[go: up one dir, main page]

JPS63250586A - Cooling device for detecting element - Google Patents

Cooling device for detecting element

Info

Publication number
JPS63250586A
JPS63250586A JP62084546A JP8454687A JPS63250586A JP S63250586 A JPS63250586 A JP S63250586A JP 62084546 A JP62084546 A JP 62084546A JP 8454687 A JP8454687 A JP 8454687A JP S63250586 A JPS63250586 A JP S63250586A
Authority
JP
Japan
Prior art keywords
cooler
refrigerant
pressure
cooling
quenching
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62084546A
Other languages
Japanese (ja)
Inventor
渡辺 脩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP62084546A priority Critical patent/JPS63250586A/en
Publication of JPS63250586A publication Critical patent/JPS63250586A/en
Pending legal-status Critical Current

Links

Landscapes

  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Light Receiving Elements (AREA)
  • Details Of Measuring And Other Instruments (AREA)
  • Containers, Films, And Cooling For Superconductive Devices (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、高応答画像取得用、プロセス監視用、もしく
は医療用等の検知素子を急速に冷却するようにした検知
素子の冷却装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a cooling device for a sensing element that rapidly cools a sensing element for high-response image acquisition, process monitoring, medical use, or the like.

〔従来の技術〕[Conventional technology]

従来の技術を赤外線検知器の場合を例に説明する。 The conventional technology will be explained using an example of an infrared detector.

従来は第4図に示すように、冷媒タンク1内の冷媒ガス
(N2.Ar等)を、フィルタ2、開閉弁3、配管9を
経て蓄圧器4に導き、こ\で圧力の変動を低減した上で
冷却器5に供給して、検知器8の検知素子取付基板6及
び検知素子7を冷却するようにしていた。
Conventionally, as shown in Fig. 4, refrigerant gas (N2, Ar, etc.) in a refrigerant tank 1 is guided to a pressure accumulator 4 via a filter 2, an on-off valve 3, and a pipe 9, thereby reducing pressure fluctuations. After that, it is supplied to the cooler 5 to cool the detection element mounting board 6 and the detection element 7 of the detector 8.

この従来の方式によって冷却される検知素子7は単素子
であ91画像も数秒毎に変化する方式で使用されている
のが一般である。
Generally, the detection element 7 cooled by this conventional method is a single element and is used in a method in which 91 images change every few seconds.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

最近、リアルタイム応答及び高品質の画像の要求に対応
するために、検知素子の多床化(例えば512ケ×51
2ケ)が進められている。
Recently, in order to meet the demands for real-time response and high-quality images, the number of sensing elements has increased (for example, 512 x 51
2) is in progress.

このように検知素子を多床化した場合、安定した画隊を
得るためには、多数の検知素子を均一の温度環境下に置
いておくため、検知素子取付基板6を大型化し、熱容量
を大きくし、温度変動に強くする必要がある。
When multiple sensing elements are installed in this way, in order to obtain a stable array, the sensing element mounting board 6 must be enlarged to increase its heat capacity in order to keep a large number of sensing elements under a uniform temperature environment. However, it must be resistant to temperature fluctuations.

しかし、上記従来の方式にあっては構造上、冷媒タンク
1が冷却器5の近傍に設置できず1通常線い配管9で接
続して使用しているが、蓄圧器4に蓄圧し冷却器5が作
動するまでの無駄時間及び細管9での圧力降下が生じ、
更に検知器取付基扱6の熱容量増大等のため、検知器8
の作動時間が短縮される結果となり(数分のオーダ)、
運用上支障を生じている。
However, in the conventional system described above, the refrigerant tank 1 cannot be installed near the cooler 5 due to its structure, and is connected to the cooler 5 by a normal wire pipe 9. A dead time until 5 is activated and a pressure drop in the thin tube 9 occur,
Furthermore, due to the increased heat capacity of the detector mounting base 6, the detector 8
This results in shorter operating times (on the order of a few minutes),
This is causing operational problems.

本発明は、以上の問題点を解決しようとするものである
The present invention attempts to solve the above problems.

〔問題点を解決するための手段〕[Means for solving problems]

本発明では、冷媒供給源から冷媒を開閉弁、蓄圧器を経
て冷却器に供給する検知素子の冷却装置において、上記
冷却器に加えて急冷用冷却器を設け、同急冷用冷却器に
開閉弁を経て急冷用高圧冷媒タンクを接続した。
In the present invention, in a cooling device for a detection element that supplies refrigerant from a refrigerant supply source to a cooler via an on-off valve and a pressure accumulator, a quenching cooler is provided in addition to the above cooler, and the quenching cooler has an on-off valve. A high-pressure refrigerant tank for rapid cooling was connected through the

〔作 用〕[For production]

冷媒開始時、開閉弁を開くと、急冷用高圧冷媒タンク内
の高圧の冷媒が急冷用冷却器に供給され、急速にかつ冷
媒消費量が少い状態で初期の急冷が行われ、検知素子及
び検知素子取付基板を所定温度迄急速に冷却する。
When refrigerant is started, when the on-off valve is opened, the high-pressure refrigerant in the high-pressure quenching refrigerant tank is supplied to the quenching cooler, and initial quenching is performed quickly and with a small amount of refrigerant consumption. The sensing element mounting board is rapidly cooled to a predetermined temperature.

急冷によって急冷用高圧冷媒タンク内の圧力は徐々に下
り、急冷用冷却器に代って冷媒源からの冷媒が供給され
る冷却器による冷却が行われるようになるが、この時に
は検知素子等の温度は上記急冷によって所定温度に迄下
っているので、以後一定の範囲にこれを保つように冷却
器による冷却が続行される。
The pressure in the high-pressure refrigerant tank for rapid cooling gradually decreases, and instead of the rapid cooling cooler, cooling is performed by a cooler supplied with refrigerant from the refrigerant source, but at this time, the detection elements, etc. Since the temperature has been lowered to a predetermined temperature by the above-mentioned rapid cooling, cooling by the cooler is continued to maintain the temperature within a certain range.

〔実施例〕〔Example〕

第1図によって本発明の一実施例を説明する。 An embodiment of the present invention will be explained with reference to FIG.

本実施例は、第4図に示す従来の装置と同様に冷媒タン
ク1.フィルタ2、開閉弁3.蓄圧器4゜冷却器5及び
これらを連絡する配管9を有しており、冷却器5によっ
て検知器8に設けられた検知素子取付基板6及び同基板
6に取付けられた多数の検知素子6を冷却するようl/
Cなっている。冷却器5としては1例えば第3図に示さ
れるジュール・トムソン型の液化ノズル5−0が用いら
れる。同液化ノズル5−0は配管9に接続される管5−
2及びその先端に設けられたノズル部5−1を有し。
This embodiment uses a refrigerant tank 1. similar to the conventional device shown in FIG. Filter 2, on-off valve 3. The pressure accumulator 4 has a cooler 5 and piping 9 connecting these. to cool down/
It's C. As the cooler 5, for example, a Joule-Thomson type liquefaction nozzle 5-0 shown in FIG. 3 is used. The liquefaction nozzle 5-0 is a pipe 5- connected to the pipe 9.
2 and a nozzle part 5-1 provided at its tip.

圧力を有する冷媒ガスを同ノズル部5−1によシ断熱膨
張を行うことによって液化し、これによって冷却を行う
1.また第3図中人に示される部分には、管を取囲む外
側コイル5−3が設けられ、このコイル5−3内にも冷
媒を通して管5−2内側の冷媒ガスを更に冷却するよう
にしている。また、冷却器5には温度検知器(図示せず
)が内蔵され、一定温度に迄冷却が行われると冷媒ガス
の供給を停止するようになっている。
1. A refrigerant gas having pressure is liquefied by performing adiabatic expansion through the nozzle portion 5-1, and cooling is thereby performed.1. In addition, an outer coil 5-3 that surrounds the tube is provided in the part shown in FIG. 3, and a refrigerant is passed through this coil 5-3 to further cool the refrigerant gas inside the tube 5-2. ing. Furthermore, the cooler 5 has a built-in temperature detector (not shown), and is configured to stop supplying refrigerant gas when cooling reaches a certain temperature.

本実施例では、上記に加えて更に急冷用高圧冷媒タンク
11.フィルタ12.開閉弁13.及び冷却器5に付設
されフィルタ】2、開閉弁3をへて上記急冷用高圧冷媒
タンク11内の冷媒が供給される急冷用冷却器14より
なる急冷部10が設けられる。本急冷用冷′IA器14
としては、例えば冷却器5において使用される上記ジュ
ール・トムソン型の液化ノズルが使用される。上記急冷
用高圧冷媒タンク11内には、冷媒タンク1内より高圧
の冷媒ガスが蓄圧される。(例えば冷媒タンク1内の圧
力140〜150kg/cIn2に対し急冷用冷媒タン
ク11内の圧力は400〜500kg/c!!L2) 本実施例においては、冷却開始時に検知器の作動信号に
よって開閉弁3及び13が開かれる。
In this embodiment, in addition to the above, a rapid cooling high pressure refrigerant tank 11. Filter 12. Open/close valve 13. and a filter attached to the cooler 5] 2. A quenching section 10 is provided which includes a quenching cooler 14 to which the refrigerant in the quenching high-pressure refrigerant tank 11 is supplied via the on-off valve 3. Main rapid cooling cooling 'IA device 14
For example, the Joule-Thompson type liquefaction nozzle used in the cooler 5 is used. In the high-pressure refrigerant tank 11 for rapid cooling, refrigerant gas having a higher pressure than that in the refrigerant tank 1 is accumulated. (For example, the pressure in the refrigerant tank 1 is 140 to 150 kg/cIn2, whereas the pressure in the quenching refrigerant tank 11 is 400 to 500 kg/c!!L2) In this embodiment, the opening/closing valve is activated by the activation signal of the detector at the start of cooling. 3 and 13 will be opened.

冷媒タンク1内の冷媒ガスは蓄圧器4をへて冷却器5に
流入して検知素子取付基板6及び検知素子7の冷却を開
始するが、同時に急冷用高圧冷媒タンク11内で高圧に
蓄圧されている冷媒ガスも。
The refrigerant gas in the refrigerant tank 1 flows into the cooler 5 through the pressure accumulator 4 and starts cooling the sensing element mounting board 6 and the sensing element 7, but at the same time, the refrigerant gas is accumulated to a high pressure in the high-pressure refrigerant tank 11 for rapid cooling. There is also a refrigerant gas.

フィルタ12及び開閉弁13を経て急冷用冷却器14に
供給されて急冷を開始し、検知素子取付基板6及び検知
素子6を急速に所定温度迄冷却する。
It is supplied to the quenching cooler 14 via the filter 12 and the on-off valve 13 to start quenching, rapidly cooling the sensing element mounting board 6 and the sensing element 6 to a predetermined temperature.

上記のように急速冷却を行って急冷用高圧冷媒タンク1
1内の圧力が下ると、急冷用冷却器14による冷却機能
も徐々に低下し、冷却器5による冷却が次第に大きな割
合を占めるようになり、検知素子取付基板6及び検知素
子7を所定の温度範囲に保持することになる。
High-pressure refrigerant tank 1 for rapid cooling by performing rapid cooling as described above.
When the pressure inside 1 decreases, the cooling function of the rapid cooling cooler 14 also gradually decreases, and cooling by the cooler 5 gradually takes up a large proportion of the cooling, and the sensing element mounting board 6 and the sensing element 7 are kept at a predetermined temperature. It will be kept within range.

第2図には、一般に使用されているジュール・トムソン
型の冷却器の冷媒供給圧力〜冷却時間の関係が示されて
いるが、冷媒供給圧力が高い場合には、所定温度迄の冷
却に要する時間は短く、これによって冷媒ガスの消費量
も少くなることを示している。
Figure 2 shows the relationship between refrigerant supply pressure and cooling time for a commonly used Joule-Thomson cooler. The time is short, which means that the consumption of refrigerant gas is also low.

従って、急冷用高圧冷媒タンク11内の高圧の冷媒ガス
は、急速に急冷用冷却器14に流入して、短時間に検知
素子取付基板6及び検知素子6を所定の温度迄下げるこ
とができる。また、この際の冷媒の消費量も少いので急
冷用高圧冷媒タンク11の容量を小さくすることができ
、更にこれによって急冷部10が小型になるためにこれ
を検知器8の近傍に設置することが可能になり、配管等
による圧力損失を減少させて1@、冷に要する時間を短
縮させることができる。
Therefore, the high-pressure refrigerant gas in the high-pressure quenching refrigerant tank 11 rapidly flows into the quenching cooler 14, and the sensing element mounting board 6 and the sensing element 6 can be lowered to a predetermined temperature in a short time. In addition, since the amount of refrigerant consumed at this time is small, the capacity of the high-pressure refrigerant tank 11 for rapid cooling can be reduced, and this also makes the rapid cooling section 10 smaller, so it is installed near the detector 8. This makes it possible to reduce pressure loss due to piping, etc., and shorten the time required for cooling.

上記実施例では、冷媒タンク1から冷媒を冷却器5に供
給するようにしているが1本発明における冷媒供給源は
タンクに限られず連続運転されるコンプレッサ等を用い
ることもできる。
In the above embodiment, the refrigerant is supplied from the refrigerant tank 1 to the cooler 5, but the refrigerant supply source in the present invention is not limited to the tank, but a continuously operated compressor or the like may also be used.

〔発明の効果〕〔Effect of the invention〕

以上実施例について具体的に説明したように本発明は次
の効果をあげることができる。
As described above in detail with respect to the embodiments, the present invention can achieve the following effects.

(1)冷却の初期において、急冷用高圧冷媒タンク内の
高圧の冷媒を急冷用冷却器に供給することによって短時
間に検知素子は所定の温度迄急速に冷却される。
(1) At the beginning of cooling, the sensing element is rapidly cooled to a predetermined temperature in a short period of time by supplying the high-pressure refrigerant in the high-pressure quenching refrigerant tank to the quenching cooler.

(2)急冷用高圧冷媒タンク内の冷媒圧力が高いので、
所定温度迄検知素子を冷却するに要する冷媒の消費量は
少く、従って急冷用高圧冷媒タンクを小形にすることが
できる。
(2) Since the refrigerant pressure in the high-pressure refrigerant tank for rapid cooling is high,
The amount of refrigerant consumed to cool the sensing element to a predetermined temperature is small, and therefore the high-pressure refrigerant tank for rapid cooling can be made smaller.

(3)急冷用高圧冷媒タンクを小形にできるために、こ
れを検知器の近傍に設置することができ、これによって
急冷に要する時間を短縮し配管による冷媒の圧力損失を
減少させることができる。
(3) Since the high-pressure refrigerant tank for rapid cooling can be made small, it can be installed near the detector, thereby shortening the time required for rapid cooling and reducing the pressure loss of the refrigerant due to piping.

(4)急冷が終了すれば、冷媒タンクからの冷媒によっ
て冷却器による冷却が行われ、長時間検知素子を所定範
囲の温度に冷却することが可能である。
(4) Once the rapid cooling is completed, the cooling is performed by the cooler using the refrigerant from the refrigerant tank, and it is possible to cool the long-term sensing element to a temperature within a predetermined range.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の説明図。 第2図はジュール・トムソン型冷却器における冷媒供給
圧力と冷却時間の関係を示す特性図。 第3図は上記実施例における冷却器として使用されるジ
ュール・トムソン型の液化ノズルの説明図。 第4図は従来の半導体検知素子の冷却装置の説明図であ
る。 図面中。 1は冷媒タンク、   2はフィルタ。 3は開閉弁、    4は蓄圧器、 5は冷却器、     6は検知素子取付板。 7は検知素子、   8は検知器、 10は急冷部、 11は急冷用高圧冷媒タンク。 12はフィルタ、13は開閉弁。 14は急冷用冷却器 をそれぞれ示す。
FIG. 1 is an explanatory diagram of an embodiment of the present invention. FIG. 2 is a characteristic diagram showing the relationship between refrigerant supply pressure and cooling time in a Joule-Thomson type cooler. FIG. 3 is an explanatory diagram of a Joule-Thomson type liquefaction nozzle used as a cooler in the above embodiment. FIG. 4 is an explanatory diagram of a conventional cooling device for a semiconductor sensing element. In the drawing. 1 is a refrigerant tank, 2 is a filter. 3 is an on-off valve, 4 is a pressure accumulator, 5 is a cooler, and 6 is a detection element mounting plate. 7 is a detection element, 8 is a detector, 10 is a quenching section, and 11 is a high-pressure refrigerant tank for quenching. 12 is a filter, and 13 is an on-off valve. Reference numeral 14 indicates a rapid cooling cooler.

Claims (1)

【特許請求の範囲】[Claims] 冷媒供給源から冷媒を開閉弁、蓄圧器を経て冷却器に供
給する検知素子の冷却装置において、上記冷却器に加え
て急冷用冷却器を設け、同急冷用冷却器に開閉弁を経て
急冷用高圧冷媒タンクを接続したことを特徴とする検知
素子の冷却装置。
In a cooling device for a sensing element that supplies refrigerant from a refrigerant supply source to a cooler via an on-off valve and a pressure accumulator, a quenching cooler is provided in addition to the above-mentioned cooler, and a quenching cooler is provided to the quenching cooler via an on-off valve and a pressure accumulator. A cooling device for a sensing element characterized by connecting a high-pressure refrigerant tank.
JP62084546A 1987-04-08 1987-04-08 Cooling device for detecting element Pending JPS63250586A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62084546A JPS63250586A (en) 1987-04-08 1987-04-08 Cooling device for detecting element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62084546A JPS63250586A (en) 1987-04-08 1987-04-08 Cooling device for detecting element

Publications (1)

Publication Number Publication Date
JPS63250586A true JPS63250586A (en) 1988-10-18

Family

ID=13833647

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62084546A Pending JPS63250586A (en) 1987-04-08 1987-04-08 Cooling device for detecting element

Country Status (1)

Country Link
JP (1) JPS63250586A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5748622A (en) * 1980-09-08 1982-03-20 Mitsubishi Electric Corp Cooling mechanism for infrared tracking device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5748622A (en) * 1980-09-08 1982-03-20 Mitsubishi Electric Corp Cooling mechanism for infrared tracking device

Similar Documents

Publication Publication Date Title
JPH11316055A (en) Discharge pressure control system and control method for transporting refrigeration unit using suction modulation
KR910017159A (en) Joule-Thompson two-stage chiller with gas supply management system and use thereof
JPS63250586A (en) Cooling device for detecting element
US5974808A (en) Cooling apparatus employing a pressure actuated Joule-Thomson cryostat flow controller
KR20190115270A (en) Water purifier having cold water tank and control method thereof
CA2112825A1 (en) System for a cooler and gas purity tester
JPS63250585A (en) Cooling device for detecting element
JP2977168B2 (en) Superconducting magnet device
JPS62224799A (en) How to treat boil-off gas
JPH07146020A (en) Cryogenic refrigerant
JP3375906B2 (en) Control method and device for helium liquefaction device
GB2247517A (en) Cryogenic cooling apparatus
JP3320772B2 (en) Operation method of superconducting magnet device
JP2607493B2 (en) Refrigerant supply and discharge device
US5548963A (en) Joule-Thompson cryostat for use with multiple coolants
JPS6016972U (en) Cooling system
JPS63254370A (en) Refrigerator
JPS62786A (en) Precooling method of cryogenic generator
Rillo et al. Gas liquefaction system and method
JPH01244254A (en) Method of controlling auxiliary cold source for cryogenic refrigerating plant
JP2002045677A (en) Gas supply equipment
JPS62186175A (en) Precooling operation method of cryogenic refrigeration equipment
JP2602982B2 (en) Cooling system
JPS618833U (en) Cooling device for infrared detection element
CN114812035A (en) Refrigerator and control method thereof