[go: up one dir, main page]

JPS63246487A - Multicylinder rotary compressor - Google Patents

Multicylinder rotary compressor

Info

Publication number
JPS63246487A
JPS63246487A JP7940587A JP7940587A JPS63246487A JP S63246487 A JPS63246487 A JP S63246487A JP 7940587 A JP7940587 A JP 7940587A JP 7940587 A JP7940587 A JP 7940587A JP S63246487 A JPS63246487 A JP S63246487A
Authority
JP
Japan
Prior art keywords
cylinder
rotary compressor
compression chamber
bypass piping
slider
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7940587A
Other languages
Japanese (ja)
Inventor
Satoshi Suzuki
聡 鈴木
Yoshiki Sakaino
境野 恵樹
Katsuyuki Kawasaki
川崎 勝行
Yoshinori Shirafuji
好範 白藤
Hiroshi Ogawa
博史 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP7940587A priority Critical patent/JPS63246487A/en
Publication of JPS63246487A publication Critical patent/JPS63246487A/en
Pending legal-status Critical Current

Links

Landscapes

  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

PURPOSE:To reduce lost work so as to prevent the temperature of exhaust gas from rising by providing an unloaded cylinder with a bypass piping, which is connected from a compression chamber to the suction side via a valve mechanism, in the compressor of freezing cycle system. CONSTITUTION:A crankshaft transmits a turning force to a rolling piston 5b within a cylinder 7b. On the midway of a refrigerant intake pipe 16b, an unloaded cylinder control mechanism opening and closing the refrigerant intake pipe 16b is provided. A bypass piping 27 allows the compression chamber 14 and the intake chamber 12 of a cylinder 7b to be connected to each other via a muffler 28 having fins 29. On the opening of the compression chamber 13 side, a slider 30 is provided to open and close the bypass piping 27. Hence lost work is reduced and the temperature of the exhaust gas can be prevented from rising.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 こ・の発明は、冷凍サイクルシステムに搭載され、シテ
スム負荷が軽負荷の時に休筒による能力制御ができる多
気筒回転式圧縮機に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] This invention relates to a multi-cylinder rotary compressor that is installed in a refrigeration cycle system and whose capacity can be controlled by cylinder deactivation when the system load is light. be.

〔従来の技術〕[Conventional technology]

第5図は特願昭61−232604号(昭和61年9月
30日出願)によって出願人が先に提案した従来の休筒
による能力制御可能な多気筒回転式圧縮機を示す縦断面
図である。同図においてlは電動要素、2はこの電動要
素lの回転出力を圧縮要素3に伝えるクランク軸、4a
、4bはこのクランク軸2に互いに180度位相をずら
して設けられた偏芯部、5a、5bは偏芯部4a、4b
に回転自在に嵌合支持されたローリングピストンである
。そして、ローリングピストン5a、5bはそれぞれ仕
切板6を介して上下に並設された2個のシリンダ7a、
7bの内部で回転するようになっている。また、クラン
ク軸2は、各シリンダ7a。
FIG. 5 is a vertical sectional view showing a conventional multi-cylinder rotary compressor capable of controlling capacity by cylinder deactivation, which was previously proposed by the applicant in Japanese Patent Application No. 61-232604 (filed on September 30, 1986). be. In the figure, l is an electric element, 2 is a crankshaft that transmits the rotational output of this electric element l to the compression element 3, and 4a
, 4b are eccentric parts provided on the crankshaft 2 with a phase shift of 180 degrees, and 5a and 5b are eccentric parts 4a and 4b.
This is a rolling piston that is rotatably fitted and supported by the piston. The rolling pistons 5a and 5b each have two cylinders 7a arranged vertically in parallel via a partition plate 6,
It rotates inside 7b. Further, the crankshaft 2 has each cylinder 7a.

7bを閉塞する上軸受8aおよび下軸受8bによってラ
ジアル方向が支えられている。また、軸方向に関しては
、下軸受8bのスラスト面9によって支えられている。
The radial direction is supported by an upper bearing 8a and a lower bearing 8b that close the shaft 7b. Further, in the axial direction, it is supported by the thrust surface 9 of the lower bearing 8b.

このように構成された電動要素1および圧縮要素3は、
密閉容器10の内部に収容され、その低部には潤滑油A
が貯溜されている。また、シリンダ7a、7bの内部は
、第6図にその横断面を示すように、ローリングピスト
ン5a、5bに当接してベーン溝14の内部を往復摺動
するベーン11によって、ガスの吸入室12と圧縮室1
3とに分割されている。なお、llaはベーンスプリン
グ、15は圧縮ガスの吐出弁である。前記吸入室12は
、外部冷媒回路からの被圧縮ガスのアキュムレータ17
と、吸入管16a、16bによって連通されている。そ
して、休筒制御機構20は、下側の吸入管16bの途中
に、スライダ18とスプリング19を内挿したハウジン
グ20と、スライダ】8下部空間と高圧部を電磁弁23
aを介して連通させた休筒制御用配管22.24と、ガ
スの吸入室12側とスライダ18下部空間とを、電磁弁
23bと毛細管26とを介して連通させたガス抜き用配
管25とを備えている。
The electric element 1 and compression element 3 configured in this way are
It is housed inside a sealed container 10, and the lubricating oil A is contained in the lower part of the container.
is stored. Furthermore, as shown in the cross section in FIG. 6, the insides of the cylinders 7a and 7b are provided with gas suction chambers 12 by vanes 11 that abut against the rolling pistons 5a and 5b and reciprocate inside the vane grooves 14. and compression chamber 1
It is divided into 3. Note that lla is a vane spring, and 15 is a compressed gas discharge valve. The suction chamber 12 has an accumulator 17 for compressed gas from an external refrigerant circuit.
are communicated with each other by suction pipes 16a and 16b. The cylinder deactivation control mechanism 20 includes a housing 20 in which a slider 18 and a spring 19 are inserted in the middle of the lower suction pipe 16b, and a solenoid valve 23 that connects the slider]8 lower space and high pressure section.
pipes 22 and 24 for cylinder deactivation control communicated via a, and a gas venting pipe 25 that communicates the gas suction chamber 12 side and the lower space of the slider 18 via a solenoid valve 23b and a capillary tube 26. It is equipped with

次に動作について説明する。電動要素1によってクラン
ク軸2が回転駆動されると、互いに180度位相がずれ
た偏芯部4a、4bを介してローリングピストン5a、
5bが各シリンダ?a、7bの内部において所定方向に
回転する。ここで、電磁弁23aを閉じてスライダ18
下部空間への高圧ガスの流入を止め、電磁弁23bを開
いて、スライダ18下部空間を吸入室12と連通させ2
低圧にすることにより、スライダJ8は被圧縮ガスのア
キュムレータ17からの流れにも付勢されて、スプリン
グ19力に打ち勝って下降し、アキュムレータ17と吸
入室12とを連通させる。よって、第6図において、ロ
ーリングピストン5bがシリンダ7bの内部を矢印Bで
示す反時計方向に回転することにより、吸入管16bか
ら被圧縮冷媒ガスが吸入室12に吸入される。一方、圧
縮室13では、前のサイクルで既に吸入された冷媒ガス
がその容積縮小に伴って圧縮され、この圧縮された冷媒
ガスが吐出弁15を押して開いてシリンダ外、即ち密閉
容器10内に吐出される。この動作を上。
Next, the operation will be explained. When the crankshaft 2 is rotationally driven by the electric element 1, the rolling piston 5a,
5b is each cylinder? It rotates in a predetermined direction inside a and 7b. Here, the solenoid valve 23a is closed and the slider 18
The flow of high pressure gas into the lower space is stopped, the solenoid valve 23b is opened, and the lower space of the slider 18 is communicated with the suction chamber 12.
By making the pressure low, the slider J8 is also urged by the flow of the compressed gas from the accumulator 17, overcomes the force of the spring 19, and descends, thereby communicating the accumulator 17 and the suction chamber 12. Therefore, in FIG. 6, when the rolling piston 5b rotates inside the cylinder 7b in the counterclockwise direction indicated by the arrow B, compressed refrigerant gas is sucked into the suction chamber 12 from the suction pipe 16b. On the other hand, in the compression chamber 13, the refrigerant gas that has already been sucked in in the previous cycle is compressed as its volume is reduced, and this compressed refrigerant gas pushes the discharge valve 15 open and flows outside the cylinder, that is, into the closed container 10. It is discharged. Above this behavior.

下のシリンダ7a、7bの内部で、クランク軸2の回転
角に180度の位相差を有しながら同時に操り返すこと
により、圧縮された冷媒ガスを冷凍サイクルシステムに
供給し、冷凍サイクルを作動させる。
Inside the lower cylinders 7a and 7b, by simultaneously rotating the rotation angle of the crankshaft 2 with a phase difference of 180 degrees, compressed refrigerant gas is supplied to the refrigeration cycle system and the refrigeration cycle is operated. .

次に、休筒をする場合には、電磁弁23bを閉じてガス
抜き用配管25を塞ぎ、電磁弁23aを開いて、スライ
ダ18V一部空間に高圧ガスを送り、スライダ18を上
昇させ、スライダj8上端面および側面で吸入管16b
を閉塞することにより、下側のシリンダ5bを休筒して
圧縮機能力を制御する。
Next, when shutting down the cylinder, the solenoid valve 23b is closed to block the degassing pipe 25, the solenoid valve 23a is opened, high pressure gas is sent to a part of the space of the slider 18V, the slider 18 is raised, and the slider j8 Suction pipe 16b on the upper end surface and side surface
By closing the lower cylinder 5b, the lower cylinder 5b is deactivated and the compression force is controlled.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

従来の休筒による能力制御可能な多気筒回転式圧縮機は
、以上のように構成されているので、休筒運転時に吸入
室が真空引き状態となり、各摺動部のクリアランスから
高温、高圧ガスが吸入室に入って再圧縮されるため、無
効仕事が増加し効率を低下させると共に、高温ガスを再
圧縮するために吐出ガス温度が上昇し、圧縮機の使用条
件範囲を狭くするという問題点があった。
A conventional multi-cylinder rotary compressor whose capacity can be controlled by cylinder deactivation is configured as described above, so that the suction chamber is evacuated during cylinder deactivation operation, and high temperature and high pressure gas is removed from the clearance of each sliding part. Since the gas enters the suction chamber and is recompressed, reactive work increases and efficiency decreases, and the temperature of the discharged gas increases to recompress the high-temperature gas, narrowing the operating condition range of the compressor. was there.

この発明は、上記のような問題点を解消するためになさ
れたもので、休筒運転時の真空引き状態を減らし、再圧
縮による効率の低下、吐出ガス温度の上昇を抑えること
により、効率がよく、使用条件範囲が広い休筒可能 多
気筒回転式圧縮機を得ることを目的とする。
This invention was made to solve the above-mentioned problems, and improves efficiency by reducing the vacuum state during cylinder shutdown operation and suppressing the decrease in efficiency due to recompression and the increase in discharge gas temperature. The objective is to obtain a multi-cylinder rotary compressor that can be used in a wide range of operating conditions.

〔問題点を解決するための手段〕[Means for solving problems]

この発明に係る休筒による能力制御可能な多気筒回転式
圧縮機は、休筒されるシリンダに、圧縮室から吸入側へ
パルプ機構を介して連通ずるバイバス配管を設けたもの
である。
A multi-cylinder rotary compressor whose capacity can be controlled by cylinder deactivation according to the present invention is such that the cylinder to be deactivated is provided with bypass piping that communicates from the compression chamber to the suction side via a pulp mechanism.

〔作用〕[Effect]

この発明における休筒による能力制御可能な多気筒回転
式圧縮機は、休筒運転中に、バイパス配管のバルブ機構
を開くことにより、シリンダ内の吸入室と圧縮室を連通
ずるので、真空引き運転や洩れによって侵入した冷媒ガ
スの再圧縮による無効仕事増大に起因する効率低下や高
圧ガスの再圧縮による吐出ガス温度の上昇を防ぐことが
でき。
The multi-cylinder rotary compressor of this invention whose capacity can be controlled by cylinder deactivation communicates the suction chamber and compression chamber in the cylinder by opening the valve mechanism of the bypass piping during cylinder deactivation, so that it can perform vacuum drawing operation. It is possible to prevent a decrease in efficiency due to an increase in useless work due to the recompression of the refrigerant gas that has entered due to a leak, and an increase in the temperature of the discharged gas due to the recompression of the high pressure gas.

〔実施例〕〔Example〕

以下、この発明による多気筒回転式圧縮機の一実施例を
図について説明する。第1図において、第5図、第6図
と同一部分は同符号を用いることにより、その詳細説明
を省略しである。同図において、27はフィン29を持
ったマフラー28を介して、シリンダ7bの圧縮室13
と吸入室12を連通させるバイパス配管で、圧縮室13
例の開口部には、バイパス配管27の開閉を行うスライ
ダ30が設けられている。第2図、第3図は、バイパス
配管27の圧縮室13側の開口部の縦断面要部拡大図で
あり、第1図、第5図と同一部分は同符号を用いである
。33はスライダ30とスプリング32を内挿したスラ
イダ摺動孔で、バイパス配管27と直交する形でシリン
ダ内に設けられている。またスライダ30下部空間には
、制御配管31を通して高圧ガスまたは低圧ガスがかけ
られる様になっている。
Hereinafter, one embodiment of a multi-cylinder rotary compressor according to the present invention will be described with reference to the drawings. In FIG. 1, the same parts as in FIGS. 5 and 6 are denoted by the same reference numerals, and detailed explanation thereof will be omitted. In the figure, 27 is connected to the compression chamber 13 of the cylinder 7b via a muffler 28 having fins 29.
Bypass piping that communicates the suction chamber 12 with the compression chamber 13
A slider 30 that opens and closes the bypass piping 27 is provided in the opening in the example. FIGS. 2 and 3 are enlarged longitudinal cross-sectional views of essential parts of the opening of the bypass piping 27 on the compression chamber 13 side, and the same parts as in FIGS. 1 and 5 are denoted by the same reference numerals. Reference numeral 33 denotes a slider sliding hole into which the slider 30 and spring 32 are inserted, and is provided in the cylinder in a manner perpendicular to the bypass pipe 27. Further, high pressure gas or low pressure gas is applied to the space below the slider 30 through a control pipe 31.

次に上記のように構成した休筒による能力制御可能な多
気筒回転式圧縮機の動作を第1図、第2図、第3図を用
いて説明する。まず、休筒制御を行わない通常運転時は
、第3図のように制御配管31に高圧をかけ、スライダ
ー30を上昇させることにより、バイパス配管27の圧
縮室】3側聞口部を閉じる。よって、圧縮室13内の冷
媒ガスは、ローリングピストン5bの回転に伴い圧縮さ
れ、吐出弁15より密閉容器10内に吐出される。
Next, the operation of the multi-cylinder rotary compressor configured as described above whose capacity can be controlled by cylinder deactivation will be explained with reference to FIGS. 1, 2, and 3. First, during normal operation without cylinder deactivation control, high pressure is applied to the control pipe 31 and the slider 30 is raised as shown in FIG. 3, thereby closing the compression chamber 3 side opening of the bypass pipe 27. Therefore, the refrigerant gas in the compression chamber 13 is compressed as the rolling piston 5b rotates, and is discharged into the closed container 10 from the discharge valve 15.

また、休筒制御を行・う運転時は、第2図のように、制
御配管31に低圧をかけスライダ30を下降しさせるこ
とにより、バイパス配管27の圧縮室13側開口部が開
き、マフラー28を介して、バイパス配管27によって
、圧縮室13と吸入室12が連通ずる。よって圧縮室1
3内の冷媒ガスは、バイパス配管27を通り、圧縮室1
3に対して充分な容量のマフラー2日内にほとんど抵抗
なく吐出され、フィン29により放熱し温度を下げて吸
入室12へ入る。すなわち低温ガスを吸入室12圧縮室
13バイパス配管27、マフラー28からなる閉回路内
を循環させるために必要な動力が無効仕事となるが、従
来の再圧縮無効仕事に比して大幅に軽減され圧縮機の効
率は上昇し、吐出ガス温度は低下する。
In addition, during operation to perform cylinder deactivation control, as shown in FIG. 2, by applying low pressure to the control piping 31 and lowering the slider 30, the opening of the bypass piping 27 on the compression chamber 13 side opens and the muffler The compression chamber 13 and the suction chamber 12 communicate with each other via the bypass pipe 27 via 28 . Therefore, compression chamber 1
The refrigerant gas in the compression chamber 1 passes through the bypass pipe 27 and enters the compression chamber 1.
The air is discharged within 2 days from a muffler with a sufficient capacity for 3, with almost no resistance, and the air is radiated by the fins 29 to lower the temperature and enters the suction chamber 12. In other words, the power required to circulate the low-temperature gas through the closed circuit consisting of the suction chamber 12 compression chamber 13 bypass piping 27 and muffler 28 becomes reactive work, but this is significantly reduced compared to conventional recompression reactive work. Compressor efficiency increases and discharge gas temperature decreases.

なお、上記実施例では、休筒時の性能向上のために、休
筒するシリシダ7bに圧縮室13と吸入室12とを連通
すバイパス配管27を設けたものを示したが、第4図に
示すように休筒しない通常運転時に、バイパス配管27
によって能力制御を行い、休筒と全シリンダフル運転の
中間の能力が得られるように、バイパス配管27の圧縮
室13側開口部位置を決めたことによって多段階能力制
御が可能な多気筒回転式圧縮機を得ることができる。
In the above embodiment, in order to improve the performance when the cylinder is out of operation, the cylindrical cylinder 7b is provided with a bypass pipe 27 that communicates the compression chamber 13 and the suction chamber 12. As shown, during normal operation without cylinder shutdown, the bypass piping 27
The opening position of the bypass piping 27 on the compression chamber 13 side is determined so that the capacity can be controlled by the cylinder deactivation and the capacity is intermediate between cylinder deactivation and all cylinders full operation. You can get a compressor.

〔発明の効果〕〔Effect of the invention〕

以上のように、この発明によれば、休筒運転時に圧縮室
と吸入室を連通ずるバイパス配管を設けることによって
、ローリングピストンの転勤に伴っての吸入室の真空引
き状態や洩れ入ったガスの圧縮室での再圧縮を防ぐこと
ができるため、無効仕事が減少し、吐出ガス温度の上昇
を防止して、効率がよく、使用条件範囲が広く、信頼性
の高い休筒による能力制御可能な多気筒回転式圧縮機が
得られるという効果がある。
As described above, according to the present invention, by providing the bypass piping that communicates the compression chamber and the suction chamber during cylinder shutdown operation, the vacuum state of the suction chamber due to the transfer of the rolling piston and the leakage of gas can be prevented. Since recompression in the compression chamber can be prevented, idle work is reduced and discharged gas temperature is prevented from rising, resulting in high efficiency, a wide range of operating conditions, and highly reliable capacity control through cylinder shutdown. This has the effect of providing a multi-cylinder rotary compressor.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例による多気筒回転式圧縮機
の休筒を行うシリンダ部の横断面図、第2図および第3
図はバイパス配管の圧縮室側開口部を示す休筒制御時お
よび通常運転時の縦断面要部拡大図、第4図はこの発明
の他の実施例を示す休筒を行うシリンダ部の横断面図、
第5図は従来の多気筒回転式圧縮機の縦断面図、第6図
は従来の多気筒回転式圧縮機の休筒するシリンダ部の横
断面図である。 ■は電動要素、2はクランク軸、3は圧縮要素、4a、
4bは、偏芯部、5a、5bはローリングピストン、6
は仕切板、?a、7bはシリンダ、8aは上軸受、8b
は下軸受、10は密閉容器、12は吸入室、13は圧縮
室、16a、16bは吸入管、17はアキュムレータ、
18はスライダ、19はスプリング、20はハウジング
、21は休筒制御機構、22.24は休筒制御用配管、
23a。 23bは電磁弁、25はガス抜き用配管、26は毛細管
、27はバイパス配管、28はマフラー、29は放熱用
フィン、30はスライダ、31は制fffll配管、3
2はスプリング、33はスライダ摺動孔。 なお11図中、同一符号は同一または相当部分を示す。 代 理 人  大 岩 増 雄(外2名)゛第5図 −〇 0)〜 −〜
FIG. 1 is a cross-sectional view of a cylinder section that performs cylinder deactivation of a multi-cylinder rotary compressor according to an embodiment of the present invention, and FIGS.
The figure is an enlarged longitudinal cross-sectional view of the main part during cylinder deactivation control and normal operation, showing the opening of the bypass piping on the compression chamber side. FIG. figure,
FIG. 5 is a longitudinal cross-sectional view of a conventional multi-cylinder rotary compressor, and FIG. 6 is a cross-sectional view of a cylinder section of the conventional multi-cylinder rotary compressor where the cylinders are inactive. ■ is an electric element, 2 is a crankshaft, 3 is a compression element, 4a,
4b is an eccentric part, 5a and 5b are rolling pistons, 6
Is it a partition plate? a, 7b are cylinders, 8a is upper bearing, 8b
10 is a lower bearing, 10 is a closed container, 12 is a suction chamber, 13 is a compression chamber, 16a, 16b are suction pipes, 17 is an accumulator,
18 is a slider, 19 is a spring, 20 is a housing, 21 is a cylinder deactivation control mechanism, 22.24 is a cylinder deactivation control pipe,
23a. 23b is a solenoid valve, 25 is a gas venting pipe, 26 is a capillary tube, 27 is a bypass pipe, 28 is a muffler, 29 is a heat radiation fin, 30 is a slider, 31 is a control fffll pipe, 3
2 is a spring, and 33 is a slider sliding hole. Note that in FIG. 11, the same reference numerals indicate the same or corresponding parts. Representative: Masuo Oiwa (2 others) ゛Figure 5-〇0)~ -~

Claims (4)

【特許請求の範囲】[Claims] (1)仕切板を介して上下に並設された複数個のシリン
ダの上下を閉塞する上軸受および下軸受と、これらの下
軸受に支持されるとともにシリンダ内のローリングピス
トンに回転力を伝達するクランク軸と、前記各シリンダ
に対してそれぞれ独立して連通された冷媒の吸入管と、
これらの吸入管のうち少なくとも1本の途中に設けられ
この吸入管を開閉する休筒制御機構とを備えた多気筒回
転式圧縮機において、休筒されるシリンダに、圧縮室か
ら吸入側へバルブ機構を介して連通するバイパス配管を
設けたことを特徴とする多気筒回転式圧縮機。
(1) An upper bearing and a lower bearing that close the upper and lower sides of multiple cylinders arranged vertically in parallel via a partition plate, and are supported by these lower bearings and transmit rotational force to the rolling piston inside the cylinder. a crankshaft, and a refrigerant suction pipe that communicates independently with each of the cylinders;
In a multi-cylinder rotary compressor equipped with a cylinder deactivation control mechanism that is installed in the middle of at least one of these suction pipes and opens and closes this suction pipe, a valve is installed in the deactivated cylinder from the compression chamber to the suction side. A multi-cylinder rotary compressor characterized by having bypass piping that communicates through a mechanism.
(2)バイパス配管は、途中にマフラーを設けてある特
許請求の範囲第1項記載の多気筒回転式圧縮機。
(2) The multi-cylinder rotary compressor according to claim 1, wherein the bypass piping is provided with a muffler in the middle.
(3)バイパス配管は放熱効果を高めるフィンを設けて
ある特許請求の範囲第1項また第2項に記載の多気筒回
転式圧縮機。
(3) The multi-cylinder rotary compressor according to claim 1 or 2, wherein the bypass piping is provided with fins that enhance the heat dissipation effect.
(4)バイパス配管は、休筒しない通常運転時に、能力
制御を行い、休筒と全シリンダフル運転の中間の能力を
得られるように、圧縮室側開口位置を決めてある特許の
範囲請求第1項、第2項または第3項に記載の多気筒回
転式圧縮機。
(4) The opening position of the bypass piping on the compression chamber side is determined so that capacity control is performed during normal operation without cylinder deactivation, and a capacity intermediate between cylinder deactivation and all-cylinder full operation is determined. The multi-cylinder rotary compressor according to item 1, 2 or 3.
JP7940587A 1987-03-31 1987-03-31 Multicylinder rotary compressor Pending JPS63246487A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7940587A JPS63246487A (en) 1987-03-31 1987-03-31 Multicylinder rotary compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7940587A JPS63246487A (en) 1987-03-31 1987-03-31 Multicylinder rotary compressor

Publications (1)

Publication Number Publication Date
JPS63246487A true JPS63246487A (en) 1988-10-13

Family

ID=13688946

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7940587A Pending JPS63246487A (en) 1987-03-31 1987-03-31 Multicylinder rotary compressor

Country Status (1)

Country Link
JP (1) JPS63246487A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05172076A (en) * 1991-10-23 1993-07-09 Mitsubishi Electric Corp Multicylinder rotary compressor
KR100565338B1 (en) 2004-08-12 2006-03-30 엘지전자 주식회사 Capacity variable double rotary compressor, operation method thereof, air conditioner having same and operation method thereof
EP2330300A4 (en) * 2009-02-13 2017-11-22 Mitsubishi Heavy Industries, Ltd. Injection pipe

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05172076A (en) * 1991-10-23 1993-07-09 Mitsubishi Electric Corp Multicylinder rotary compressor
KR100565338B1 (en) 2004-08-12 2006-03-30 엘지전자 주식회사 Capacity variable double rotary compressor, operation method thereof, air conditioner having same and operation method thereof
EP2330300A4 (en) * 2009-02-13 2017-11-22 Mitsubishi Heavy Industries, Ltd. Injection pipe

Similar Documents

Publication Publication Date Title
KR900003716B1 (en) Multi-cylinder rotary compressor
KR890003272B1 (en) Variable displacement vane compressor
KR0124573Y1 (en) Rotary compressor with liquid injection
AU2005240929B2 (en) Rotary compressor
US20090241581A1 (en) Expander and heat pump using the expander
KR20100025539A (en) Capacitive modulation compressor
US20050019176A1 (en) Variable capacity scroll compressor
US8272846B2 (en) Integral slide valve relief valve
US6422846B1 (en) Low pressure unloader mechanism
JPS63246487A (en) Multicylinder rotary compressor
CN100387842C (en) Rotary compressor
EP4443005A1 (en) Rotary compressor, and home appliance comprising same
JPH10159768A (en) Intake valve device for coolant compressor
JPH07103856B2 (en) Multi-cylinder rotary compressor
KR100711637B1 (en) compressor
JPH01244192A (en) Multicylinder rotary compressor
WO2024189776A1 (en) Hermetic compressor and refrigeration cycle device
JP2013224595A (en) Two-cylinder rotary compressor
JP2000291573A (en) Scroll compressor
KR100531279B1 (en) rotary type compressor
KR200356283Y1 (en) Compressor
KR200351087Y1 (en) Compressor
KR100531282B1 (en) Rotary compressor
KR100724451B1 (en) Variable displacement rotary compressors
JPS63253191A (en) Multi cylinder rotary type compressor