[go: up one dir, main page]

JPS63252965A - Arsenic nitride zirconia base composite ceramic material - Google Patents

Arsenic nitride zirconia base composite ceramic material

Info

Publication number
JPS63252965A
JPS63252965A JP62083924A JP8392487A JPS63252965A JP S63252965 A JPS63252965 A JP S63252965A JP 62083924 A JP62083924 A JP 62083924A JP 8392487 A JP8392487 A JP 8392487A JP S63252965 A JPS63252965 A JP S63252965A
Authority
JP
Japan
Prior art keywords
ceramic material
composite ceramic
cutting
base composite
zirconia base
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62083924A
Other languages
Japanese (ja)
Inventor
武盛 高山
高林 有一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Komatsu Ltd
Original Assignee
Komatsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Komatsu Ltd filed Critical Komatsu Ltd
Priority to JP62083924A priority Critical patent/JPS63252965A/en
Publication of JPS63252965A publication Critical patent/JPS63252965A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Ceramic Products (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は機械工作におけるフライス加工用などのセラ
ミックス工具用材料に関し、特に重切削用高靭性を要求
される工具用材料に用いて好適なものである。
[Detailed Description of the Invention] (Industrial Application Field) This invention relates to ceramic tool materials for milling in mechanical work, etc., and is particularly suitable for use in tool materials that require high toughness for heavy cutting. It is.

(従来の技術) 窒化硅素(以下に於て5iJa と記す)系材料は、高
い硬度(ピンカース硬度Hv1900前後)を持ってい
るので、現在切削工具用材料として用いられている。
(Prior Art) Silicon nitride (hereinafter referred to as 5iJa) based materials have high hardness (Pinkers hardness Hv around 1900) and are currently used as materials for cutting tools.

(発明が解決しようとする問題点) 上記従来のSt、N、系切削工具材料は、破壊靭性値K
rc−6M Pa@′A前後であってあまり高くないた
め重切削用工具としては不適当であった。
(Problems to be Solved by the Invention) The above-mentioned conventional St, N, cutting tool materials have a fracture toughness value of K
rc-6M Pa@'A, which is not very high, was unsuitable as a heavy cutting tool.

(問題点を解決するための手段及び作用)この発明は上
記問題点に鑑みなされたものであって、5iJ4と2M
化イツトリウム (以下に於てY2O,と記す)を固溶
した酸化ジルコニウム(以下に於てZrO,と記す)と
を、ポリカルボン酸系の解膠剤を用いて湿式ボールミリ
ングして均一な分散組織を持つように調整して成るセラ
ミックス複合材料であって、特にY、0.を2.0〜5
.0mo1%固溶した平均粒子径が0.1〜2μmから
成る微細部分安定化ZrO□を体積%で30〜70%を
Si3N4の母相に均一分散させ、ホットプレスや熱間
静水圧焼結法(以下において+i r pと記す)など
により加圧焼結した複合セラミックス材料は、硬度と破
壊靭性値が特に高いので、従来のセラミックス工具では
不可能であった黒皮部の断続切削に使用可能な工具用材
料である。
(Means and effects for solving the problems) This invention was made in view of the above problems, and includes the 5iJ4 and 2M
Zirconium oxide (hereinafter referred to as ZrO) containing yttrium oxide (hereinafter referred to as Y2O) as a solid solution is uniformly dispersed by wet ball milling using a polycarboxylic acid-based deflocculant. A ceramic composite material prepared to have a texture, particularly Y, 0. 2.0-5
.. Finely stabilized ZrO□ with an average particle size of 0.1 to 2 μm in 0mol1% solid solution is uniformly dispersed in a volume percent of 30 to 70% into the Si3N4 matrix, and then hot pressed or hot isostatically sintered. (hereinafter referred to as +ir p), etc., the composite ceramic material pressure-sintered has particularly high hardness and fracture toughness values, so it can be used for interrupted cutting of black scale parts, which is impossible with conventional ceramic tools. It is a material for tools.

また、前記SiJ*−ZrOt系材料に、平均粒子系が
0.1〜2μmから成る酸化アルミニウム(以下に於て
AlxOsと記す)を20〜60体積%混合し。
Further, 20 to 60 volume % of aluminum oxide (hereinafter referred to as AlxOs) having an average particle size of 0.1 to 2 μm is mixed into the SiJ*-ZrOt-based material.

ポリカルボン酸系の解膠剤を用いて湿式ボールミリング
して材料調整した混合粉末を焼結して得られた材料では
、破壊靭性値KICはAltos無添加の前記5iJn
−ZrO1系材料に比し最高値では少々劣るがビッカー
ス硬度(以下に於てHv と記す)は高(、かつ高価な
5tsNa−ZrOz(YzOs)を節約できる作用が
ある。
In the material obtained by sintering a mixed powder prepared by wet ball milling using a polycarboxylic acid-based deflocculant, the fracture toughness value KIC is the same as the above 5iJn without Altos addition.
Although it is slightly inferior in maximum value to -ZrO1-based materials, it has a high Vickers hardness (hereinafter referred to as Hv) and has the effect of saving expensive 5tsNa-ZrOz (YzOs).

(実施例) 以下にこの発明の詳細な説明する。(Example) This invention will be explained in detail below.

(実施例1)  YzOx を3*o1%固溶したZr
Lに。
(Example 1) Zr with 3*O1% YzOx dissolved in solid solution
To L.

Si3N4 を50体積%加えたものをホットプレス焼
結したm織の研磨面を走査型電子顕微鏡で観察した写真
を第1図に示す。図かられかるようにYtOsを固溶し
たZrO□及び5i3Nn の両相共、数μmの微粒子
から成る微細&IN織を示していた。また、第2図及び
第3図にZrO□(YzOs)の添加量を各種変えたと
きのSi3Na−ZrOx(YzOi)複合セラミック
ス材料のピンカース硬度H1と破壊靭性値KICを示す
、(焼結条件は1800℃×30分、ホットプレス焼結
である。)両図かられかるように。
FIG. 1 shows a photograph of the polished surface of a m-weave prepared by hot-press sintering with 50% by volume of Si3N4 added thereto, observed with a scanning electron microscope. As can be seen from the figure, both the ZrO□ and 5i3Nn phases containing YtOs as a solid solution exhibited a fine &IN weave consisting of fine particles of several μm. In addition, Figures 2 and 3 show the Pinkers hardness H1 and fracture toughness value KIC of Si3Na-ZrOx (YzOi) composite ceramic materials when the amount of ZrO□ (YzOs) added is varied (the sintering conditions are (Hot press sintering at 1800°C for 30 minutes.) As can be seen from both figures.

Hv及びKIC共、 Si3Nt−50体積%Zr0z
(Yz(h)付近で最高値を示し、特に優れた破壊靭性
を有していることがわかる。この原因として考えられる
のは次の3点である。すなわち。
Both Hv and KIC, Si3Nt-50 volume% Zr0z
(It shows the highest value near Yz(h), and it can be seen that it has particularly excellent fracture toughness.The following three points are considered to be the cause of this.

+tl  S i 3 N a とZr0zの熱膨張率
の差により材料中に複雑な残留応力が存在する。
A complex residual stress exists in the material due to the difference in thermal expansion coefficient between +tl S i 3 N a and Zr0z.

(2)  第4図に示す写真はこの実施例1のものをフ
ン酸によりZr0z相を溶出した組織を顕微鏡で観察し
たものであるが5図かられかるように均一に分散してい
る5iJ4が焼結中に直径1μm。
(2) The photograph shown in Fig. 4 is a microscopic observation of the structure of Example 1 in which the Zr0z phase was eluted with hydrochloric acid. 1 μm in diameter during sintering.

長さ10μ−以上の高アスペクト比(アスペクト比−長
さ/径)の針状結晶粒になっている。
They are acicular crystal grains with a length of 10 μm or more and a high aspect ratio (aspect ratio-length/diameter).

(3)  靭性の高いZrO□(Yg03)を添加した
こと。
(3) Addition of ZrO□ (Yg03), which has high toughness.

(実施例2)次に5iJ4−ZrJ系材料に八1.0.
を混合し、ポリカルボン酸系解膠剤を用いて湿式ボール
ミリングして材料調整を行なった実施例について説明す
る。この混合粉体を焼結して得られた組織は、前記(実
施例1)の場合と同様。
(Example 2) Next, 81.0.
An example will be described in which the material was prepared by mixing and performing wet ball milling using a polycarboxylic acid peptizer. The structure obtained by sintering this mixed powder is the same as that in Example 1 above.

数810粒径から成る均一な微細分散組織であった。ま
た、 SiJ4−ZrOg(Yg(h)−AIgOzの
組成を変化させた場合のビッカース硬度HV、破壊靭性
値KICをそれぞれ第5図、第6図に示す、第3図と第
6図を比較してわかるように、破壊靭性値KICは実施
例1に比し実施例2の方が最高値で2MPae+34程
度の低下が生じるが、第2図と第5図を比較してわかる
ようにビッカース硬度H1の方は実施例1に比し実施例
2の方が200弱の上昇を示す、さらにこのときの実施
例2の組成は30体積%AlzOz付近であり、実施例
1に比し高価なSiJ4−ZrOt(YgOz)を節約
できる特徴を有するものである。
It had a uniform finely dispersed structure consisting of several 810 grains in size. In addition, the Vickers hardness HV and fracture toughness KIC when changing the composition of SiJ4-ZrOg (Yg(h)-AIgOz) are shown in Figures 5 and 6, respectively, and Figures 3 and 6 are compared. As can be seen, the fracture toughness value KIC of Example 2 is lower than that of Example 1 by about 2 MPae + 34 at the highest value, but as can be seen by comparing Figures 2 and 5, the Vickers hardness H1 shows an increase of slightly less than 200 in Example 2 compared to Example 1. Furthermore, the composition of Example 2 at this time is around 30% by volume AlzOz, which is more expensive than in Example 1. It has the feature of saving ZrOt (YgOz).

(発明の効果) この発明は以上詳述したようにして成り。(Effect of the invention) This invention is constructed as described above in detail.

SiJ*−ZrOt(YiO3)系材料は優れた靭性を
有するので、従来のセラミックス工具では不可能であっ
た黒皮部の断続切削に使用が可能である。第7図にこの
発明による5ixNa−1rQz系セラミツクス材料を
用いた切削工具と、従来技術によるSi、N4系セラミ
ツクス材料及びA1.03−Tie系セラミックス材料
を用いた切削工具との、刃先欠損までの切削長さの実験
データを示す0図かられかるようにSiJl−ZrOm
系セラミックス材料による切削工具が最もすぐれている
Since SiJ*-ZrOt (YiO3)-based materials have excellent toughness, they can be used for interrupted cutting of black scale parts, which was impossible with conventional ceramic tools. FIG. 7 shows the relationship between the cutting tool using the 5ixNa-1rQz ceramic material according to the present invention and the cutting tool using the Si, N4 ceramic material and A1.03-Tie ceramic material according to the prior art, up to cutting edge breakage. As can be seen from Figure 0 showing the experimental data of cutting length, SiJl-ZrOm
Cutting tools made of ceramic materials are the best.

また、第8図はこの発明による5i3N4−ZrO□−
^lx’s系セラミックス材料による切削工具と。
Moreover, FIG. 8 shows 5i3N4-ZrO□- according to the present invention.
^Lx's cutting tools made from ceramic materials.

従来技術による^1,0=−Tie系セラミックス材料
^1,0=-Tie ceramic material according to conventional technology.

^1□0.系セラミックス材料及び超硬合金PTO材料
による切削工具の切削速度に対する切削寿命の実験デー
タを示す。図かられかるように5i3N4−ZrOt−
Al□0.系セラミックス材料による切削工具が最も便
れている。さらにSl、Na−Zr0z−Al□O1系
セラミックス材料は、!ロウ0.含存星に相当する高価
な513Na−ZrO□を節約できるので、安価で長寿
命の工具材料が得られるという大きい効果を奏するもの
である。
^1□0. 2 shows experimental data on cutting life versus cutting speed of cutting tools made of PTO-based ceramic materials and cemented carbide PTO materials. As shown in the figure, 5i3N4-ZrOt-
Al□0. Cutting tools made of ceramic materials are the most convenient. Furthermore, Sl, Na-Zr0z-Al□O1-based ceramic materials are! Row 0. Since the expensive 513Na-ZrO□, which corresponds to the contained stars, can be saved, this has the great effect of providing a tool material that is inexpensive and has a long life.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例のものの組織研群面をSE
X観察した写真、第2図及び第3図はそれぞれ、この発
明によるSI3Nm−ZrOx(YiO3)複合セラミ
ックス材料において、 Zr0x(YxOs)添加量を
各種変えたときのビッカース硬度Hw及び破壊靭性4I
!に+Cの実験データを示すグラフであり、第4図は実
施例1のものをフン酸によりZrJ相を溶出した組織の
顕微鏡写真、第5図及び第6図はそれぞれ、この発明に
よる5iJn−ZrOx(Yz(h)−A1xOs複合
セラミンクス材において。 各成分組成を変えたときのビッカース硬度Hv及び破壊
靭性値KICの実験データを示すグラフ。 第7図はこの発明によるSIJ*−ZrO,系セラミッ
クス材料を用いた切削工具と、従来技術によるセラミッ
クス材料を用いた切削工具との、切削長さの比較実験デ
ータを示すグラフ、第8図はこの発明による5iJa−
ZrOz−AlxOt系セラミックス材料を用いた切削
工具と、従来技術によるセラミックス材料を用いた切削
工具との、切削寿命の比較実験データを示すグラフであ
る。 特許出願人 株式会社小松製作所 代理人 (弁理士)松 澤  統 第1図 第2図 513N420 40 60 80 z、q、(y20
3)イトオ禽・ム 第3図 第4図 iI 5 図 第6図 切斉・濤命(min) 第8図 手続補正書 昭和62年11月2G 日
Figure 1 shows an SE view of the structure of one embodiment of this invention.
The X-observed photographs, Figures 2 and 3 respectively show the Vickers hardness Hw and fracture toughness 4I when the amount of ZrOx (YxOs) added was varied in the SI3Nm-ZrOx (YiO3) composite ceramic material according to the present invention.
! FIG. 4 is a micrograph of the structure of Example 1 in which the ZrJ phase was eluted with hydrochloric acid, and FIGS. 5 and 6 are graphs showing the experimental data of 5iJn-ZrOx according to the present invention. (In Yz(h)-A1xOs composite ceramic material. Graph showing experimental data of Vickers hardness Hv and fracture toughness value KIC when each component composition is changed. Figure 7 shows the SIJ*-ZrO, ceramic material according to the present invention. Figure 8 is a graph showing comparative experimental data on cutting length between a cutting tool using 5iJa according to the present invention and a cutting tool using ceramic material according to the prior art.
1 is a graph showing comparison experimental data of cutting life between a cutting tool using a ZrOz-AlxOt-based ceramic material and a cutting tool using a conventional ceramic material. Patent Applicant Komatsu Ltd. Representative (Patent Attorney) Osamu Matsuzawa Figure 1 Figure 2 513N420 40 60 80 z, q, (y20
3) Ito Toki・Mu Figure 3 Figure 4 iI 5 Figure 6 Kirisai・Tomei (min) Figure 8 Procedural amendment November 2G, 1988

Claims (2)

【特許請求の範囲】[Claims] (1)Y_2O_3を2.0〜5.0mol%固溶した
、平均粒子径が0.1〜2μmから成る微細部分安定化
ZrO_2を30〜70体積%の範囲で、Si_3N_
4の母相に均一分散させ、加圧焼結したことを特徴とす
る複合セラミックス材料。
(1) Finely stabilized ZrO_2 consisting of 2.0 to 5.0 mol% of Y_2O_3 and having an average particle size of 0.1 to 2 μm is added to Si_3N_ in a range of 30 to 70 volume %.
A composite ceramic material characterized by being uniformly dispersed in the matrix of No. 4 and sintered under pressure.
(2)平均粒子径が0.1〜2μmから成るAl_2O
_3を20〜60体積%の範囲で、有していることを特
徴とする特許請求の範囲第1項記載の複合セラミックス
材料。
(2) Al_2O with an average particle diameter of 0.1 to 2 μm
The composite ceramic material according to claim 1, characterized in that it contains _3 in a range of 20 to 60% by volume.
JP62083924A 1987-04-07 1987-04-07 Arsenic nitride zirconia base composite ceramic material Pending JPS63252965A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62083924A JPS63252965A (en) 1987-04-07 1987-04-07 Arsenic nitride zirconia base composite ceramic material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62083924A JPS63252965A (en) 1987-04-07 1987-04-07 Arsenic nitride zirconia base composite ceramic material

Publications (1)

Publication Number Publication Date
JPS63252965A true JPS63252965A (en) 1988-10-20

Family

ID=13816148

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62083924A Pending JPS63252965A (en) 1987-04-07 1987-04-07 Arsenic nitride zirconia base composite ceramic material

Country Status (1)

Country Link
JP (1) JPS63252965A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5266404A (en) * 1990-07-19 1993-11-30 Tioxide Group Services Limited Non-oxide ceramic particles coated with zirconium oxide or hydrous oxide
WO2017203738A1 (en) * 2016-05-27 2017-11-30 住友電気工業株式会社 Sintered body and cutting tool containing same
WO2018074017A1 (en) * 2016-10-17 2018-04-26 住友電気工業株式会社 Sintered body and cutting tool including same

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5266404A (en) * 1990-07-19 1993-11-30 Tioxide Group Services Limited Non-oxide ceramic particles coated with zirconium oxide or hydrous oxide
WO2017203738A1 (en) * 2016-05-27 2017-11-30 住友電気工業株式会社 Sintered body and cutting tool containing same
CN107922274A (en) * 2016-05-27 2018-04-17 住友电气工业株式会社 Sintered material and cutting tool comprising said sintered material
JPWO2017203738A1 (en) * 2016-05-27 2019-04-18 住友電気工業株式会社 Sintered body and cutting tool containing the same
US10532951B2 (en) 2016-05-27 2020-01-14 Sumitomo Electric Industries, Ltd. Sintered material and cutting tool including same
WO2018074017A1 (en) * 2016-10-17 2018-04-26 住友電気工業株式会社 Sintered body and cutting tool including same
JPWO2018074017A1 (en) * 2016-10-17 2019-08-08 住友電気工業株式会社 Sintered body and cutting tool including the same
US12070802B2 (en) 2016-10-17 2024-08-27 Sumitomo Electric Industries, Ltd. Sintered material and cutting tool including same

Similar Documents

Publication Publication Date Title
EP0739326B1 (en) Low temperature, pressureless sintering of silicon nitride
JP2001328869A (en) Abrasion-resistant member and method for producing the same
DUTTA et al. Microstructure, strength, and oxidation of a 10 wt% zyttrite‐Si3N4 ceramic
JPS61174165A (en) Alumina-silicon carbide heat-resistant composite sintered body and manufacture
JP2507479B2 (en) SiC-Al Lower 2 O Lower 3 Composite Sintered Body and Manufacturing Method Thereof
Jeong et al. Effects of Additives on Microstructure and Properties of Alumina‐Silicon Carbide Nanocomposites
JPS63252965A (en) Arsenic nitride zirconia base composite ceramic material
US4889834A (en) SiC-Al2 O3 composite sintered bodies and method of producing the same
JPS59190270A (en) Silicon nitride sintered body and its manufacturing method
JP3742661B2 (en) Aluminum nitride sintered body and method for producing the same
JP3537241B2 (en) Method for producing silicon nitride sintered body
JPH0753256A (en) Aluminous composite sintered compact and its production
JPH0867568A (en) Silicon carbide/silicon nitride composite material and production thereof
JP2003095744A (en) Silicon carbide sintered body, semiconductor manufacturing member using the same, magnetic head manufacturing member, wear-resistant sliding member, and method of manufacturing the same
JP2690571B2 (en) Zirconia cutting tool and its manufacturing method
JPH066512B2 (en) High toughness silicon nitride sintered body and method for producing the same
JPH0688832B2 (en) Polycrystalline ceramic product and manufacturing method thereof
JP2566580B2 (en) Silicon carbide / silicon nitride composite sintered body
JP3045366B2 (en) High toughness ceramic composite material, ceramic composite powder, and method for producing them
JP3142022B2 (en) Cutting tool made of silicon nitride sintered body
JP3044290B2 (en) Method for producing particle-dispersed composite ceramics
JP2985519B2 (en) Particle-dispersed ZrO2-based ceramic material and method for producing the same
JPH0782047A (en) Ceramic composite sintered body
JP2699104B2 (en) A1 Lower 2 O Lower 3-TiC ceramic material
JP2985512B2 (en) Particle-dispersed ZrO2-based ceramic material and method for producing the same