JPS61174165A - Alumina-silicon carbide heat-resistant composite sintered body and manufacture - Google Patents
Alumina-silicon carbide heat-resistant composite sintered body and manufactureInfo
- Publication number
- JPS61174165A JPS61174165A JP60012297A JP1229785A JPS61174165A JP S61174165 A JPS61174165 A JP S61174165A JP 60012297 A JP60012297 A JP 60012297A JP 1229785 A JP1229785 A JP 1229785A JP S61174165 A JPS61174165 A JP S61174165A
- Authority
- JP
- Japan
- Prior art keywords
- silicon carbide
- alumina
- sintered body
- resistant composite
- composite sintered
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Ceramic Products (AREA)
- Compositions Of Oxide Ceramics (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
・イ、産業上の利用分野
本発明は、アルミナ−炭化珪素耐熱複合焼結体及びその
製造方法に関し、更に詳述すれば、室温及び1000℃
以上の高温での機械的強度に優れ、室温及び1000℃
以上での高温硬度の高い、高温構造用材料として好適な
アルミナ−炭化珪素耐熱複合焼結体並びにその製造方法
に関する。DETAILED DESCRIPTION OF THE INVENTION A. Field of Industrial Application The present invention relates to an alumina-silicon carbide heat-resistant composite sintered body and a method for manufacturing the same.
Excellent mechanical strength at high temperatures above room temperature and 1000℃
The present invention relates to the alumina-silicon carbide heat-resistant composite sintered body having high high-temperature hardness and suitable as a material for high-temperature structures, and a method for manufacturing the same.
口、従来技術
アルミナは、集積回路の基板やパッケージ、切削工具用
チップ等セラミックス中で最も広範囲に使用されている
。然し、アルミナは、化学的に極めて安定な物質である
が、セラミックスとしては比較的低い800℃付近以上
の温度では機械的強度が低下するので、高温構造用セラ
ミックスとして満足されておらず、その分野では窒化珪
素や炭化珪素が使用されている。アルミナを主体とする
セラミックスは、窒化珪素や炭化珪素に較べて焼結が容
易であり、高温での機械的特性が改善されれば、その通
用範囲は一層拡げられる。BACKGROUND OF THE INVENTION Alumina is most widely used among ceramics, such as in substrates and packages for integrated circuits, and chips for cutting tools. However, although alumina is a chemically extremely stable substance, its mechanical strength decreases at temperatures above around 800°C, which is relatively low for ceramics, so it is not satisfied as a ceramic for high-temperature structures, and is not used in that field. Silicon nitride and silicon carbide are used. Ceramics mainly composed of alumina are easier to sinter than silicon nitride and silicon carbide, and if their mechanical properties at high temperatures are improved, their range of applications will be further expanded.
アルミナセラミックスの機械的性質を、第2相を複合さ
せて改善した例としては、アルミナ−ジルコニア複合焼
結体が知られている。特公昭59−25748号公報に
は、ジルコニアの準安定正方晶を室温迄残留させ、クラ
ック先端での応力によって誘起される正方晶−単斜晶変
態の約4%の体積膨張に起因する残留圧縮応力により、
室温での機械的性質を著しく改善する技術が開示されて
いる。然し、−上記変態の温度である約900℃以上の
高温では、上記の効果は期待すべくもない。An alumina-zirconia composite sintered body is known as an example of improving the mechanical properties of alumina ceramics by combining a second phase. Japanese Patent Publication No. 59-25748 discloses that metastable tetragonal zirconia is allowed to remain at room temperature, and residual compression is caused by approximately 4% volume expansion due to tetragonal-monoclinic transformation induced by stress at the crack tip. Due to stress,
Techniques are disclosed that significantly improve mechanical properties at room temperature. However, at high temperatures above about 900° C., which is the temperature of the above-mentioned transformation, the above-mentioned effects cannot be expected.
ほかに、アルミナセラミックスの室温での機械的強度改
善の例としては、WahiらによってJourna 1
of Materials 5cience 15,8
75〜885.1980に報告されているように、炭化
チタンを複合した例がある。In addition, as an example of improving the mechanical strength of alumina ceramics at room temperature, Wahi et al.
of Materials 5science 15,8
75-885.1980, there is an example in which titanium carbide is combined.
また、アルミナセラミックスの機械的強度は改善されな
いが、破壊靭性が改善される例としては、Mc、 (:
auleyによってCeramic Engineer
ing ScienceProceedings 2,
639〜660.1982に報告されているように、B
a−マイカ、及びRiceによって CeramicE
ngineering 5cience Procee
dings 2 +639〜660゜1982に報告さ
れているように、板状の窒化硼素を複合した例があるが
、前記論文では、いずれも高温での機械的性質には言及
していない。In addition, examples of alumina ceramics in which the mechanical strength is not improved but the fracture toughness is improved include Mc, (:
Ceramic Engineer by auley
ing ScienceProceedings 2,
639-660. As reported in 1982, B.
CeramicE by a-Mica and Rice
ngineering 5science Procee
As reported in dings 2 +639-660° 1982, there is an example of a composite of plate-shaped boron nitride, but none of these papers mention mechanical properties at high temperatures.
ハ、発明の目的
本発明は、上記の事情に鑑みてなされたものであって、
室温ではもとより、特に1000℃以上の高温で機械的
強度に優れ、硬度の高いアルミナ基耐熱焼結体及びその
製造方法を提供することを目的としている。C. Purpose of the Invention The present invention has been made in view of the above circumstances, and includes:
It is an object of the present invention to provide an alumina-based heat-resistant sintered body that has excellent mechanical strength and high hardness not only at room temperature but especially at high temperatures of 1000° C. or higher, and a method for manufacturing the same.
二、発明の構成
即ち、本発明の第1の発明は、容積比で2〜30%の微
細な炭化珪素が実質的に互いに分離してアルミナ素地中
に分散した組織を有し、高温での機械的強度に優れ、高
温硬度の高いアルミナ−炭化珪素耐熱複合焼結体に係る
。2. Structure of the invention, that is, the first invention of the present invention has a structure in which 2 to 30% by volume of fine silicon carbide is substantially separated from each other and dispersed in an alumina matrix, and The present invention relates to an alumina-silicon carbide heat-resistant composite sintered body that has excellent mechanical strength and high high-temperature hardness.
また、本発明の第2の発明は、微細な炭化珪素2〜30
容積%、残部が実質的にアルミナ粉末からなる混合粉を
成形し、この成形体を1400〜1800℃の範囲内の
温度で焼結する、前記第1の発明に係るアルミナ−炭化
珪素耐熱複合焼結体の製造方法に係る。In addition, the second invention of the present invention provides fine silicon carbide 2 to 30
The alumina-silicon carbide heat-resistant composite sintering according to the first invention, which comprises molding a mixed powder whose volume percentage is essentially alumina powder, and sintering the molded body at a temperature within the range of 1400 to 1800°C. It pertains to a method for producing a solid.
アルミナセラミックスの高温での破壊は、Evansら
がFracture Mechanics of Ce
ramics+ 6 +423〜448、1983で
述べているように、応力下でのキャビテーション(クラ
ンクの核発生)や臨界のクランクサイズに達する迄(s
ub −critical )のクラックの成長や合体
等に支配されるが、いずれも粒界での優先的な拡散と局
部的な応力状態が考察の対象となっている。Fracture of alumina ceramics at high temperatures was reported by Evans et al.
Ramics+ 6 +423-448, 1983, cavitation under stress (nucleation of the crank) and until a critical crank size is reached (s
However, in both cases, preferential diffusion at grain boundaries and local stress states are the subject of consideration.
発明者は、鋭意研究の結果、平均粒径3μm以下の炭化
珪素粒子、或いは径が1μm以下で長さが2011m以
下の炭化珪素繊維(ウィスカー)をアルミナ素地中に独
立して(互いに分離して)分散させることにより、アル
ミナ素地粒界に局部的な残留応力を与え、又は粒界での
原子の拡散とクランク成長に対して抵抗となるような状
況を与えることにより、高温での機械的性質を改善する
ことができることを見出した。As a result of intensive research, the inventor discovered that silicon carbide particles with an average particle size of 3 μm or less, or silicon carbide fibers (whiskers) with a diameter of 1 μm or less and a length of 2011 m or less, were incorporated into an alumina matrix independently (separated from each other). ) improves the mechanical properties at high temperatures by dispersing, imparting localized residual stress to the alumina matrix grain boundaries, or by providing conditions that resist atomic diffusion and crank growth at the grain boundaries. We found that it is possible to improve the
以下に上記の機構について詳述する。The above mechanism will be explained in detail below.
炭化珪素粒子がアルミナ結晶粒よりも小さい場合と、同
程度の大きさの場合とに分けて考える。A case in which the silicon carbide particles are smaller than the alumina crystal grains and a case in which the silicon carbide particles are approximately the same size will be considered.
更に、前者の場合、炭化珪素粒子がアルミナ素地中の粒
界に存在する場合と、結晶粒内に存在する場合とに分け
て考える。Furthermore, in the former case, we will consider cases in which silicon carbide particles are present at grain boundaries in the alumina matrix and cases in which silicon carbide particles are present within crystal grains.
炭化珪素粒子がアルミナ結晶粒よりも小さく、アルミナ
素地中の粒界に存在する場合は、第1図に模式的に示す
ように、炭化珪素粒子2が存在するアルミナ結晶粒1の
粒界3の面に垂直の引張残留応力Stを与え(炭化珪素
はアルミナよりも熱膨張係数が小さいことによる。)、
キャビテーションやクランク成長に対しては好ましくな
いが、それ以上に、高温応力下で粒界3相中の原子の拡
散経路を狭めて全体の拡散速度を遅くすることと、炭化
珪素粒子が粒界3面で架ll(bridge)を形成し
、クラック成長の抵抗として作用することとによって、
高温での機械的性質を改善する。粒界面に架橋を形成す
る観点からは、炭化珪素粒子よりも繊維状炭化珪素の方
が上記効果がより大きい。When silicon carbide particles are smaller than alumina crystal grains and exist at grain boundaries in the alumina matrix, as schematically shown in FIG. Give a tensile residual stress St perpendicular to the plane (this is because silicon carbide has a smaller coefficient of thermal expansion than alumina),
This is unfavorable for cavitation and crank growth, but more importantly, under high-temperature stress, the diffusion path of atoms in the grain boundary 3 phase is narrowed, slowing down the overall diffusion rate, and silicon carbide particles By forming a bridge at the surface and acting as a resistance to crack growth,
Improves mechanical properties at high temperatures. From the viewpoint of forming crosslinks at grain boundaries, fibrous silicon carbide has a greater effect than silicon carbide particles.
炭化珪素粒子がアルミナ素地の結晶粒内に存在する場合
は、第2図に模式的に示すように、炭化珪素粒子2近傍
のアルミナ結晶粒1の粒界3面に圧縮残留応力Scを与
え、局部的な応力のレベルを緩和し、高温での機械的性
質を改善する。When silicon carbide particles exist within the crystal grains of the alumina matrix, as schematically shown in FIG. Relieves local stress levels and improves mechanical properties at high temperatures.
炭化珪素粒子がアルミナ結晶粒と同程度の大きさである
場合は、第3図に模式的に示すように、炭化珪素粒子2
の上下の外部引張応力Soに垂直なアルミナ結晶粒1の
粒界3面に圧縮残留応力Scを与え、高温での機械的性
質を改善する。また、炭化珪素粒子2の左右の粒界3a
面には引張残留応力Stを与え、キャビテーションやク
ランクの成長に対しては好ましくないが、それ以上に、
左右のクラックの合体に対して、炭化珪素粒子が阻止す
るように作用し、高温での機械的性質を改善する。なお
、炭化珪素粒子/アルミナ結晶粒界面には最大の圧縮残
留応力があり、この界面に沿ってのクラック成長は困難
であり、この界面に沿って破壊することはない。When the silicon carbide particles have the same size as the alumina crystal grains, as schematically shown in FIG. 3, the silicon carbide particles 2
A compressive residual stress Sc is applied to the three grain boundaries of the alumina crystal grains 1 perpendicular to the external tensile stress So above and below to improve mechanical properties at high temperatures. In addition, the left and right grain boundaries 3a of silicon carbide particles 2
It imparts tensile residual stress St to the surface, which is unfavorable for cavitation and crank growth, but moreover,
The silicon carbide particles act to prevent the left and right cracks from coalescing, improving mechanical properties at high temperatures. Note that the maximum compressive residual stress exists at the silicon carbide particle/alumina crystal grain interface, and crack growth along this interface is difficult, and failure does not occur along this interface.
以上、炭化珪素が粒子である場合について説明したが、
炭化珪素が膣グl繊維状である場合も上記と原理的に同
様である。Above, we have explained the case where silicon carbide is particles, but
The principle is the same as above when silicon carbide is in the form of fibers.
することにより、高温に於ける機械的性質を改善するこ
とが理解できよう。It will be understood that this improves the mechanical properties at high temperatures.
炭化珪素粒子又は繊維近傍の残留応力は、炭化珪素とア
ルミナとの熱膨張係数の差によって生ずる。前者は後者
よりも熱膨張係数が小さい。Residual stress near the silicon carbide particles or fibers is caused by the difference in thermal expansion coefficients between silicon carbide and alumina. The former has a smaller coefficient of thermal expansion than the latter.
高温での硬度は、アルミナに較べて高温硬度の高い炭化
珪素が寄与している。炭化珪素繊維の場合、高温硬度の
改善は特に著しい。Silicon carbide, which has higher high-temperature hardness than alumina, contributes to the hardness at high temperatures. In the case of silicon carbide fibers, the improvement in high temperature hardness is particularly remarkable.
本発明は上記の知見からなされたものである。The present invention has been made based on the above findings.
次ぎに、焼結体を構成する各相及び焼結条件等について
説明する。Next, each phase constituting the sintered body, sintering conditions, etc. will be explained.
素地を構成するアルミナは、α型が便利に使用できるが
、γ型等他の結晶形のものでも良い。純度は98%以上
のものが好ましく、粒度は平均粒径5μm以下のものが
好ましく、平均粒径1μm以下のものが一層好ましい。The α-type alumina constituting the matrix can be conveniently used, but other crystal forms such as the γ-type may also be used. The purity is preferably 98% or more, and the average particle size is preferably 5 μm or less, more preferably 1 μm or less.
素地中に分散させる炭化珪素は、α型でもβ型結晶形で
も良い、純度は98%以上が好ましく、その形状は等軸
(粒子)形でも良いが、繊維状でも却する際にマイクロ
クランクが発生し、室温での機械的強度が低下するよう
になる。繊維状炭化珪素の場合は、径が1μm以下、長
さが20μm以下とする。径が1μmを越えると、上記
粒子の場合と同様、マイクロクラックを発生しやすくま
た、その長さが20μm越えると、炭化珪素繊維同士が
絡み合って互いに分離できな(なり、特に室温での機械
的強度が低下するようになる。The silicon carbide to be dispersed in the matrix may be in the α-type or β-type crystal form, with a purity of preferably 98% or higher, and its shape may be equiaxed (particle), but it may also be in the form of fibers, which can be micro-cranked when discarded. The mechanical strength at room temperature decreases. In the case of fibrous silicon carbide, the diameter is 1 μm or less and the length is 20 μm or less. If the diameter exceeds 1 μm, microcracks are likely to occur as in the case of the particles mentioned above, and if the length exceeds 20 μm, the silicon carbide fibers become entangled and cannot be separated from each other (particularly at room temperature). Strength begins to decrease.
炭化珪素の素地中に占める割合は、焼結体全体に対して
2〜30容積%(顕微鏡下での面積比率も2〜30%で
ある。)とする。これが2容積%未満では、高温強度改
善の効果が顕著ではなく、これが30容積%を越えて多
量になると、炭化珪素同士が互いに接触する部分が多く
なり、室温及び高温での機械的強度が却って低下するよ
うになる。炭化珪素が繊維状である場合は、分散量の上
限は20容積%とするのが望ましい。The proportion of silicon carbide in the matrix is 2 to 30% by volume of the entire sintered body (the area ratio under a microscope is also 2 to 30%). If this amount is less than 2% by volume, the effect of improving high temperature strength will not be noticeable, and if this amount exceeds 30% by volume, there will be many areas where silicon carbide comes into contact with each other, and the mechanical strength at room temperature and high temperature will deteriorate. begins to decline. When silicon carbide is fibrous, the upper limit of the amount of dispersion is preferably 20% by volume.
本発明に基づ(焼結体は、アルミナと炭化珪素との2成
分から構成されるが、原料中に不純物として含まれる少
量の他の成分が存在しても差し支えない。更に、通例の
アルミナ基焼結体に於けると同様に、焼結時のアルミナ
結晶粒の成長を抑えるため、少量のマグネシア(M g
O)を含有させることは好ましい。Based on the present invention, the sintered body is composed of two components, alumina and silicon carbide, but there may be a small amount of other components contained as impurities in the raw materials. As in the base sintered body, a small amount of magnesia (Mg) is added to suppress the growth of alumina grains during sintering.
It is preferable to include O).
成形方法としては、プレス成形、泥漿鋳込成形、射出成
形、押出成形等通例の成形方法が総て採用できる。ホッ
トプレスによることも勿論できる。As the molding method, all customary molding methods such as press molding, slurry casting, injection molding, and extrusion molding can be employed. Of course, hot pressing can also be used.
焼結は真空又は非酸化性雰囲気中で1400〜1800
℃の範囲内の温度で行う。焼結温度が1400℃よりも
低いと、得られる焼結体の密度が低くなり、1800℃
を越えるI高温では、アルミナ結晶粒の異常成長が起こ
り、いずれの場合も室温及び高温での機械的強度、硬度
が低下するようになる。Sintering in vacuum or non-oxidizing atmosphere
Perform at a temperature within the range of °C. If the sintering temperature is lower than 1400°C, the density of the obtained sintered body will be low;
At high temperatures exceeding I, abnormal growth of alumina crystal grains occurs, and in both cases, mechanical strength and hardness at room temperature and high temperature decrease.
最適な焼結温度は、常圧焼結、ホットプレス及び炭化珪
素の量に依存して変化する。常圧焼結で炭化珪素の量が
2〜15容積%では1600〜1700℃が好ましく、
15〜30容積%では1700〜1800℃が好ましい
。ホットプレスで炭化珪素の量が2〜15容積%では1
400〜1600℃が好ましく、15〜30容積%では
1600〜1700℃が好ましい。The optimum sintering temperature varies depending on pressureless sintering, hot pressing and amount of silicon carbide. When the amount of silicon carbide is 2 to 15% by volume in normal pressure sintering, the temperature is preferably 1600 to 1700 °C,
For 15 to 30% by volume, the temperature is preferably 1700 to 1800°C. 1 when the amount of silicon carbide is 2 to 15% by volume in hot press
400-1600°C is preferred, and 15-30% by volume is preferably 1600-1700°C.
ホ、実施例 以下に本発明の具体的実施例について説明する。E, Example Specific examples of the present invention will be described below.
純度99%以上、平均粒径0.7μmのα型アルミナ粉
末に、下記第1表に示すように炭化珪素粉末又は繊維を
配合し、プラスチック容器とアルミナボールを使用する
ボールミル中でエチルアルコールを混合液として1時間
湿式混合し、乾燥して混合粉とした。Alpha-type alumina powder with a purity of 99% or more and an average particle size of 0.7 μm is blended with silicon carbide powder or fibers as shown in Table 1 below, and mixed with ethyl alcohol in a ball mill using a plastic container and alumina balls. The mixture was wet-mixed as a liquid for 1 hour and dried to form a mixed powder.
これらの混合粉をプレス成形後、1500kg/cdの
等芳醇水圧によって約20 X 50 X 15mの成
形体とし、この成形体をアルゴンガス気流中で第1表に
示す焼結条件により焼結した。After press-molding these mixed powders, a compact of approximately 20 x 50 x 15 m was formed using an isotropic water pressure of 1500 kg/cd, and this compact was sintered in an argon gas stream under the sintering conditions shown in Table 1.
(以下余白、次頁に続く)
これら焼結体からダイヤモンド砥石とダイヤモンドブレ
ードを使用して、3 X 4 X36mの曲げ試験片、
3X4X4mの硬度試験片を採取し、曲げ試験片には2
00番のダイヤモンド研磨砥石で、硬度試験片には1μ
mのダイヤモンド砥石で鏡面仕上げを施した。なお、硬
度試験片で硬度試験前に密度を測定した。(Margins below, continued on next page) Using a diamond grindstone and diamond blade, bending test pieces of 3 x 4 x 36 m were made from these sintered bodies.
A 3x4x4m hardness test piece was taken, and the bending test piece was
00 diamond polishing wheel, 1μ for the hardness test piece.
A mirror finish was applied using a diamond whetstone. Note that the density of the hardness test piece was measured before the hardness test.
曲げ試験は、外側支点距離30m、内側支点距離10m
、クロスヘッド速度0.5m/l1inの4点曲げ試験
法により、硬度試験はアルゴン気流中でビッカース硬度
針により1 kgの荷重で行った。両試験共試験温度は
室温、1000℃、1200℃である。The bending test was conducted with an outer fulcrum distance of 30 m and an inner fulcrum distance of 10 m.
The hardness test was carried out using a 4-point bending test method with a crosshead speed of 0.5 m/l 1 in, using a Vickers hardness needle under an argon flow with a load of 1 kg. The test temperatures for both tests were room temperature, 1000°C, and 1200°C.
試験結果は第1表に併記した通りである。The test results are also listed in Table 1.
同表から、本発明に基づくアルミナ−炭化珪素耐熱複合
焼結体は、従来の単相アルミナ焼結体に較べて、室温で
の曲げ強度、硬度が同程度であり、高温での曲げ11強
度、硬度が共に著しく改善されていることが解る。また
、繊維状炭化珪素を分散させた焼結体は、粒状炭化珪素
を分散させた焼結体に較べて、室温、高温での硬度が共
に高く、曲げ強度は特に1200℃の高温では一層改善
されている。From the same table, the alumina-silicon carbide heat-resistant composite sintered body based on the present invention has the same bending strength and hardness at room temperature as the conventional single-phase alumina sintered body, and has a bending strength of 11 at high temperatures. It can be seen that both the hardness and hardness are significantly improved. In addition, the sintered body in which fibrous silicon carbide is dispersed has higher hardness at both room temperature and high temperature than the sintered body in which granular silicon carbide is dispersed, and the bending strength is further improved, especially at a high temperature of 1200°C. has been done.
以上の結果から、本発明に基づくアルミナ−炭化珪素耐
熱複合焼結体は、例えば切削工具用チップ等に適用した
場合、性能の著しい向上が期待でき、また、従来はアル
ミナ基焼結体が通用できなかったガスタービン部材等の
分野にも通用可能となって、利用分野の拡大が期待でき
る。From the above results, the alumina-silicon carbide heat-resistant composite sintered body based on the present invention can be expected to significantly improve performance when applied, for example, to tips for cutting tools. It can now be used in fields such as gas turbine parts, which were previously not possible, and we can expect the field of use to expand.
へ、発明の詳細
な説明したように、第1の発明に基づくアルミナ−炭化
珪素耐熱複合焼結体は、容積比で2〜30%の微細な炭
化珪素が実質的に互いに分離してアルミナ素地中に分散
した組織としであるので、高温での機械的強度、硬度共
に著しく高くなっており、アルミナ基焼結体の性能向上
と通用分野の拡大が期待できる。また、第2の発明に基
づく製造方法は、前述したように、通例のセラミックス
製造設備を使用することで済み、特殊な設備を特に必要
としないので、製造原価も低層である。As described in detail of the invention, the alumina-silicon carbide heat-resistant composite sintered body based on the first invention has 2 to 30% by volume of fine silicon carbide that is substantially separated from each other and forms an alumina matrix. Because it has a dispersed structure, it has significantly high mechanical strength and hardness at high temperatures, and is expected to improve the performance of alumina-based sintered bodies and expand the range of applications. Further, as described above, the manufacturing method based on the second invention requires only the use of ordinary ceramic manufacturing equipment and does not particularly require special equipment, so the manufacturing cost is also low.
図面はいずれも本発明に基づくアルミナ−炭化珪素耐熱
複合焼結体の顕微鏡組織と炭化珪素粒子近傍の残留応力
の状態を模式的に示す図で、第1図は炭化珪素粒子がア
ルミナの結晶粒界に存在する場合の模式図、
第2図は炭化珪素粒子がアルミナ結晶粒内に存在する場
合の模式図、
第3図は炭化珪素粒子とアルミナ結晶粒とが同程度の大
きさである場合の模式図
である。
なお、図面に示された符号に於いて、
1・・・・・・・・・アルミナ結晶粒
2・・・・・・・・・炭化珪素粒子
3・・・・・・・・・アルミナ結晶粒界3a・・・・・
・・・・炭化珪素粒子に接するアルミナ結晶粒界
St・・・・・・・・・残留引張応力
Sc・・・・・・・・・残留圧縮応力
SO・・・・・・・・・外部引張応力
である。
代理人 弁理士 逢 坂 宏
第10 第20
第30The drawings are diagrams schematically showing the microscopic structure of the alumina-silicon carbide heat-resistant composite sintered body according to the present invention and the state of residual stress in the vicinity of silicon carbide particles. Figure 2 is a schematic diagram when silicon carbide particles exist within alumina crystal grains. Figure 3 is a diagram when silicon carbide particles and alumina crystal grains are of similar size. FIG. In addition, in the symbols shown in the drawings, 1...Alumina crystal grain 2...Silicon carbide particle 3...Alumina crystal Grain boundary 3a...
...... Alumina grain boundary St in contact with silicon carbide particles ...... Residual tensile stress Sc ...... Residual compressive stress SO ...... External It is tensile stress. Agent Patent Attorney Hiroshi Aisaka 10th 20th 30th
Claims (1)
いに分離してアルミナ素地中に分散した組織を有し、高
温での機械的強度に優れ、高温硬度の高いアルミナ−炭
化珪素耐熱複合焼結体。 2 炭化珪素が、平均粒径3μm以下の粒状を呈する、
特許請求の範囲第1項記載のアルミナ−炭化珪素耐熱複
合焼結体。 3 炭化珪素が、径1μm以下、長さ20μm以下の繊
維状を呈する、特許請求の範囲第1項記載のアルミナ−
炭化珪素耐熱複合焼結体。 4 微細な炭化珪素2〜30容積%、残部が実質的にア
ルミナ粉末からなる混合粉を成形し、この成形体を14
00〜1800℃の範囲内の温度で焼結する、高温での
機械的強度に優れ、高温硬度の高いアルミナ−炭化珪素
耐熱複合焼結体の製造方法。 5 炭化珪素が、平均粒径3μm以下の粒状を呈する、
特許請求の範囲第4項記載のアルミナ−炭化珪素耐熱複
合焼結体の製造方法。 6 炭化珪素が、径1μm以下、長さ20μm以下の繊
維状を呈する、特許請求の範囲第4項記載のアルミナ−
炭化珪素耐熱複合焼結体の製造方法。[Claims] 1. It has a structure in which 2 to 30% by volume of fine silicon carbide is substantially separated from each other and dispersed in the alumina matrix, and has excellent mechanical strength at high temperatures and high temperature hardness. High alumina-silicon carbide heat-resistant composite sintered body. 2. Silicon carbide exhibits a granular shape with an average particle size of 3 μm or less,
An alumina-silicon carbide heat-resistant composite sintered body according to claim 1. 3. The alumina according to claim 1, wherein the silicon carbide has a fibrous shape with a diameter of 1 μm or less and a length of 20 μm or less.
Silicon carbide heat-resistant composite sintered body. 4 A mixed powder consisting of 2 to 30% by volume of fine silicon carbide and the remainder substantially alumina powder is molded, and this molded body is heated to 14% by volume.
A method for producing an alumina-silicon carbide heat-resistant composite sintered body having excellent mechanical strength at high temperatures and high high-temperature hardness, which is sintered at a temperature within the range of 00 to 1800°C. 5 Silicon carbide exhibits a granular shape with an average particle size of 3 μm or less,
A method for producing an alumina-silicon carbide heat-resistant composite sintered body according to claim 4. 6. The alumina according to claim 4, wherein the silicon carbide has a fibrous shape with a diameter of 1 μm or less and a length of 20 μm or less.
A method for manufacturing a silicon carbide heat-resistant composite sintered body.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60012297A JPS61174165A (en) | 1985-01-25 | 1985-01-25 | Alumina-silicon carbide heat-resistant composite sintered body and manufacture |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60012297A JPS61174165A (en) | 1985-01-25 | 1985-01-25 | Alumina-silicon carbide heat-resistant composite sintered body and manufacture |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS61174165A true JPS61174165A (en) | 1986-08-05 |
JPH0526746B2 JPH0526746B2 (en) | 1993-04-19 |
Family
ID=11801390
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP60012297A Granted JPS61174165A (en) | 1985-01-25 | 1985-01-25 | Alumina-silicon carbide heat-resistant composite sintered body and manufacture |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS61174165A (en) |
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61274803A (en) * | 1985-02-18 | 1986-12-05 | アドバンスド・コンポジット・マテリアルズ・コーポレーション | Reinforced ceramic cutting tool |
JPS63129059A (en) * | 1986-11-14 | 1988-06-01 | 日本特殊陶業株式会社 | Antiabrasive ceramic aintered body |
JPS63225574A (en) * | 1987-03-12 | 1988-09-20 | 東芝タンガロイ株式会社 | Ceramic sintered body for cutting tool member and manufacture |
JPS6479063A (en) * | 1987-09-18 | 1989-03-24 | Toshiba Tungaloy Co Ltd | Aluminum oxide-based sintered body having superior wear resistance |
EP0311289A1 (en) * | 1987-09-30 | 1989-04-12 | Ngk Insulators, Ltd. | SiC-Al2O3 composite sintered bodies and method of producing the same |
JPH01188454A (en) * | 1988-01-22 | 1989-07-27 | Koichi Niihara | High strength composite ceramic sintered body |
JPH02164779A (en) * | 1988-12-19 | 1990-06-25 | Mitsubishi Mining & Cement Co Ltd | Ceramic composite material and its production |
JPH02229756A (en) * | 1989-03-02 | 1990-09-12 | Mitsubishi Mining & Cement Co Ltd | Ceramic composite material and production thereof |
JPH02229757A (en) * | 1989-03-02 | 1990-09-12 | Mitsubishi Mining & Cement Co Ltd | Ceramic composite material and production thereof |
JPH03247553A (en) * | 1990-02-23 | 1991-11-05 | Mitsubishi Materials Corp | Aluminum oxide-based ceramic having high strength and toughness and its production |
JPH03290356A (en) * | 1990-04-05 | 1991-12-20 | Mitsubishi Materials Corp | Aluminum oxide based ceramics having high toughness and strength and production thereof |
JPH0477353A (en) * | 1990-07-20 | 1992-03-11 | Mitsubishi Materials Corp | Ceramic composite material and its production |
JPH0477355A (en) * | 1990-07-20 | 1992-03-11 | Mitsubishi Materials Corp | Ceramic composite material and its production |
JPH04130048A (en) * | 1990-09-18 | 1992-05-01 | Mitsubishi Materials Corp | Ceramic composite material and its production |
JPH04149062A (en) * | 1990-10-12 | 1992-05-22 | Mitsubishi Materials Corp | Ceramic composite material and its production |
US5196386A (en) * | 1989-09-18 | 1993-03-23 | The Tokyo Electric Power Company, Incorporated | Sintered ceramic composite body and method of manufacturing same |
JPH07138067A (en) * | 1993-09-27 | 1995-05-30 | Nhk Spring Co Ltd | Ceramic spring material and ceramic spring and its production |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5247803A (en) * | 1975-10-15 | 1977-04-16 | Sumitomo Chemical Co | High strength ceramic sintering body |
JPS5939766A (en) * | 1982-08-30 | 1984-03-05 | 京セラ株式会社 | Alumina-silicon carbide complex sintered body |
JPS59102861A (en) * | 1982-12-03 | 1984-06-14 | 工業技術院長 | Silicon carbide composite oxide sintered ceramics |
JPS61274803A (en) * | 1985-02-18 | 1986-12-05 | アドバンスド・コンポジット・マテリアルズ・コーポレーション | Reinforced ceramic cutting tool |
-
1985
- 1985-01-25 JP JP60012297A patent/JPS61174165A/en active Granted
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5247803A (en) * | 1975-10-15 | 1977-04-16 | Sumitomo Chemical Co | High strength ceramic sintering body |
JPS5939766A (en) * | 1982-08-30 | 1984-03-05 | 京セラ株式会社 | Alumina-silicon carbide complex sintered body |
JPS59102861A (en) * | 1982-12-03 | 1984-06-14 | 工業技術院長 | Silicon carbide composite oxide sintered ceramics |
JPS61274803A (en) * | 1985-02-18 | 1986-12-05 | アドバンスド・コンポジット・マテリアルズ・コーポレーション | Reinforced ceramic cutting tool |
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61274803A (en) * | 1985-02-18 | 1986-12-05 | アドバンスド・コンポジット・マテリアルズ・コーポレーション | Reinforced ceramic cutting tool |
JPS63129059A (en) * | 1986-11-14 | 1988-06-01 | 日本特殊陶業株式会社 | Antiabrasive ceramic aintered body |
JPS63225574A (en) * | 1987-03-12 | 1988-09-20 | 東芝タンガロイ株式会社 | Ceramic sintered body for cutting tool member and manufacture |
JPS6479063A (en) * | 1987-09-18 | 1989-03-24 | Toshiba Tungaloy Co Ltd | Aluminum oxide-based sintered body having superior wear resistance |
EP0311289A1 (en) * | 1987-09-30 | 1989-04-12 | Ngk Insulators, Ltd. | SiC-Al2O3 composite sintered bodies and method of producing the same |
JPH01188454A (en) * | 1988-01-22 | 1989-07-27 | Koichi Niihara | High strength composite ceramic sintered body |
JPH02164779A (en) * | 1988-12-19 | 1990-06-25 | Mitsubishi Mining & Cement Co Ltd | Ceramic composite material and its production |
JPH02229757A (en) * | 1989-03-02 | 1990-09-12 | Mitsubishi Mining & Cement Co Ltd | Ceramic composite material and production thereof |
JPH02229756A (en) * | 1989-03-02 | 1990-09-12 | Mitsubishi Mining & Cement Co Ltd | Ceramic composite material and production thereof |
US5196386A (en) * | 1989-09-18 | 1993-03-23 | The Tokyo Electric Power Company, Incorporated | Sintered ceramic composite body and method of manufacturing same |
JPH03247553A (en) * | 1990-02-23 | 1991-11-05 | Mitsubishi Materials Corp | Aluminum oxide-based ceramic having high strength and toughness and its production |
JPH03290356A (en) * | 1990-04-05 | 1991-12-20 | Mitsubishi Materials Corp | Aluminum oxide based ceramics having high toughness and strength and production thereof |
JPH0477353A (en) * | 1990-07-20 | 1992-03-11 | Mitsubishi Materials Corp | Ceramic composite material and its production |
JPH0477355A (en) * | 1990-07-20 | 1992-03-11 | Mitsubishi Materials Corp | Ceramic composite material and its production |
JPH04130048A (en) * | 1990-09-18 | 1992-05-01 | Mitsubishi Materials Corp | Ceramic composite material and its production |
JPH04149062A (en) * | 1990-10-12 | 1992-05-22 | Mitsubishi Materials Corp | Ceramic composite material and its production |
JPH07138067A (en) * | 1993-09-27 | 1995-05-30 | Nhk Spring Co Ltd | Ceramic spring material and ceramic spring and its production |
Also Published As
Publication number | Publication date |
---|---|
JPH0526746B2 (en) | 1993-04-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS61174165A (en) | Alumina-silicon carbide heat-resistant composite sintered body and manufacture | |
EP0311264B1 (en) | Ceramic cutting tool inserts and production thereof | |
Wang et al. | Fabrication of machinable silicon carbide‐boron nitride ceramic nanocomposites | |
JPS63274659A (en) | Silicon carbide reinforced alumina zirconia ceramic composite body and manufacture | |
JPS60200863A (en) | Silicon nitride base ceramics | |
EP0607110A1 (en) | SiC whisker and particle reinforced ceramic cutting tool material | |
US4889834A (en) | SiC-Al2 O3 composite sintered bodies and method of producing the same | |
JPH01188454A (en) | High strength composite ceramic sintered body | |
JPH03218967A (en) | High-strength alumina-zirconia-based ceramics sintered body | |
JP2810922B2 (en) | Alumina-zirconia composite sintered body and method for producing the same | |
JPH0553747B2 (en) | ||
US4596781A (en) | Tough Si3 N4 composite ceramics | |
Selcuk et al. | Processing, microstructure and mechanical properties of SiC platelet-reinforced 3Y-TZP composites | |
US5324693A (en) | Ceramic composites and process for manufacturing the same | |
JPH02160674A (en) | Oxide-based ceramic cutting blade | |
JPH05507462A (en) | Ceramic composite materials, methods of manufacturing ceramic composite materials and their use | |
JP2581128B2 (en) | Alumina-sialon composite sintered body | |
JPS61256963A (en) | High strength alumina sintered body and manufacture | |
JP2723170B2 (en) | Superplastic silicon nitride sintered body | |
JPS62265182A (en) | High strength alumina-zirconia-silicon carbide composite sintered body | |
JP3148559B2 (en) | Ceramic fiber reinforced turbine blade and method of manufacturing the same | |
JPH0813702B2 (en) | Composite ceramics | |
JPS61122164A (en) | Silicon carbide-alumina composite sintered body and manufacture | |
JPS63129059A (en) | Antiabrasive ceramic aintered body | |
JPS63225578A (en) | High hardness, high toughness and high strength titanium carbide(tic)/silicon carbide(sic) whisker composite sintered body and manufacture |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EXPY | Cancellation because of completion of term |