency, if you use a conventional thickness transducer, you have to make it significantly thicker than in metal flaw detection, so the damping is poor and the pulse width is very wide, reducing the resolution. Furthermore, since the thickness and radial dimensions are similar, thickness vibration significantly induces contour vibration and promotes surface waves, making it completely impossible to detect defects in non-metallic objects using the reflection method. It was hot.
従つて、例えばLPGタンカーの船倉内壁には
りつけた断熱材の接着欠陥の有無の検出のような
非金属を対象とした超音波探傷は永年の間切望さ
れてきたにも拘らず全く行われていないのが現状
である。 Therefore, ultrasonic flaw detection for non-metals, such as detecting the presence or absence of adhesion defects in insulation materials attached to the inner walls of LPG tankers' holds, has been desired for many years, but has not been carried out at all. is the current situation.
この発明は、このような従来の問題点に着目し
てなされたもので、従来専らブザーなどの音響機
器にしか用いられていない基本振動数KHzのタワ
ミ形圧電素子は、その厚さが金属超音波探傷用並
みに薄く、パルス励振時に金属超音波探傷用程度
のダイピングが得られ、更に励振法によつて数K
Hzから数100KHzの周波数が得られるという点に
注目し、これを超音波の探触子として利用する新
規な着想に基づくものである。 This invention was made by focusing on these conventional problems, and the deflection type piezoelectric element with a fundamental frequency of KHz, which has conventionally been used only in audio equipment such as buzzers, has a thickness exceeding that of metal. It is as thin as that used for sonic flaw detection, and when pulse excitation can be used, dipping comparable to that used for metal ultrasonic flaw detection can be obtained.
It focuses on the fact that frequencies ranging from Hz to several 100 KHz can be obtained, and is based on a novel idea of using this as an ultrasound probe.
即ち、この発明は、送信センサ及び受信センサ
をタワミ形圧電素子と、そのタワミ形圧電素子の
高調波波長に比例した厚さを有する硬質板から構
成することにより上記問題点を解決し、非金属物
の検査を反射法で容易にしかも高精度で行い得る
新規の超音波探傷装置を提供することを目的とし
ている。 That is, the present invention solves the above problems by constructing the transmitting sensor and the receiving sensor from a deflecting piezoelectric element and a hard plate having a thickness proportional to the harmonic wavelength of the deflecting piezoelectric element. The purpose of the present invention is to provide a new ultrasonic flaw detection device that can easily inspect objects using a reflection method and with high precision.
以下、この発明を図面に基づいて説明する。 The present invention will be explained below based on the drawings.
第1図ないし第5図はこの発明の一実施例を示
す図である。 1 to 5 are diagrams showing one embodiment of the present invention.
まず構成を説明すると、1は送信センサで、硬
質板2に接着等の手段で接合したタワミ形圧電素
子3が、ケース4の内部に収納してある。5は衝
撃電気信号発生装置で前記タワミ形圧電素子3の
もつ高周波波長に同調した同調電気回路(図示せ
ず)を有し、前記送信センサ1の頂部に設けたコ
ネクター6を介して前記タワミ形圧電素子3と接
続している。7はその接続のための配線である。 First, the configuration will be described. Reference numeral 1 denotes a transmitting sensor, and a deflection-type piezoelectric element 3 bonded to a hard plate 2 by means of adhesive or the like is housed inside a case 4. Reference numeral 5 denotes an impact electric signal generator, which has a tuning electric circuit (not shown) tuned to the high frequency wavelength of the deflection type piezoelectric element 3, and connects the deflection type piezoelectric signal via a connector 6 provided at the top of the transmission sensor 1. It is connected to the piezoelectric element 3. 7 is wiring for the connection.
一方、8は受信センサで、前記送信センサ1と
同じく硬質板9に接合したタワミ形圧電素子10
が、頂部にコネクター11を設けたケース12の
内部に収納してある。なお、前記両硬質板2,9
は前記両タワミ形圧電素子3,10の高調波波長
に比例した厚さを有する金属板よりなりこれによ
つて特定の高調波を強調できるようにしてある。 On the other hand, 8 is a reception sensor, which is a deflection type piezoelectric element 10 connected to a hard plate 9 like the transmission sensor 1.
is housed inside a case 12 having a connector 11 on the top. In addition, both the hard plates 2 and 9
is made of a metal plate having a thickness proportional to the harmonic wavelength of both deflection type piezoelectric elements 3 and 10, and is designed to emphasize a specific harmonic.
13は高調波同調電気回路で、前記受信センサ
8のタワミ形圧電素子10から送られる電気信号
パルスのうち特定の高調波成分を同調して増幅す
るためのものである。 Reference numeral 13 denotes a harmonic tuning electric circuit for tuning and amplifying a specific harmonic component of the electric signal pulse sent from the deflection type piezoelectric element 10 of the receiving sensor 8.
14は前記高調波同調電気回路13及び前記衝
撃電気信号発生装置5に接続した視認装置で、例
えば掃引回路(図示せず)を内蔵しブラウン管1
4aを有するオシログラフである。 Reference numeral 14 denotes a visual recognition device connected to the harmonic tuning electric circuit 13 and the impulse electric signal generating device 5, which includes, for example, a sweep circuit (not shown) and is connected to the cathode ray tube 1.
4a.
15は配線である。 15 is wiring.
次に作用を説明する。 Next, the effect will be explained.
第3図に示すように、合板とか発泡ウレタンの
ような多孔質の非金属性被検査体Aの表面に送信
センサ1と受信センサ8とを並べてそれぞれ軽く
圧着する。衝撃電気信号発生装置5で発生した電
気信号の高周波パルスは配線7を経て一方は視認
装置14へ送られそのブラウン管14aの螢光面
に送信パルスの波形を描く。 As shown in FIG. 3, the transmitting sensor 1 and the receiving sensor 8 are arranged and lightly pressed on the surface of a porous non-metallic object A such as plywood or foamed urethane. The high-frequency pulse of the electric signal generated by the impulse electric signal generator 5 is sent to the viewing device 14 via the wiring 7, and a waveform of the transmitted pulse is drawn on the fluorescent surface of the cathode ray tube 14a.
他方は送信センサ1のタワミ形圧電素子3に送
られて、周波数数KHzから数100KHz内の所定の
高調波機械振動に変換される。この高調波振動は
硬質板2の共振によつて強調されて被検査体A内
へ入射する。この場合振動子は径方向に比し厚さ
の薄いタワミ形圧電素子3を用いてあるから多孔
材質の合板に対しても従来の厚み振動子のような
輪郭振動による表面波を生ずることがない。また
接触媒質を全く使わずに指向性が良好で多孔質に
対しても散乱することのない周波数をもつ高調波
を発射し伝播させるとができる。 The other wave is sent to the deflection type piezoelectric element 3 of the transmitting sensor 1 and converted into a predetermined harmonic mechanical vibration within a frequency of several KHz to several 100 KHz. This harmonic vibration is emphasized by the resonance of the hard plate 2 and enters the object A to be inspected. In this case, since the vibrator uses a deflection type piezoelectric element 3 which is thinner than the radial direction, surface waves due to contour vibration are not generated even on porous plywood as in conventional thickness vibrators. . Further, it is possible to emit and propagate harmonic waves having good directivity and a frequency that does not scatter even in porous materials without using any couplant.
伝播した入射波16は接着剤層Bで一部が反射
される。この反射波17が受信センサ8に達する
と上記同様に硬質板9で強調された上タワミ圧電
素子10に伝わり個有の高調波帯域の電気信号パ
ルスに変換される。 A portion of the propagated incident wave 16 is reflected by the adhesive layer B. When this reflected wave 17 reaches the reception sensor 8, it is transmitted to the upper deflection piezoelectric element 10, which is emphasized by the hard plate 9 in the same manner as described above, and is converted into an electric signal pulse in a unique harmonic band.
前記電気信号パルスは、配線15を経て高調波
同調電気回路13でさらに特定の周波数成分を選
別増幅して視認装置14に送られ従来と同じくそ
のブラウン管14aの螢光面に受信パルスの波形
を描く。 The electric signal pulse passes through the wiring 15 and is further selectively amplified by a harmonic tuning electric circuit 13 to select and amplify specific frequency components, and is sent to the visual recognition device 14, where the waveform of the received pulse is drawn on the fluorescent surface of the cathode ray tube 14a as in the conventional case. .
第4図ないし第5図は前記ブラウン管14aに
描かれた波形を示すもので、厚さ12mmの合板2枚
を接着剤で接着し場合の接着状況の良否をこの発
明によるタワミ形振動子を備えた低周波超音波探
傷装置で検査した場合の例である。第4図は接着
不良個所、第5図は接着良好個所の場合で、図中
Tは発信パルス、Fは接着層による反射エコー、
Bは板の反対側端面からの反射エコーである。図
から明らかなように、接着状況の良否は接着層の
反射エコーFの周波数、振幅の相異から容易に検
出できる。 Figures 4 and 5 show waveforms drawn on the cathode ray tube 14a, and show the quality of the adhesion when two sheets of plywood with a thickness of 12 mm are glued together. This is an example of inspection using a low-frequency ultrasonic flaw detector. Figure 4 shows a location with poor adhesion, and Figure 5 shows a location with good adhesion. In the figure, T is the transmitted pulse, F is the echo reflected by the adhesive layer, and
B is the reflected echo from the opposite end face of the plate. As is clear from the figure, the quality of the adhesion can be easily detected from the difference in frequency and amplitude of the reflected echo F of the adhesive layer.
なお上述の反射法のほか、送、受両センサ1,
8の間隔を被検査物の厚さ以上の任意にとつた平
列法にも適用できる。 In addition to the above-mentioned reflection method, both transmitting and receiving sensors 1,
It is also possible to apply the parallel method in which the interval of 8 is arbitrarily set to be equal to or greater than the thickness of the object to be inspected.
この場合、いろいろな経路でくる超音波を受信
することになるが、その途中にクラツクや剥離に
よる空隙部分があると、散乱や吸収により高周波
成分がカツトされ周波数の大幅な変動として検出
できる。 In this case, ultrasonic waves coming from various routes are received, but if there are gaps due to cracks or peeling in the middle, high frequency components are cut off due to scattering and absorption, which can be detected as large fluctuations in frequency.
したがつて、大きな被検査体たとえば道路の検
査に利用できる。 Therefore, it can be used to inspect large objects to be inspected, such as roads.
以上説明してきたように、この発明によれば、
従来の超音波探傷装置における探触子としての送
信センサと受信センサはタワミ形圧電素子をその
圧電素子の高調波波長に比例した厚さを有する硬
質板に接合して構成した送・受信センサをしたた
め、多孔性軟質物や、接触媒質を全く使用できな
い物質にも容易に波動伝播できる数KHzから数
10KHzの周波数帯域を効率よく利用できて、かつ
検出を必要とする介在異物に対しては含有されて
いる高調波波動が作用し反射波を生じるので、こ
の高調波を受信することにより入任意の非金属の
探傷を金属超音波探傷と同様に行うことができる
という効果が得られる。 As explained above, according to this invention,
The transmitter and receiver sensors used as probes in conventional ultrasonic flaw detection equipment are constructed by bonding a deflection-shaped piezoelectric element to a hard plate having a thickness proportional to the harmonic wavelength of the piezoelectric element. Therefore, the wave can easily propagate even in porous soft materials and materials in which no couplant can be used.
The 10KHz frequency band can be used efficiently, and the contained harmonic waves act on intervening foreign objects that need to be detected, producing reflected waves. The effect is that non-metal flaw detection can be performed in the same manner as metal ultrasonic flaw detection.
第1図はこの発明に係る一実施例の送信センサ
とその関連機器の構成図、第2図は同じく受信セ
ンサとその関連機器の構成図、第3図はこの発明
に係る装置の使用説明図、第4図はこの発明の装
置による接着不良部の試験結果を示す写真図、第
5図は同じく接着良好部の試験結果を示す写真図
である。
1……送信センサ、2,9……硬質板、3,1
0……タワミ形圧電素子、5……衝撃電気信号発
生装置、8……受信センサ、13……同調増幅電
気回路、14……視認装置。
FIG. 1 is a configuration diagram of a transmitting sensor and related equipment according to an embodiment of the present invention, FIG. 2 is a configuration diagram of a receiving sensor and its related equipment, and FIG. 3 is an explanatory diagram of the use of the device according to the present invention. , FIG. 4 is a photographic diagram showing the test results of a poorly bonded area using the apparatus of the present invention, and FIG. 5 is a photographic diagram showing the test results of a well bonded area. 1... Transmission sensor, 2, 9... Hard plate, 3, 1
0... Deflection type piezoelectric element, 5... Impact electric signal generator, 8... Receiving sensor, 13... Tuned amplification electric circuit, 14... Visual recognition device.
Claims (1)
に接続した圧電素子を備えた送信センサと、同調
増幅電気回路に接続した圧電素子を備えた受信セ
ンサと、前記送信センサへの衝撃電気信号及び前
記受信センサから前記同調増幅電気回路を経て選
別増幅した電気信号を共に変換して視認するため
の視認装置とよりなる超音波探傷装置において、
前記送信センサ及び受信センサはタワミ形圧電素
子をその圧電素子の高調波波長に比例した厚さを
有する硬質板に接合して構成したことを特徴とす
る非金属物超音波探傷装置。1: a transmitting sensor equipped with a piezoelectric element connected to an impulse electric signal generator having a tuned electric circuit; a receiving sensor equipped with a piezoelectric element connected to a tuned amplification electric circuit; an impulse electric signal to the transmitting sensor and the receiving sensor; In an ultrasonic flaw detection device comprising a visual recognition device for converting and visually recognizing electric signals that are selectively amplified from the sensor through the tuned amplification electric circuit,
An ultrasonic flaw detection apparatus for nonmetallic objects, wherein the transmitting sensor and the receiving sensor are constructed by bonding a deflection-shaped piezoelectric element to a hard plate having a thickness proportional to the harmonic wavelength of the piezoelectric element.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP56119141A JPS5821558A (en) | 1981-07-31 | 1981-07-31 | Supersonic wave flaw detector for nonmetal |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP56119141A JPS5821558A (en) | 1981-07-31 | 1981-07-31 | Supersonic wave flaw detector for nonmetal |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5821558A JPS5821558A (en) | 1983-02-08 |
JPS6326344B2 true JPS6326344B2 (en) | 1988-05-30 |
Family
ID=14753935
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP56119141A Granted JPS5821558A (en) | 1981-07-31 | 1981-07-31 | Supersonic wave flaw detector for nonmetal |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5821558A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0565333U (en) * | 1992-02-19 | 1993-08-31 | せいし 鈴木 | Shiatsu |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2144853B (en) * | 1983-08-10 | 1987-01-14 | Rolls Royce | Component inspection by self generated transient stress wave detection |
JPS61169758A (en) * | 1985-01-22 | 1986-07-31 | Bridgestone Corp | Continuous non-destructive ultrasonic inspection device for sheet joint |
JPS63236960A (en) * | 1987-03-25 | 1988-10-03 | Nippon Paint Co Ltd | Method for inspecting adhesion state of coating film |
US6591681B1 (en) * | 2000-08-23 | 2003-07-15 | Mitsubishi Denki Kabushiki Kaisha | Nondestructive inspection apparatus for inspecting an internal defect in an object |
KR101210472B1 (en) | 2010-12-02 | 2012-12-10 | 한국수력원자력 주식회사 | Apparatus and method for detecting the micro-scale crack using nonlinear characteristics of ultrasonic resonance |
-
1981
- 1981-07-31 JP JP56119141A patent/JPS5821558A/en active Granted
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0565333U (en) * | 1992-02-19 | 1993-08-31 | せいし 鈴木 | Shiatsu |
Also Published As
Publication number | Publication date |
---|---|
JPS5821558A (en) | 1983-02-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5824908A (en) | Non-contact characterization and inspection of materials using wideband air coupled ultrasound | |
Blomme et al. | Air-coupled ultrasonic NDE: experiments in the frequency range 750 kHz–2 MHz | |
US3512400A (en) | Ultrasonic testing method | |
US4976150A (en) | Ultrasonic transducers | |
CA1236913A (en) | Inspection of the internal portion of objects using ultrasonics | |
Schindel et al. | Air-coupled ultrasonic NDE of bonded aluminum lap joints | |
KR870000590A (en) | Defect detection method and apparatus of metal | |
Osumi et al. | Imaging slit in metal plate using aerial ultrasound source scanning and nonlinear harmonic method | |
CA3110818A1 (en) | Continuous wave ultrasound or acoustic non-destructive testing | |
CN113874721B (en) | A method and device for non-destructive testing of plate materials | |
JPS6326344B2 (en) | ||
USH924H (en) | Signal analysis in leaky lamb wave nde technique | |
JPH04323553A (en) | Ultrasonic resonance flaw detection method and equipment | |
JPWO2020039850A1 (en) | Bonding interface evaluation method and bonding interface evaluation device | |
Cerniglia et al. | Non-contact ultrasonic testing of aircraft lap joints | |
JPS591980B2 (en) | Ultrasonic inspection device | |
JPH0334588B2 (en) | ||
JP2002071332A (en) | Probe for measuring thickness of clad steel laminated material | |
Mustafa et al. | Imaging of disbond in adhesive joints with lamb waves | |
Jagadeeshwar et al. | Wave visualization of ultrasonic guided waves in a metallic structure using fiber bragg gratings | |
RU2262694C1 (en) | Method of measuring mean size of grain of sheet | |
Harb et al. | Lamb wave dispersion and anisotropy profiling of composite plates via non-contact air-coupled and laser ultrasound | |
JP2978708B2 (en) | Composite angle beam probe | |
JPS637846Y2 (en) | ||
KR101558922B1 (en) | Dual type ultrasonic sensor for adjusting beam width |