[go: up one dir, main page]

JPS61256963A - High strength alumina sintered body and manufacture - Google Patents

High strength alumina sintered body and manufacture

Info

Publication number
JPS61256963A
JPS61256963A JP60098778A JP9877885A JPS61256963A JP S61256963 A JPS61256963 A JP S61256963A JP 60098778 A JP60098778 A JP 60098778A JP 9877885 A JP9877885 A JP 9877885A JP S61256963 A JPS61256963 A JP S61256963A
Authority
JP
Japan
Prior art keywords
alumina
sintered body
particle size
plate
average particle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60098778A
Other languages
Japanese (ja)
Inventor
平井 敏雄
晧一 新原
哲夫 内山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Riken Corp
Original Assignee
Riken Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Riken Corp filed Critical Riken Corp
Priority to JP60098778A priority Critical patent/JPS61256963A/en
Publication of JPS61256963A publication Critical patent/JPS61256963A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 イ、産業上の利用分野 本発明は高強度アルミナ焼結体及びその製造方法に関す
る。
DETAILED DESCRIPTION OF THE INVENTION A. Field of Industrial Application The present invention relates to a high-strength alumina sintered body and a method for manufacturing the same.

口、従来技術 アルミナは、化学的に極めて安定な物質であり、電気絶
縁性が良好で高硬度であり、他のセラミックスに較べて
廉価であるところから、集積回路の基板やパッケージ、
切削工具用チップ等セラミックス中で最も広範囲に使用
されている。
Prior Art Alumina is a chemically extremely stable substance, has good electrical insulation properties, high hardness, and is inexpensive compared to other ceramics, so it is used for integrated circuit substrates and packages.
It is most widely used among ceramics such as tips for cutting tools.

また、セラミックスは、耐摩耗性に優れているところか
ら、最近、内燃機関の摺動部品用材料として注目されて
いる。然し乍ら、アルミナは、機械的強度が他のセラミ
ックスに較べて低いために、特に苛酷な環境下で使用さ
れる内燃機関の部品、其他の機械構造用材料としては好
適ではない。これら機械構造用セラミックスとしては、
主として窒化珪素、炭化珪素及び部分安定化ジルコニア
について応用研究が進められていて、アルミナは上記材
料の候補には挙げられていない。
Furthermore, ceramics have recently attracted attention as materials for sliding parts of internal combustion engines because of their excellent wear resistance. However, since alumina has lower mechanical strength than other ceramics, it is not suitable as a material for parts of internal combustion engines or other mechanical structures used in particularly harsh environments. These ceramics for mechanical structures include:
Applied research is mainly being carried out on silicon nitride, silicon carbide, and partially stabilized zirconia, and alumina has not been mentioned as a candidate for the above materials.

アルミナは、前述したようにセラミックス中では比較的
廉価であり、機械的強度が改善されれば、内燃機関の部
品のような苛酷な環境で使用される機械構造用材料とし
ても使用が可能となり、その通用範囲が一層拡大するこ
とが期待できる。
As mentioned above, alumina is relatively inexpensive among ceramics, and if its mechanical strength is improved, it can be used as a material for mechanical structures used in harsh environments such as parts of internal combustion engines. It can be expected that its scope of application will further expand.

アルミナ焼結体の機械的強度は、山田によってセラミッ
クス17.810〜816.1982に報告されている
ように、気孔率と結晶粒径に依存し、結晶粒径を小さく
、かつ、気孔率を低下させて高密度にする程、改善され
る。
The mechanical strength of alumina sintered bodies depends on the porosity and grain size, as reported by Yamada in Ceramics 17.810-816.1982, and the grain size is made smaller and the porosity is lowered. The higher the density, the better.

また、第二相を複合させてアルミナ焼結体の機械的強度
を改善しようとする試みも多数あるが、ライス(Ric
e)によってアメリカン セラミツクツサイティ ブリ
ティン(American CeramicSocte
ty Bulletin ) 63.256〜262.
1984に報告されているように、第二相の添加は、破
壊靭性の改善には有効であるものの、機械的強度を改善
する事が困難な例がほとんどである。例えば特公昭59
−25748号公報にジルコニアを複合したアルミナ焼
結体の例が、また、ワーイ (Wahi)らによってジ
ャーナル オブ マテリアルス サイエンス(Jour
nal of Malerials 5cience)
 15+875〜885+1980に報告されているよ
うに、炭化チタンを複合したアルミナ焼結体の例がある
が、いずれも微細な等軸形の第二相を混合しており、本
発明のように、素地と実質的に同一組成の比較的大きな
板状分散相を複合させて機械的強度を向上させる手段と
したものは報告されていない。
In addition, there have been many attempts to improve the mechanical strength of alumina sintered bodies by combining a second phase;
e) by American Ceramic Site Bulletin
ty Bulletin) 63.256-262.
As reported in 1984, although the addition of a second phase is effective in improving fracture toughness, in most cases it is difficult to improve mechanical strength. For example, special public service in Showa 59
An example of an alumina sintered body composited with zirconia is given in Publication No. 25748, and also published in the Journal of Materials Science by Wahi et al.
nal of Malerials 5science)
15+875 to 885+1980, there are examples of alumina sintered bodies composited with titanium carbide, but all of them contain a fine equiaxed second phase, and as in the present invention, There has been no report of a method for improving mechanical strength by combining a relatively large plate-like dispersed phase with substantially the same composition as that of a steel.

ハ、発明の目的 本発明は、機械構造用材料としても充分満足できるアル
ミナ焼結体及びその製造方法を提供することを目的とし
ている。
C. Purpose of the Invention The object of the present invention is to provide an alumina sintered body that is fully satisfactory as a material for mechanical structures and a method for producing the same.

二、発明の構・成 即ち、本発明の第一の発明は、平均粒径5μm以下のア
ルミナ粒子から実質的になる素地中に、平均粒径が3〜
25μmで平均アスペクト比が3〜20の板状アルミナ
粒子が互いに実質的に隔離して2〜30容積%分散した
組織を有する高強度アルミナ焼結体に係る。また、本発
明の第二の発明は、平均粒径1μm以下のアルミナ粉末
に、平均粒径が3〜25μmで平均アスペクト比が3〜
20の板状アルミナ粉末を全体に対して2〜30容積%
になるように配合、混合し、この混合粉を成形し、この
成形体を1400〜1800℃の範囲内の温度で焼結す
る前記第一の発明に係る高強度アルミナ焼結体の製造方
法に係る。
2. Structure of the invention, that is, the first invention of the present invention is to provide a matrix having an average particle size of 3 to 5 μm in a matrix consisting essentially of alumina particles with an average particle size of 5 μm or less.
The present invention relates to a high-strength alumina sintered body having a structure in which plate-shaped alumina particles of 25 μm and an average aspect ratio of 3 to 20 are substantially separated from each other and dispersed in an amount of 2 to 30% by volume. Further, the second invention of the present invention provides alumina powder with an average particle size of 1 μm or less, an average particle size of 3 to 25 μm, and an average aspect ratio of 3 to 25 μm.
20 plate-shaped alumina powder at 2 to 30% by volume of the total
The method for producing a high-strength alumina sintered body according to the first invention, which comprises blending and mixing the mixed powder so that It depends.

なお、上記板状アルミナ粒子の粒径とは、板状アルミナ
粒子の平面又は平面に近い面上での径を指すものであっ
て、板状粒子の厚さを指すものではない。
Note that the particle size of the plate-shaped alumina particles refers to the diameter of the plate-shaped alumina particles on a plane or a plane close to the plane, and does not refer to the thickness of the plate-shaped particles.

ホ、発明の作用効果 セラミックスのような脆性材料の機械的強度(破壊強度
)σf は、宮田によってセラミックス。
E. Effects of the Invention The mechanical strength (fracture strength) σf of brittle materials such as ceramics was described by Miyata in Ceramics.

20.3〜11.1985に解説されているように、σ
子   =にIC/   (y   −rl)で表され
る。ここで、KICは破壊靭性、aは破壊に導く欠陥の
大きさ、yは欠陥及び物体の形状で決まる定数である。
20.3-11.1985, σ
Child = is expressed as IC/ (y − rl). Here, KIC is fracture toughness, a is the size of a defect that leads to fracture, and y is a constant determined by the shape of the defect and the object.

上式から、セラミックスの機械的強度は、破壊靭性KI
c  を高め、欠陥の大きさaを小さくすることによっ
て改善されることが理解できる。
From the above formula, the mechanical strength of ceramics is fracture toughness KI
It can be seen that this can be improved by increasing c and decreasing the defect size a.

欠陥の大きさaを小さくする手段であり、また、第二相
複合の試みは、破壊靭性にICを向上させる手段である
This is a means to reduce the defect size a, and the attempt at second phase composite is a means to improve IC in fracture toughness.

更に破壊靭性の改善について詳述すると、その手法は、
ウィーダーホーン(Wiederhorn)によってア
ニュアル レビュ オブ マテリアルス サイエンス(
Annual Revfew of Material
s 5cience)14.373〜403.1984
に纏められているように、クラック先端の非直線化とク
ラ・7り先端での遮蔽ゾーンの形成との二つに分けて考
えられる。中でも、クラック先端の非直線化による破壊
靭性改善の観点からは、アスペクト比の大きなく例えば
繊維状)第二相の導入が望ましいが、このような第二相
の導入は、例えば繊維同士の絡み合いによって機械的強
度に悪影響を及ぼす欠陥を大きくするため、破壊靭性の
改善が直ちに機械的強度の改善には繋がり難い。
To further explain the improvement of fracture toughness in detail, the method is as follows.
Annual Review of Materials Science (by Wiederhorn)
Annual Review of Material
s 5science) 14.373~403.1984
As summarized in the following, the problem can be divided into two types: nonlinearization of the crack tip and formation of a shielding zone at the tip of the crack. Among these, from the viewpoint of improving fracture toughness by making the crack tip nonlinear, it is desirable to introduce a second phase with a large aspect ratio (for example, fibrous). This increases the size of defects that adversely affect mechanical strength, so improvement in fracture toughness is difficult to immediately lead to improvement in mechanical strength.

発明者は鋭意研究の結果、平均粒径3〜25μm、平均
アスペクト比3〜20の板状アルミナ粒子を微細な結晶
粒からなるアルミナ素地中に互いに隔離して分散させる
ことにより、アルミナ焼結体の機核的強度が改善できる
ことを見出した。その理由は、板状アルミナ粒子の使用
は、クラック先端を非直線化して破壊靭性を高める一方
、繊維に較べて互いに隔離して素地中に分散させること
が容易になり、大きな欠陥の導入を抑えることによって
機械的強度が改善されるものと考えられる。ここで、板
状アルミナ粒子の導入がクランク先端を非直線的にする
のは、破壊の進展経路が結晶粒界であって、クラック先
端が結晶粒界に沿った形状をとるためである。
As a result of intensive research, the inventors discovered that plate-shaped alumina particles with an average particle size of 3 to 25 μm and an average aspect ratio of 3 to 20 were isolated from each other and dispersed in an alumina matrix consisting of fine crystal grains, thereby creating an alumina sintered body. It was found that the mechanical strength of the steel can be improved. The reason for this is that the use of plate-shaped alumina particles makes the crack tip non-linear and increases fracture toughness, but compared to fibers, it is easier to isolate them from each other and disperse them in the substrate, thus suppressing the introduction of large defects. It is thought that this improves mechanical strength. Here, the reason why the introduction of plate-shaped alumina particles makes the crank tip non-linear is that the propagation path of fracture is the grain boundary, and the crack tip takes a shape along the grain boundary.

次に、本発明に於ける各相、原料及び製造方法について
説明する。
Next, each phase, raw material, and manufacturing method in the present invention will be explained.

素地を構成するアルミナ粒子の粒径は、前述したように
、微細な程欠陥を小さくする。これが5μm@越えると
欠陥が大きくなって、焼結体の機械的強度が低下するよ
うになるので、5μmをその上限とする。
As described above, the finer the particle size of the alumina particles constituting the matrix, the smaller the defects. If this exceeds 5 μm@, defects become large and the mechanical strength of the sintered body decreases, so 5 μm is set as the upper limit.

素地中に分散させる板状アルミナ粒子は、α型の結晶形
のもので良いが、他の結晶形のものでも良い。形状とし
てはアスペクト比が平均3〜20であることが好ましい
。これが3未満であると、クラック先端の非直線化の程
度が小さくて破壊靭性増加の効果が期待できず、20を
越えると板状アルミナ粒子同士が接触して密度低下や欠
陥サイズの増大を引き起こし、機械的強度が低下するよ
うになるので、アスペクト比は平均3〜20とする。
The plate-shaped alumina particles to be dispersed in the matrix may be of α-type crystal form, but may also be of other crystal form. As for the shape, it is preferable that the aspect ratio is 3 to 20 on average. If this value is less than 3, the degree of nonlinearity at the crack tip will be small and no effect of increasing fracture toughness can be expected. If it exceeds 20, plate-like alumina particles will come into contact with each other, causing a decrease in density and an increase in defect size. Since the mechanical strength is reduced, the aspect ratio is set to 3 to 20 on average.

板状アルミナ粒子の平均粒径は、高密度焼結体とする観
点から、素地を構成するアルミナ粒子のそれよりも充分
に大きくする必要がある。これが3μm未満では、板状
アルミナ粒子同士が接触する機会が多くなり、高密度焼
結体が得られ難く、他方、これが25μmを越えて粗大
になると、それ自体が強度に悪影響を及ぼす欠陥として
作用し、機械的強度が低下する。従って、板状アルミナ
粒子の平均粒径は3〜25μmの範囲とする。
The average particle size of the plate-shaped alumina particles needs to be sufficiently larger than that of the alumina particles constituting the matrix from the viewpoint of producing a high-density sintered body. If this is less than 3 μm, there will be many opportunities for the plate-shaped alumina particles to come into contact with each other, making it difficult to obtain a high-density sintered body. On the other hand, if this is larger than 25 μm, it will itself act as a defect that adversely affects the strength. However, the mechanical strength decreases. Therefore, the average particle size of the plate-shaped alumina particles is in the range of 3 to 25 μm.

板状アルミナ粒子の素地中に占める割合は、2容積%未
満では機械的強度改善の効果が顕著ではなく、これが3
0容積%を越えて多量になると、板状アルミナ粒子同士
が互いに接触して焼結体の密度低下や欠陥サイズの増加
を引き起こして機械的強度が低下するようになる。従っ
て、その分散量は2〜30容積%の範囲とする。
If the proportion of plate-shaped alumina particles in the matrix is less than 2% by volume, the effect of improving mechanical strength is not significant;
When the amount exceeds 0% by volume, plate-shaped alumina particles come into contact with each other, causing a decrease in density and an increase in defect size of the sintered body, resulting in a decrease in mechanical strength. Therefore, the amount of dispersion should be in the range of 2 to 30% by volume.

本発明に基づくアルミナ焼結体は、本質的にアルミナ−
成分によって構成されるが、原料中に不純物として含有
される少量の他の成分が存在しても差支えない。更に、
通例のアルミナ焼結体に於けると同様に、焼結時のアル
ミナ結晶粒の成長を抑えるために、少量のマグネシア(
MgO)を含有させることは好ましい。
The alumina sintered body according to the present invention is essentially alumina
However, there may be small amounts of other components contained as impurities in the raw materials. Furthermore,
As with ordinary alumina sintered bodies, a small amount of magnesia (
It is preferable to contain MgO).

素地の原料として使用する微細粒アルミナ粉末は、α型
結晶形のものが便利に使用できるが、δ型等他の結晶形
のものでも良い。純度は98%以上であることが望まし
い。
The fine alumina powder used as a raw material for the base material is conveniently in the α-type crystal form, but other crystal forms such as the δ-type may also be used. It is desirable that the purity is 98% or more.

素地を構成するアルミナ粒子の粒径は、前述したように
、この素地中に分散させる板状アルミナ粒子の粒径より
も充分に小さくする必要があって平均5μm以下とし、
また、両者は適度のバランスを持つことが望まれること
と、他方、焼結時に結晶粒が成長することを考慮せねば
ならないこととから、素地形成用に使用するアルミナ粉
末は、平均粒径1μm以下のものとするのが良い。
As mentioned above, the particle size of the alumina particles constituting the matrix needs to be sufficiently smaller than the particle size of the plate-shaped alumina particles dispersed in the matrix, and the average size is 5 μm or less.
In addition, since it is desirable to have an appropriate balance between the two, and on the other hand, it is necessary to take into account the growth of crystal grains during sintering, the alumina powder used for forming the base should have an average grain size of 1 μm. It is best to use the following.

成形方法としては、プレス成形、泥漿鋳込成形、射出成
形、押出し成形等通例の成形方法のいずれも採用可能で
ある。ホットプレスによることも勿論できる。
As the molding method, any of the usual molding methods such as press molding, slurry casting, injection molding, and extrusion molding can be employed. Of course, hot pressing can also be used.

焼結は、真空中、非酸化性雰囲気中又は大気中で140
0〜1800℃の範囲内の温度で行う。焼結温度が14
00℃よりも低いと得られる焼結体の密度が低くなり、
1800℃を越えると高温ではアルミナ結晶粒の成長が
甚だしくなり、いずれの場合でも機械的強度が低下する
ようになる。
Sintering is carried out at 140°C in vacuum, in a non-oxidizing atmosphere or in air.
It is carried out at a temperature within the range of 0 to 1800°C. Sintering temperature is 14
When the temperature is lower than 00°C, the density of the obtained sintered body becomes low,
When the temperature exceeds 1800° C., the growth of alumina crystal grains becomes severe and the mechanical strength decreases in either case.

本発明の特徴は、素地と化学組成を異にする第二相を複
合させるのではなく、上記のように素地中にこの素地と
実質的に同一の化学組成を有する板状粒子を分散させる
ことと素地を構成するアルミナ粒子の平均粒径を5μm
以下とし、この素地中に互いに隔離して分散させる板状
(繊維状ではなく、板状であることが重要)アルミナ粒
子を、平均粒径3〜25μm1平均アスペクト比3〜2
0、分散量2〜30容積%とすることにより、クラック
先端を非直線化して破壊靭性を向上させ、かつ破壊に導
く欠陥の大きさもある程度小さく抑えて機械的強度を改
善したということに特徴をもっている。よって改善され
た機械的強度からアルミナ焼結体の通用分野が機械構造
用材料に迄拡大されることが期待できる。
The feature of the present invention is that plate-shaped particles having substantially the same chemical composition as the base material are dispersed in the base material as described above, instead of combining the second phase with a chemical composition different from the base material. The average particle size of the alumina particles that make up the base material is 5 μm.
The plate-shaped (it is important that they are plate-shaped, not fibrous) alumina particles are dispersed in isolation from each other in this base material, with an average particle size of 3 to 25 μm, average aspect ratio of 3 to 2
0. By setting the dispersion amount to 2 to 30% by volume, the crack tip is made non-linear, improving fracture toughness, and the size of defects that lead to fracture is suppressed to a certain degree, improving mechanical strength. There is. Therefore, due to the improved mechanical strength, it is expected that the field of application of alumina sintered bodies will be expanded to include mechanical structural materials.

へ、実施例 以下に実施例によって本発明を具体的に説明する。To, Example The present invention will be specifically explained below using Examples.

純度99%以上、平均粒径0.7μmのα型アルミナ粉
末に、下記表に示すような板状アルミナ粉末を配合し、
ブチスチック容器とアルミナボールとを使用するボール
ミル中でエチルアルコールを混合液として、1時間湿式
混合し、乾燥して混合粉とした。
Plate-shaped alumina powder as shown in the table below is blended with α-type alumina powder with a purity of 99% or more and an average particle size of 0.7 μm,
Ethyl alcohol was mixed as a liquid mixture in a ball mill using a stick container and an alumina ball, wet mixed for 1 hour, and dried to obtain a mixed powder.

これら混合粉をプレス成形後、1500kg/−の等方
静水圧によって約20 X 50 X 15mの成形体
とし、この成形体をアルゴン気流中で1600℃に2時
間加熱して焼結した。
After press-molding these mixed powders, a compact of about 20 x 50 x 15 m was formed by isostatic hydrostatic pressure of 1,500 kg/-, and this compact was heated to 1,600° C. for 2 hours in an argon stream to sinter.

これら焼結体の素地を構成するアルミナ粒子の平均粒径
は1μmであった。
The average particle diameter of the alumina particles constituting the matrix of these sintered bodies was 1 μm.

これら焼結体からダイヤモンド砥石とダイヤモンドブレ
ードを使用して3 X 4 X36nの曲げ試験片を採
取し、200番のダイヤモンド研磨砥石で仕上げを施し
、密度測定と曲げ試験に供した。曲げ試験は、支点距離
30m、クロスヘッド速度0.5 n/winの3点曲
げ試験法により室温で行った。
A 3×4×36n bending test piece was taken from these sintered bodies using a diamond grindstone and a diamond blade, finished with a No. 200 diamond grindstone, and subjected to density measurement and bending test. The bending test was conducted at room temperature using a three-point bending test method with a fulcrum distance of 30 m and a crosshead speed of 0.5 n/win.

表 図面は、1lh4を例にあげて上記焼結体の代表的な顕
微鏡組成を模式的に示すスケッチである。微細なアルミ
ナ粒子からなる素地(結晶粒界は図示省略しである。)
1中に、板状のアルミナ粒子2が互いに隔離して分散し
ているのが観察される。
The table drawing is a sketch schematically showing a typical microscopic composition of the above-mentioned sintered body, taking 1lh4 as an example. Base made of fine alumina particles (grain boundaries are not shown)
1, plate-shaped alumina particles 2 are observed to be isolated and dispersed from each other.

比較のために、板状アルミナ粉末を配合せず、其他のは
前記と同様にして得られた単一粒径のアルミナ焼結体に
ついて同様の試験を行った。
For comparison, a similar test was conducted on an alumina sintered body having a single grain size obtained in the same manner as described above without adding plate-shaped alumina powder.

試験結果は上記表に併記した通りである。The test results are shown in the table above.

同表から、実施例のアルミナ焼結体は、比較の従来の単
一粒径のアルミナ焼結体に較べて曲げ強度が著しく改善
されていることが判る。これらの結果から解るように、
本発明に基づくアルミナ焼結体は、従来はアルミナ焼結
体が使用を検討すらされなかった内燃機関部品用等の機
械構造用セラミックスとしても適用可能であり、本発明
は、アルミナ焼結体の通用分野の一層の拡大を可能とし
、工業上の利用価値は大きい。
From the same table, it can be seen that the bending strength of the alumina sintered bodies of the examples is significantly improved compared to the conventional alumina sintered bodies of a single grain size for comparison. As can be seen from these results,
The alumina sintered body according to the present invention can also be applied as ceramics for mechanical structures such as internal combustion engine parts, for which the use of alumina sintered bodies has not been considered in the past. It makes it possible to further expand the field of application, and has great industrial utility value.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は実施例のアルミナ焼結体の顕微鏡組織を模式的に
示すスケッチである。 なお、図面に示された符号において、 1・・・・・・・・・素地 2・・・・・・・・・板状アルミナ粒子である。
The drawing is a sketch schematically showing the microscopic structure of the alumina sintered body of the example. In addition, in the reference numerals shown in the drawings, 1...Material 2......Plate-shaped alumina particles.

Claims (1)

【特許請求の範囲】 1 平均粒径5μm以下のアルミナ粒子から実質的にな
る素地中に、平均粒径が3〜25μmで平均アスペクト
比が3〜20の板状アルミナ粒子が互いに実質的に隔離
して2〜30容積%分散した組織を有する高強度アルミ
ナ焼結体。 2 平均粒径1μm以下のアルミナ粉末に、平均粒径が
3〜25μmで平均アスペクト比が3〜20の板状アル
ミナ粉末を全体に対して2〜30容積%になるように配
合、混合し、この混合粉を成形し、この成形体を140
0〜1800℃の範囲内の温度で焼結する高強度アルミ
ナ焼結体の製造方法。
[Claims] 1. Platy alumina particles having an average particle size of 3 to 25 μm and an average aspect ratio of 3 to 20 are substantially separated from each other in a matrix consisting essentially of alumina particles having an average particle size of 5 μm or less. A high-strength alumina sintered body having a structure in which 2 to 30% by volume is dispersed. 2. Blend and mix plate-shaped alumina powder with an average particle size of 3 to 25 μm and an average aspect ratio of 3 to 20 to alumina powder with an average particle size of 1 μm or less so that the amount is 2 to 30% by volume of the whole, This mixed powder is molded, and this molded body is
A method for producing a high-strength alumina sintered body, which is sintered at a temperature within the range of 0 to 1800°C.
JP60098778A 1985-05-09 1985-05-09 High strength alumina sintered body and manufacture Pending JPS61256963A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60098778A JPS61256963A (en) 1985-05-09 1985-05-09 High strength alumina sintered body and manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60098778A JPS61256963A (en) 1985-05-09 1985-05-09 High strength alumina sintered body and manufacture

Publications (1)

Publication Number Publication Date
JPS61256963A true JPS61256963A (en) 1986-11-14

Family

ID=14228828

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60098778A Pending JPS61256963A (en) 1985-05-09 1985-05-09 High strength alumina sintered body and manufacture

Country Status (1)

Country Link
JP (1) JPS61256963A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6433055A (en) * 1987-07-27 1989-02-02 Sumitomo Cement Co Sintered body of alumina having high strength and its production
JPS6452668A (en) * 1987-06-09 1989-02-28 Sandvik Ab Single crystal disk reinforced ceramic cutting tool material
JPS6461349A (en) * 1987-08-29 1989-03-08 Riken Kk Alumina group complex sintered material having high electrical insulating property and high strength and production thereof
US6383963B1 (en) 1997-06-26 2002-05-07 Ngk Spark Plug Co., Ltd Sintered alumina-based ceramics and process for producing same
JP2007119334A (en) * 2005-09-28 2007-05-17 Kyocera Corp Alumina sintered body, processing apparatus member and processing apparatus using the same, and sample processing method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5363406A (en) * 1976-11-17 1978-06-06 Matsushita Electric Ind Co Ltd Process for making anisotropic sintered sheets
JPS5571697A (en) * 1978-11-18 1980-05-29 Giulini Chemie Hexagonal boarddlike alphaaaluminum oxide single crystal*its manufacture*surface treatment employing it and manufacture of ceramic oxide

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5363406A (en) * 1976-11-17 1978-06-06 Matsushita Electric Ind Co Ltd Process for making anisotropic sintered sheets
JPS5571697A (en) * 1978-11-18 1980-05-29 Giulini Chemie Hexagonal boarddlike alphaaaluminum oxide single crystal*its manufacture*surface treatment employing it and manufacture of ceramic oxide

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6452668A (en) * 1987-06-09 1989-02-28 Sandvik Ab Single crystal disk reinforced ceramic cutting tool material
JPS6433055A (en) * 1987-07-27 1989-02-02 Sumitomo Cement Co Sintered body of alumina having high strength and its production
JPS6461349A (en) * 1987-08-29 1989-03-08 Riken Kk Alumina group complex sintered material having high electrical insulating property and high strength and production thereof
US6383963B1 (en) 1997-06-26 2002-05-07 Ngk Spark Plug Co., Ltd Sintered alumina-based ceramics and process for producing same
JP2007119334A (en) * 2005-09-28 2007-05-17 Kyocera Corp Alumina sintered body, processing apparatus member and processing apparatus using the same, and sample processing method

Similar Documents

Publication Publication Date Title
EP0412975B1 (en) Ceramic moulding produced by powder metallurgy, use and preparation thereof
KR910005053B1 (en) High toughness zro2 sintered body and method of producing the same
JP4951753B2 (en) Method for producing sintered silicon carbide
JPS61174165A (en) Alumina-silicon carbide heat-resistant composite sintered body and manufacture
Akimune et al. Influence of starting powder characteristics on mechanical properties of SiC-particle/Si3N4 composites
JP2507479B2 (en) SiC-Al Lower 2 O Lower 3 Composite Sintered Body and Manufacturing Method Thereof
JPS61256963A (en) High strength alumina sintered body and manufacture
JPH03218967A (en) High-strength alumina-zirconia-based ceramics sintered body
JPS61146762A (en) Antiabrasive silicon nitride base product
US5302329A (en) Process for producing β-sialon based sintered bodies
US5352533A (en) Ceramic composite body, process for producing a ceramic composite
JP2671929B2 (en) Zirconia-based ceramic material and its manufacturing method
US5403792A (en) Low thermal conductivity ceramic and process for producing the same
EP0365553A1 (en) Method for producing ceramic composite materials containing silicon oxynitride and zirconium oxide.
US6136738A (en) Silicon nitride sintered body with region varying microstructure and method for manufacture thereof
JP2526598B2 (en) Method for manufacturing silicon nitride ceramics
JP2650049B2 (en) Ceramic cutting tool and its manufacturing method
JPS63100055A (en) Alumina-based ceramic cutting tools with high toughness
JPS59232971A (en) Abrasion resistant sialon base ceramics
JPH07187759A (en) Alumina ceramics and its production
JPH0812443A (en) Superplastic silicon nitride sintered body
JP2000128626A (en) Aluminum oxide matrix sintered compact and its production
RU2010783C1 (en) Charge for producing ceramic materials
JPS63185862A (en) Manufacturing method for ceramic composites
JPS62291539A (en) Jig for measuring mechanical characteristic