[go: up one dir, main page]

JP2013224595A - Two-cylinder rotary compressor - Google Patents

Two-cylinder rotary compressor Download PDF

Info

Publication number
JP2013224595A
JP2013224595A JP2012096446A JP2012096446A JP2013224595A JP 2013224595 A JP2013224595 A JP 2013224595A JP 2012096446 A JP2012096446 A JP 2012096446A JP 2012096446 A JP2012096446 A JP 2012096446A JP 2013224595 A JP2013224595 A JP 2013224595A
Authority
JP
Japan
Prior art keywords
cylinder
suction
bypass
chamber
rotary compressor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012096446A
Other languages
Japanese (ja)
Inventor
Tetsuei Yokoyama
哲英 横山
Shogo Moroe
将吾 諸江
Shin Sekiya
慎 関屋
Toshihide Koda
利秀 幸田
Taro Kato
太郎 加藤
Hideaki Maeyama
英明 前山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2012096446A priority Critical patent/JP2013224595A/en
Publication of JP2013224595A publication Critical patent/JP2013224595A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a two-cylinder rotary compressor reducing a compressor loss during both of operation at 100% of displacement capacity and operation at a low load, and improving energy saving performance in actual load operation.SOLUTION: A two-cylinder rotary compressor 100 comprises an opening and closing mechanism which is provided in an angular orientation to be a compression chamber side of a first cylinder 11 and a second cylinder 21 during intake bypass operation with intake bypass passages 30, 40 opened and which opens and closes the intake bypass passages 30, 40.

Description

本発明は、ヒートポンプ機器に使用される冷媒圧縮機の一種である2気筒ロータリ圧縮機に関し、特に実負荷に近い運転条件での省エネ性能を改善する2気筒ロータリ圧縮機に関するものである。   The present invention relates to a two-cylinder rotary compressor that is a type of refrigerant compressor used in heat pump equipment, and more particularly to a two-cylinder rotary compressor that improves energy saving performance under operating conditions close to actual load.

従来から、空調機や給湯機などのヒートポンプ機器では、冷媒圧縮機を用いた蒸気圧縮式冷凍サイクルが一般的である。つまり、ヒートポンプ機器は、冷媒圧縮機、凝縮器、減圧手段、蒸発器を配管で接続して形成された冷凍サイクルが搭載され、用途(たとえば、空調用途や給湯用途など)に応じた運転を実行できるようになっている。   Conventionally, a vapor compression refrigeration cycle using a refrigerant compressor is generally used in heat pump equipment such as an air conditioner and a water heater. In other words, heat pump equipment is equipped with a refrigeration cycle formed by connecting refrigerant compressors, condensers, decompression means, and evaporators with pipes, and performs operations according to applications (for example, air conditioning applications and hot water supply applications). It can be done.

近年、地球温暖化対策として、高効率なヒートポンプ技術によってヒートポンプ機器の省エネ化が各国で推進されている。空調機の省エネ性規格も、実負荷に近い運転基準に変更されつつあり、国内では従来の冷暖平均COPでの効率改善から、2011年よりAPF(通年エネルギー消費効率)表示に変更となった。今後さらに、実負荷に近い新規格へ変更されることが予測される。例えば、空調機の立ち上げ時に必要な定格暖房能力を100%とすると、常時必要な暖房能力は10%から50%程度である。   In recent years, as a measure against global warming, energy saving of heat pump equipment has been promoted in various countries by using highly efficient heat pump technology. The energy-saving standards for air conditioners are also being changed to operating standards that are close to actual loads. In Japan, the APF (Full Year Energy Consumption Efficiency) display has been changed since 2011 due to improved efficiency with the conventional cooling / heating average COP. In the future, it is expected to be changed to a new standard close to the actual load. For example, assuming that the rated heating capacity required when starting the air conditioner is 100%, the heating capacity that is always required is about 10% to 50%.

冷暖房能力を調整する手段として古くからON−OFF制御が用いられており、温調変動幅や振動騒音が大きいこと、省エネが損なわれるなどの問題点があった。近年、これを解決するため圧縮機を駆動する電動機の回転数を可変するインバーター制御が普及してきた。ところが、近年、立ち上げ時間の短縮の要求や、より厳しい環境(低温または高温)での運転要求があるので一定以上の定格能力は必要であるものの、その一方で、高断熱住宅化が進んで常時必要な能力は小さくなり、運転される能力の範囲が広がっている。そのため、インバーターによる圧縮機の回転数可変範囲が広がり、圧縮機の高効率が要求される回転数範囲が広がる傾向にある。特に、低負荷能力では回転数を下げて連続運転しつつ圧縮機の高効率を維持することが難しくなっている。   On-off control has been used for a long time as a means for adjusting the cooling and heating capacity, and there are problems such as large temperature control fluctuation range and vibration noise, and energy saving. In recent years, inverter control for changing the number of revolutions of an electric motor that drives a compressor has become widespread in order to solve this problem. However, in recent years, there is a demand for shortening the start-up time and a demand for operation in a harsher environment (low temperature or high temperature), so a rated capacity of a certain level or more is necessary. The ability required at all times is smaller and the range of abilities that can be driven is expanded. For this reason, the range of the rotational speed of the compressor by the inverter is widened, and the rotational speed range where high efficiency of the compressor is required tends to be widened. In particular, with a low load capacity, it is difficult to maintain the high efficiency of the compressor while continuously operating at a reduced rotational speed.

そこで、最近では、機械的に冷媒圧縮機の排除容積を可変する手段が再度注目されている。例えば、2気筒ロータリ圧縮機において、低負荷時に一方の圧縮機構部を非圧縮運転させて低能力運転を行うことにより、圧縮機効率を向上させることが知られている。そのようなものとして、非圧縮運転させるときに、シリンダ室内を高圧にするとともに、ブレード背面の背圧室を中間圧にすることにより、高圧と中間圧との圧力差によりブレードをローラから離間させて非圧縮運転を行うようにしたもの(休筒運転方式)が開示されている(例えば、特許文献1参照)。   Therefore, recently, attention has been paid again to means for mechanically changing the displacement volume of the refrigerant compressor. For example, in a two-cylinder rotary compressor, it is known to improve the compressor efficiency by performing a low-capacity operation by performing a non-compression operation of one compression mechanism at a low load. As such, when the non-compression operation is performed, the pressure in the cylinder chamber is increased and the back pressure chamber on the back of the blade is set at an intermediate pressure, so that the blade is separated from the roller by the pressure difference between the high pressure and the intermediate pressure. A non-compressed operation (cylinderless operation method) is disclosed (for example, see Patent Document 1).

また、圧縮室から吸入室側へバイパス流路(吸入バイパス方式)を開閉することで排除容積を可変できることが知られている。そのようなものとして、複数のシリンダを有する多気筒形回転圧縮機において、隣接する一方のシリンダの高圧室側と他方のシリンダの低圧室側とをそれぞれのシリンダ間に位置する中間仕切り板に設けた短い通路を介して連通し、定格運転時には前記通路を閉とし、低負荷条件で能力ダウンさせるには前記通路を開とする開閉機構を設けたものが開示されている(例えば、特許文献2参照)。   In addition, it is known that the exclusion volume can be varied by opening and closing a bypass channel (suction bypass system) from the compression chamber to the suction chamber side. As such, in a multi-cylinder rotary compressor having a plurality of cylinders, the high pressure chamber side of one adjacent cylinder and the low pressure chamber side of the other cylinder are provided on an intermediate partition plate located between the cylinders. An open / close mechanism is disclosed that communicates through a short passage, closes the passage during rated operation, and opens the passage to reduce the capacity under low load conditions (for example, Patent Document 2). reference).

特開平1−247786号公報(第3、4頁等)JP-A-1-247786 (3rd, 4th pages, etc.) 特公平2−25037号公報(第2頁等)Japanese Patent Publication No. 2-25037 (2nd page, etc.)

特許文献1に記載されているような2気筒ロータリ圧縮機は、高負荷時には、2シリンダの圧縮工程が180度ずれることでトルク変動が打ち消しあって、最大トルク変動幅が小さくなるため、低振動・高効率であるツイン圧縮機(2気筒ロータリ圧縮機)の長所があるが、低負荷時には一方の圧縮機構部のみを圧縮運転(休筒運転)するので、低速域で低振動・高効率であるツイン圧縮機(2気筒ロータリ圧縮機)の長所は得られない。しかも、圧縮によるトルク変動周波数はモータ回転周波数と同じで、低負荷時にはシングル圧縮機と同じトルク変動特性となる。よって、圧縮機回転数の低速限界はシングル圧縮機と同等レベルであって、よって、休筒運転による低負荷の能力範囲を広げる効果や運転効率を向上する効果は期待より小さいものとなる。   The two-cylinder rotary compressor as described in Patent Document 1 has a low vibration because the torque fluctuation cancels out when the compression process of the two cylinders is shifted by 180 degrees and the maximum torque fluctuation width becomes small at high load. -There is an advantage of a high efficiency twin compressor (2-cylinder rotary compressor), but at low load, only one compression mechanism is compressed (cylinder operation), so low vibration and high efficiency at low speeds. The advantages of a twin compressor (two-cylinder rotary compressor) cannot be obtained. Moreover, the torque fluctuation frequency due to compression is the same as the motor rotation frequency, and the same torque fluctuation characteristic as that of a single compressor is obtained at low load. Therefore, the low speed limit of the compressor rotation speed is at the same level as that of the single compressor, and therefore the effect of expanding the low load capacity range and the improvement of the operation efficiency by the idle cylinder operation are less than expected.

一方、特許文献2に記載されているような2気筒ロータリ圧縮機で、吸入バイパス運転を行うと、低振動・高効率であるツイン圧縮機(2気筒ロータリ圧縮機)の長所は得られないが、圧縮によるトルク変動周波数はモータ回転周波数の2倍となるため、圧縮機回転数の低速限界はシングル圧縮機よりは多少広げることができる。
また、特許文献2に記載されているような多気筒ロータリ圧縮機では、中間仕切板に吸入バイパス流路を設けることで最短通路となり損失低減できるとしたが、実際のシリンダは圧縮(高圧)室側と吸入(低圧)室側とは180度反対側に配置される。そのため、上下2枚のシリンダ間で圧縮室側と吸入室側とを短い上下関係で繋ぐことはできず、吸入バイパス流路は大回りして長い流路となってしまう。また、稼動部品を含む開閉機構の構成も比較的複雑で大きくなってしまう。一方、特許文献2の中間仕切板は厚みが薄いので、特許文献1のように、中間仕切板の表面に肉厚を残した状態でその内層側に吸入バイパス流路と開閉機構の全てを収納することは困難である。すなわち、特許文献1、2を組み合わせたとしても、現実的に実現可能な構成が示されているとは言えない。
On the other hand, when a suction bypass operation is performed with a two-cylinder rotary compressor as described in Patent Document 2, the advantages of a twin compressor (two-cylinder rotary compressor) with low vibration and high efficiency cannot be obtained. Since the torque fluctuation frequency due to the compression is twice the motor rotation frequency, the low speed limit of the compressor rotation speed can be somewhat wider than that of the single compressor.
Further, in the multi-cylinder rotary compressor as described in Patent Document 2, it is possible to reduce the loss by providing a suction bypass flow path in the intermediate partition plate, but the actual cylinder has a compression (high pressure) chamber. The side and the suction (low pressure) chamber side are arranged on the opposite side by 180 degrees. For this reason, the compression chamber side and the suction chamber side cannot be connected in a short vertical relationship between the two upper and lower cylinders, and the suction bypass flow path becomes a long flow path. In addition, the configuration of the opening / closing mechanism including the operating parts is relatively complicated and large. On the other hand, since the intermediate partition plate of Patent Document 2 is thin, as in Patent Document 1, all of the suction bypass channel and the opening / closing mechanism are accommodated on the inner layer side with the thickness remaining on the surface of the intermediate partition plate. It is difficult to do. That is, even if Patent Documents 1 and 2 are combined, it cannot be said that a practically realizable configuration is shown.

本発明は、上記のような従来の機械式容量制御方式の圧縮機の有する課題を解決し、排除容積100%運転時と低負荷運転時の両方において圧縮機損失を低下し、実負荷運転での省エネ性能を改善した2気筒ロータリ圧縮機を提供することを目的としている。   The present invention solves the problems of the conventional mechanical capacity control type compressor as described above, reduces the compressor loss both during 100% rejection volume operation and during low load operation, and enables actual load operation. An object of the present invention is to provide a two-cylinder rotary compressor with improved energy saving performance.

この発明に係る2気筒ロータリ圧縮機は、密閉容器内に中間仕切板を挟んで並設された2つの圧縮要素と、前記密閉容器内に配置され、前記圧縮要素を駆動する電動機部と、前記電動機部からの回転動力を前記圧縮要素に伝える駆動軸と、を有し、前記圧縮要素は、2つのシリンダと、前記シリンダの一方を前記中間仕切板との間に挟む長軸支持部材と、前記シリンダの他方を前記中間仕切板との間に挟む短軸支持部材と、前記長軸支持部材側及び前記短軸支持部材側の双方に形成され、一方のシリンダの圧縮室と他方のシリンダの吸入室とを連通する2本の吸入バイパス流路と、前記吸入バイパス流路を開放させた吸入バイパス運転時に前記シリンダの圧縮室側となる角度方向に配置され、前記吸入バイパス流路を開閉する開閉機構と、を備えたものである。   A two-cylinder rotary compressor according to the present invention includes two compression elements arranged in parallel in an airtight container with an intermediate partition plate interposed therebetween, an electric motor unit disposed in the airtight container and driving the compression element, A drive shaft that transmits rotational power from the electric motor unit to the compression element, and the compression element includes two cylinders and a long shaft support member that sandwiches one of the cylinders between the intermediate partition plate, A short shaft support member that sandwiches the other of the cylinders with the intermediate partition plate, and formed on both the long shaft support member side and the short shaft support member side, the compression chamber of one cylinder and the other cylinder Two suction bypass passages that communicate with the suction chamber, and an angle direction that becomes the compression chamber side of the cylinder during the suction bypass operation in which the suction bypass passage is opened, open and close the suction bypass passage An opening and closing mechanism, Those were example.

この発明に係る2気筒ロータリ圧縮機によれば、機械的に圧縮機の高効率を確保しつつ、機械式容量制御による能力範囲の拡大を図ることができる。   According to the two-cylinder rotary compressor according to the present invention, the capacity range can be expanded by mechanical capacity control while mechanically ensuring high efficiency of the compressor.

本発明の実施の形態1に係る2気筒ロータリ圧縮機の構造を示す概略縦断面図であり、吸入バイパスを開いた状態を示している。It is a schematic longitudinal cross-sectional view which shows the structure of the 2-cylinder rotary compressor which concerns on Embodiment 1 of this invention, and has shown the state which opened the suction bypass. 図1のA−A横断面における本発明の実施の形態1に係る2気筒ロータリ圧縮機の内部構成を概略的に示す配置図である。FIG. 2 is a layout diagram schematically showing the internal configuration of the two-cylinder rotary compressor according to the first embodiment of the present invention in the AA cross section of FIG. 1. 本発明の実施の形態1による2気筒ロータリ圧縮機の構造を示す概略縦断面図であり、吸入バイパスを閉じた状態を示している。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic longitudinal sectional view showing a structure of a two-cylinder rotary compressor according to Embodiment 1 of the present invention, and shows a state where an intake bypass is closed. 本発明の実施の形態2に係る2気筒ロータリ圧縮機の構造を示す概略縦断面図である。It is a schematic longitudinal cross-sectional view which shows the structure of the 2-cylinder rotary compressor which concerns on Embodiment 2 of this invention. 図4のA―A横断面における本発明の実施の形態2に係る2気筒ロータリ圧縮機の内部構成を概略的に示す配置図である。FIG. 5 is a layout diagram schematically showing the internal configuration of a two-cylinder rotary compressor according to Embodiment 2 of the present invention in the AA cross section of FIG. 本発明の実施の形態3に係る2気筒ロータリ圧縮機の構造を示す概略縦断面図である。It is a schematic longitudinal cross-sectional view which shows the structure of the 2-cylinder rotary compressor which concerns on Embodiment 3 of this invention. 図6のA−A横断面における本発明の実施の形態3に係る2気筒ロータリ圧縮機の内部構成を概略的に示す配置図である。FIG. 7 is a layout diagram schematically showing an internal configuration of a two-cylinder rotary compressor according to Embodiment 3 of the present invention in the AA cross section of FIG.

以下、本発明の実施の形態を図面に基づいて説明する。
実施の形態1.
図1は、本発明の実施の形態1に係る2気筒ロータリ圧縮機100の構造を示す概略縦断面図であり、吸入バイパスを開いた状態を示している。図2は、図1のA−A横断面における2気筒ロータリ圧縮機100の内部構成を概略的に示す配置図である。図3は、本発明の実施の形態1による2気筒ロータリ圧縮機100の構造を示す概略縦断面図であり、吸入バイパスを閉じた状態を示している。図1〜図3に基づいて、2気筒ロータリ圧縮機100の基本構造及び動作を説明する。なお、図1を含め、以下の図面では各構成部材の大きさの関係が実際のものとは異なる場合がある。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
Embodiment 1.
FIG. 1 is a schematic longitudinal sectional view showing a structure of a two-cylinder rotary compressor 100 according to Embodiment 1 of the present invention, and shows a state where an intake bypass is opened. FIG. 2 is a layout diagram schematically showing the internal configuration of the two-cylinder rotary compressor 100 in the AA cross section of FIG. 1. FIG. 3 is a schematic longitudinal sectional view showing the structure of the two-cylinder rotary compressor 100 according to the first embodiment of the present invention, and shows a state in which the suction bypass is closed. The basic structure and operation of the two-cylinder rotary compressor 100 will be described with reference to FIGS. In addition, in the following drawings including FIG. 1, the relationship of the size of each component may be different from the actual one.

2気筒ロータリ圧縮機100は、たとえば空調機や給湯機などのヒートポンプ機器に採用される冷凍サイクルの構成要素の一つとなるものである。この2気筒ロータリ圧縮機100は、流体(たとえば、冷媒や熱媒体(水や不凍液等))を吸入し、圧縮して高温・高圧の状態として吐出させる機能を有している。   The two-cylinder rotary compressor 100 is one of the components of the refrigeration cycle employed in heat pump equipment such as an air conditioner and a hot water heater. The two-cylinder rotary compressor 100 has a function of sucking fluid (for example, refrigerant or heat medium (water, antifreeze liquid, etc.)), compressing it, and discharging it in a high temperature / high pressure state.

<2気筒ロータリ圧縮機100の基本構成>
2気筒ロータリ圧縮機100は、密閉容器3の内部空間8aに、第1圧縮要素10及び第2圧縮要素20を駆動軸6で駆動する圧縮機構99と、電動機部9と、を備えている。駆動軸6には、軸方向の下側から上側に向かって、第1(短軸)支持部材60と、第1圧縮要素10を構成する第1シリンダ11と、中間仕切板5と、第2圧縮要素20を構成する第2シリンダ21と、第2(長軸)支持部材70とが順次に積層されており、このような状態で圧縮機構99が構成されている。
<Basic configuration of the two-cylinder rotary compressor 100>
The two-cylinder rotary compressor 100 includes a compression mechanism 99 that drives the first compression element 10 and the second compression element 20 with the drive shaft 6 and an electric motor unit 9 in the internal space 8 a of the sealed container 3. The drive shaft 6 includes a first (short shaft) support member 60, a first cylinder 11 that constitutes the first compression element 10, an intermediate partition plate 5, and a second, from the lower side to the upper side in the axial direction. The second cylinder 21 constituting the compression element 20 and the second (long axis) support member 70 are sequentially stacked, and the compression mechanism 99 is configured in such a state.

圧縮機構99の上方には、電動機部9が駆動軸6に取り付けられている。駆動軸6は、軸受部を兼ねる第1支持部材60によって回転自在に支持される短軸部6aと、軸受部を兼ねる第2支持部材70によって回転自在に支持されるとともに電動機部9に連結される長軸部6bと、第1シリンダ11のシリンダ室12に位置する偏心ピン部6cと、第2シリンダ21のシリンダ室22に位置する偏心ピン部6dと、偏心ピン部6cと偏心ピン部6dとを接続している中間軸部6eと、で構成されている。偏心ピン部6cには、回転ピストン13が取り付けられている。偏心ピン部6dには回転ピストン23が取り付けられている。   An electric motor unit 9 is attached to the drive shaft 6 above the compression mechanism 99. The drive shaft 6 is rotatably supported by a short shaft portion 6a that is rotatably supported by a first support member 60 that also serves as a bearing portion and a second support member 70 that also serves as a bearing portion, and is connected to the motor portion 9. The long shaft portion 6b, the eccentric pin portion 6c located in the cylinder chamber 12 of the first cylinder 11, the eccentric pin portion 6d located in the cylinder chamber 22 of the second cylinder 21, the eccentric pin portion 6c and the eccentric pin portion 6d. The intermediate shaft portion 6e is connected to the intermediate shaft portion 6e. A rotating piston 13 is attached to the eccentric pin portion 6c. A rotating piston 23 is attached to the eccentric pin portion 6d.

なお、密閉容器3の内部空間8aにおいて、駆動軸6の軸方向の最も下側には、圧縮機構99を潤滑する潤滑油の潤滑油貯蔵部3aが設けられている。また、密閉容器3の上部には、圧縮機吐出管2が密閉容器3の内部空間8aと連通するように設けられている。さらに、中間仕切板5には、圧縮室バイパス孔33、43が貫通するように形成されている。   In the inner space 8 a of the sealed container 3, a lubricating oil storage portion 3 a for lubricating oil that lubricates the compression mechanism 99 is provided on the lowest side in the axial direction of the drive shaft 6. In addition, a compressor discharge pipe 2 is provided above the sealed container 3 so as to communicate with the internal space 8 a of the sealed container 3. Furthermore, the intermediate partition plate 5 is formed so that the compression chamber bypass holes 33 and 43 pass therethrough.

第1圧縮要素10、第2圧縮要素20は、それぞれ平行平板からなる第1シリンダ11、第2シリンダ21を備えている。第1シリンダ11、第2シリンダ21の円筒形状のシリンダ室12、22内には、それぞれ駆動軸6の回転により偏心回転する回転ピストン13、23、シリンダ室12、22の内を高圧の圧縮室12b、22bと低圧の吸入室12a、22aに仕切るベーンがある。シリンダ室22内に設けられているベーンについては、図2にベーン24として図示されている。なお、シリンダ室12内に設けられているベーンについては、図1〜図3のいずれにも図示されていないが、ベーン24のようにシリンダ室12内に設けられている。   The 1st compression element 10 and the 2nd compression element 20 are provided with the 1st cylinder 11 and the 2nd cylinder 21 which consist of parallel plates, respectively. In the cylindrical cylinder chambers 12 and 22 of the first cylinder 11 and the second cylinder 21, the rotary pistons 13 and 23 that are eccentrically rotated by the rotation of the drive shaft 6 and the cylinder chambers 12 and 22 are respectively compressed in a high-pressure compression chamber. There are vanes that are divided into 12b and 22b and low-pressure suction chambers 12a and 22a. The vane provided in the cylinder chamber 22 is illustrated as a vane 24 in FIG. The vanes provided in the cylinder chamber 12 are not shown in any of FIGS. 1 to 3, but are provided in the cylinder chamber 12 like the vanes 24.

また、第1シリンダ11、第2シリンダ21には、吸入マフラ7に連通するシリンダ吸入口15、25と、圧縮した冷媒をシリンダ室12、22から吐出する吐出口16、26が設けられている。吐出口16、26を覆うように吐出マフラ63、73が軸受部を兼ねる第1支持部材60、第2支持部材70に取り付けられている。   Further, the first cylinder 11 and the second cylinder 21 are provided with cylinder suction ports 15 and 25 communicating with the suction muffler 7 and discharge ports 16 and 26 for discharging the compressed refrigerant from the cylinder chambers 12 and 22. . Discharge mufflers 63 and 73 are attached to a first support member 60 and a second support member 70 that also serve as bearings so as to cover the discharge ports 16 and 26.

吸入マフラ7は、2気筒ロータリ圧縮機100の外部における冷媒回路からの冷媒が流入する流入管7aと、流入管7aと連通し、流入管7aを介して流入してきた冷媒を貯留する容器7bと、容器7bの内部に突出するように設けられ、容器7bに貯留された冷媒を容器7bの外部に流出させる流出管7cと、で構成されている。流出管7cは、容器7bの外部で分岐され、それぞれが第1シリンダ11、第2シリンダ21を貫通し、シリンダ吸入口15、25に連通するようになっている。また、流出管7cには、後述する低圧導入管56が接続されている。   The suction muffler 7 includes an inflow pipe 7a into which refrigerant from a refrigerant circuit outside the two-cylinder rotary compressor 100 flows in, a container 7b that communicates with the inflow pipe 7a and stores the refrigerant that has flowed in through the inflow pipe 7a. And an outflow pipe 7c that is provided so as to protrude inside the container 7b and allows the refrigerant stored in the container 7b to flow out to the outside of the container 7b. The outflow pipe 7 c is branched outside the container 7 b and passes through the first cylinder 11 and the second cylinder 21 and communicates with the cylinder suction ports 15 and 25. The outflow pipe 7c is connected to a low pressure introduction pipe 56 to be described later.

<2気筒ロータリ圧縮機の基本動作>
電動機部9によって駆動軸6が真上から見て時計周りに回転(図2に示すようにベーン位置を基準に回転位相θ)する。駆動軸6が回転することにより、シリンダ室12、22内を偏心ピン部6c及び偏心ピン部6dが偏心回転する。それに伴い、回転ピストン13、23が偏芯回転し、吸入マフラ7の流入管7aから吸入された低圧の冷媒ガスが、シリンダ吸入口15、25を経由してシリンダ室12の吸入室12a、シリンダ室22の吸入室22a内に吸入される。
<Basic operation of 2-cylinder rotary compressor>
The drive shaft 6 rotates clockwise as viewed from directly above by the electric motor unit 9 (rotation phase θ with reference to the vane position as shown in FIG. 2). As the drive shaft 6 rotates, the eccentric pin portion 6 c and the eccentric pin portion 6 d rotate eccentrically in the cylinder chambers 12 and 22. Accordingly, the rotary pistons 13 and 23 rotate eccentrically, and the low-pressure refrigerant gas sucked from the inflow pipe 7a of the suction muffler 7 passes through the cylinder suction ports 15 and 25, and the suction chamber 12a and the cylinder of the cylinder chamber 12 Inhaled into the suction chamber 22 a of the chamber 22.

吸入室12a、22a内に吸入された冷媒は、回転ピストン13、23の回転によりシリンダ室12の圧縮室12b、シリンダ室22の圧縮室22bでそれぞれ圧縮される。圧縮された冷媒ガスは、所定の圧力になると、吐出口16、26から吐出され、吐出マフラ63、73、密閉容器3の内部空間8aや電動機部9の隙間を通って、圧縮機吐出管2から、2気筒ロータリ圧縮機100の外部における冷媒回路の凝縮器側に送られる。   The refrigerant sucked into the suction chambers 12a and 22a is compressed by the rotation of the rotary pistons 13 and 23 in the compression chamber 12b of the cylinder chamber 12 and the compression chamber 22b of the cylinder chamber 22, respectively. When the compressed refrigerant gas reaches a predetermined pressure, the compressed refrigerant gas is discharged from the discharge ports 16 and 26, passes through the discharge mufflers 63 and 73, the internal space 8 a of the sealed container 3, and the clearance between the motor unit 9, and is discharged from the compressor discharge pipe 2. To the condenser side of the refrigerant circuit outside the two-cylinder rotary compressor 100.

<2気筒ロータリ圧縮機100の特徴的な構成>
2気筒ロータリ圧縮機100には、第2シリンダ21の圧縮室22bと第1シリンダ11の吸入室12bとを連通する第1吸入バイパス流路30が設けられている。第1吸入バイパス流路30は、流路溝加工した第1吸入バイパス流路部材31を、第1支持部材60の吐出側面側60bに取り付けることで形成される。また、2気筒ロータリ圧縮機100には、第1シリンダ11の圧縮室12bと第2シリンダ21の吸入室22aとを連通する第2吸入バイパス流路40が設けられている。第2吸入バイパス流路40は、流路溝加工した第2吸入バイパス流路部材41を、第2支持部材70の吐出側面側70bに取り付けることで形成される。
<Characteristic configuration of the two-cylinder rotary compressor 100>
The two-cylinder rotary compressor 100 is provided with a first suction bypass passage 30 that allows the compression chamber 22b of the second cylinder 21 and the suction chamber 12b of the first cylinder 11 to communicate with each other. The first suction bypass flow path 30 is formed by attaching the first suction bypass flow path member 31 processed with a flow path groove to the discharge side surface 60 b of the first support member 60. Further, the two-cylinder rotary compressor 100 is provided with a second suction bypass passage 40 that communicates the compression chamber 12b of the first cylinder 11 and the suction chamber 22a of the second cylinder 21. The second suction bypass channel 40 is formed by attaching a second suction bypass channel member 41 having a channel groove processed to the discharge side surface 70 b of the second support member 70.

そして、2気筒ロータリ圧縮機100では、第1吸入バイパス流路30、第2吸入バイパス流路40を開くことによって、排除容積を100%から50%に低減することを想定する。中間仕切板5に形成され、第1シリンダ11、第2シリンダ21内に連通する圧縮室バイパス孔33、43は、その開口径が大きいほど、吸入バイパス時の圧力損失が小さくなる。   In the two-cylinder rotary compressor 100, it is assumed that the excluded volume is reduced from 100% to 50% by opening the first suction bypass passage 30 and the second suction bypass passage 40. The compression chamber bypass holes 33 and 43 formed in the intermediate partition plate 5 and communicating with the first cylinder 11 and the second cylinder 21 have a smaller pressure loss at the time of the suction bypass as the opening diameter is larger.

回転ピストン13、23の偏芯する回転位相角θが180度のときに排除容積が50%となる。そこで、2気筒ロータリ圧縮機100においては、0度<θ<180度のときに圧縮室バイパス孔33、43が開いた状態となり、θ>180度のときに圧縮室バイパス孔33、43が回転ピストン13、23で隠れるように圧縮室バイパス孔33、43を回転位相角θが270度付近に配置している(図2参照)。   When the rotational phase angle θ at which the rotary pistons 13 and 23 are eccentric is 180 degrees, the excluded volume is 50%. Therefore, in the two-cylinder rotary compressor 100, the compression chamber bypass holes 33 and 43 are open when 0 ° <θ <180 °, and the compression chamber bypass holes 33 and 43 rotate when θ> 180 °. The compression chamber bypass holes 33 and 43 are arranged so that the rotation phase angle θ is around 270 degrees so as to be hidden by the pistons 13 and 23 (see FIG. 2).

また、第2吸入バイパス流路40に連通している吸入室バイパス孔(第2吸入室バイパス孔)42、第1吸入バイパス流路30に連通している吸入室バイパス孔(第1吸入室バイパス孔)32は、圧縮室バイパス孔(第1圧縮室バイパス孔)33、43(第2圧縮室バイパス孔)の開閉と連動して開閉するように、回転位相角θが90度付近に配置した。これは、圧縮室バイパス孔33、43の閉の回転位相時に、回転ピストン13、23のシール面にある高圧油が吸入室22a、12aに流れ込み、加熱損失、漏れ損失の原因となることを防ぐ目的である。   In addition, a suction chamber bypass hole (second suction chamber bypass hole) 42 communicating with the second suction bypass channel 40 and a suction chamber bypass hole (first suction chamber bypass) communicating with the first suction bypass channel 30 The rotation phase angle θ is arranged in the vicinity of 90 degrees so as to open and close in conjunction with the opening and closing of the compression chamber bypass holes (first compression chamber bypass holes) 33 and 43 (second compression chamber bypass holes). . This prevents high-pressure oil on the sealing surfaces of the rotary pistons 13 and 23 from flowing into the suction chambers 22a and 12a during the closed rotation phase of the compression chamber bypass holes 33 and 43, causing heating loss and leakage loss. Is the purpose.

さらに、2気筒ロータリ圧縮機100は、流路切換稼動部50、稼動部収納室51、切換背圧室52、バネ53、高圧油導入絞り穴54を備えている。少なくとも流路切換稼動部50、稼動部収納室51、切換背圧室52が、本発明の開閉機構に相当する。なお、切換背圧室52には、低圧導入管56が連通されている。この低圧導入管56は、流出管7cに接続されており、バルブ55が開制御されることによって低圧状態の冷媒を切換背圧室52に導くものである。低圧導入管56には、流路を開閉するバルブ55が設けられている。   Further, the two-cylinder rotary compressor 100 includes a flow path switching operation unit 50, an operation unit storage chamber 51, a switching back pressure chamber 52, a spring 53, and a high-pressure oil introduction throttle hole 54. At least the flow path switching operation unit 50, the operation unit storage chamber 51, and the switching back pressure chamber 52 correspond to the opening / closing mechanism of the present invention. The switching back pressure chamber 52 communicates with a low pressure introduction pipe 56. The low-pressure introduction pipe 56 is connected to the outflow pipe 7c, and guides low-pressure refrigerant to the switching back pressure chamber 52 by controlling the opening of the valve 55. The low pressure introduction pipe 56 is provided with a valve 55 for opening and closing the flow path.

流路切換稼動部50は、円筒形状のピストン形状に構成され、稼動部収納室51に収納され、切換背圧室52の圧力状態に応じて上下動するようになっている。また、流路切換稼動部50には、吸入バイパス流路接続溝35、45が形成されている。吸入バイパス流路接続溝35、45は、流路切換稼動部50の上下動に伴って第1吸入バイパス流路30、第2吸入バイパス流路40に連通したり、しなかったりする。稼動部収納室51は、流路切換稼動部50を上下動可能に収納するものである。この稼働部収納室51は、中間仕切板5を上下に貫通するように形成され、第1シリンダ11、第2シリンダ21の中間仕切板5の貫通部分に対応する位置に空間部を設けて形成されている。   The flow path switching operation unit 50 is configured in a cylindrical piston shape, is stored in the operation unit storage chamber 51, and moves up and down according to the pressure state of the switching back pressure chamber 52. The flow path switching operation unit 50 is formed with suction bypass flow path connection grooves 35 and 45. The suction bypass flow path connection grooves 35 and 45 communicate with or not communicate with the first suction bypass flow path 30 and the second suction bypass flow path 40 as the flow path switching operation unit 50 moves up and down. The operation part storage chamber 51 stores the flow path switching operation part 50 so as to be movable up and down. The operating part storage chamber 51 is formed so as to penetrate the intermediate partition plate 5 up and down, and is formed by providing a space portion at a position corresponding to the through part of the intermediate partition plate 5 of the first cylinder 11 and the second cylinder 21. Has been.

切換背圧室52は、稼動部収納室51の下部に、流路切換稼動部50の径よりも小さい径で形成されており、バルブ55の開閉に応じて高圧状態になったり、低圧状態になったりするものである。バネ53は、切換背圧室52に設けられており、流路切換稼動部50を上下動可能に支持するものである。高圧油導入絞り穴54は、内部空間8aのうちの高圧空間と稼動部収納室51とを連通し、高圧状態の潤滑油を稼動部収納室51に導くものである。   The switching back pressure chamber 52 is formed in the lower part of the working part storage chamber 51 with a diameter smaller than the diameter of the flow path switching working part 50 and becomes a high pressure state or a low pressure state according to the opening and closing of the valve 55. It will become. The spring 53 is provided in the switching back pressure chamber 52 and supports the flow path switching operation unit 50 so as to be movable up and down. The high-pressure oil introduction throttle hole 54 communicates the high-pressure space in the internal space 8 a with the working part storage chamber 51, and guides the high-pressure lubricating oil to the working part storage chamber 51.

<吸入バイパス開状態>
図1に示す吸入バイパス開状態では、バルブ55を開くことにより、流出管7cと切換背圧室52とを連通させ、切換背圧室52を低圧状態にする。高圧状態であった切換背圧室52が低圧状態になると差圧が発生し、その差圧によりピストン形状の流路切換稼動部50が稼動部収納室51内を下側に下がる。こうすることで、流路切換稼動部50に形成された吸入バイパス流路接続溝35、45がそれぞれ、第1吸入バイパス流路30、第2吸入バイパス流路40に繋がり、吸入室バイパス孔42、32は、圧縮室バイパス孔33、43と連通する。
<Inhalation bypass open state>
In the open state of the suction bypass shown in FIG. 1, by opening the valve 55, the outflow pipe 7c and the switching back pressure chamber 52 are communicated to bring the switching back pressure chamber 52 into a low pressure state. When the switching back pressure chamber 52 that has been in a high pressure state becomes a low pressure state, a differential pressure is generated, and the piston-shaped flow path switching operation unit 50 is lowered downward in the operation unit storage chamber 51 by the differential pressure. In this way, the suction bypass flow path connection grooves 35 and 45 formed in the flow path switching operation unit 50 are connected to the first suction bypass flow path 30 and the second suction bypass flow path 40, respectively, and the suction chamber bypass hole 42. , 32 communicate with the compression chamber bypass holes 33, 43.

但し、流路切換稼動部50は、第1シリンダ11、第2シリンダ21と中間仕切板5を軸方向に貫く構造にすることで、中間仕切板5の厚み以内に収めなければならないという制約を受けない。また、流路切換稼動部50を圧縮室側の位相に配置することで、吸入バイパス無しで運転する場合の圧縮室死容積の影響を小さくした。さらに、高圧油導入絞り穴54は抵抗が大きいので、バルブ55を開いた状態では低圧導入管32の圧力の影響が大きいように、また流路切換稼動部50が稼動部収納室51内を完全に下がった状態では底面がシールされ、高圧油導入絞り穴54と切換背圧室52とは導通しないように設計した。また、中立状態では流路切換稼動部50が稼動部収納室51内をほぼ下がった状態となるようにバネ力を調整した。   However, the flow path switching operation unit 50 has a restriction that the first partition 11, the second cylinder 21, and the intermediate partition plate 5 must be within the thickness of the intermediate partition plate 5 by having a structure penetrating in the axial direction. I do not receive it. In addition, by arranging the flow path switching operation unit 50 in the phase on the compression chamber side, the influence of the compression chamber dead volume when operating without suction bypass is reduced. Further, since the high-pressure oil introduction throttle hole 54 has a large resistance, the flow path switching operation unit 50 completely passes through the operation unit storage chamber 51 so that the influence of the pressure of the low-pressure introduction pipe 32 is large when the valve 55 is opened. In this state, the bottom is sealed, and the high pressure oil introduction throttle hole 54 and the switching back pressure chamber 52 are designed not to conduct. Further, in the neutral state, the spring force was adjusted so that the flow path switching operation unit 50 was almost lowered in the operation unit storage chamber 51.

<吸入バイパス閉状態>
図3に示す吸入バイパス閉状態では、バルブ55を閉じることにより、高圧油導入絞り穴54の影響で、切換背圧室52を含む稼動部収納室51下側の空間が高圧状態となる。そうすると、切換背圧室52が低圧状態であったときとは反対に、流路切換稼動部50が上側に稼動部収納室51内で押し上げられる。こうすることで、流路切換稼動部50に形成された吸入バイパス流路接続溝35、45がそれぞれ、吸入バイパス流路30、40と切断される。
<Inhalation bypass closed state>
In the closed state of the suction bypass shown in FIG. 3, by closing the valve 55, the space under the working part storage chamber 51 including the switching back pressure chamber 52 becomes a high pressure state due to the influence of the high pressure oil introduction throttle hole 54. Then, contrary to when the switching back pressure chamber 52 is in a low pressure state, the flow path switching operation unit 50 is pushed up in the operation unit storage chamber 51. By doing so, the suction bypass flow path connection grooves 35 and 45 formed in the flow path switching operation unit 50 are disconnected from the suction bypass flow paths 30 and 40, respectively.

<2気筒ロータリ圧縮機100の奏する効果>
以上のように、2気筒ロータリ圧縮機100は、低負荷条件においては2気筒ロータリ圧縮機100の回転数を下げることなくバルブ55を開状態にすることで、ツイン圧縮運転を行うことができる。しかも、中間仕切板5に吸入バイパス流路を設けるという制約がないので、流路断面積を大きくとることができる。そのため、吸入バイパス流路の圧力損失が比較的小さくなる。また、従来の加工方法で対応できる現実的な設計が可能である。その他、吸入バイパスの課題である、加熱損失、漏れ損失、死容積損失も比較的小さく設計することができる。
<Effects of the two-cylinder rotary compressor 100>
As described above, the two-cylinder rotary compressor 100 can perform twin compression operation by opening the valve 55 without lowering the rotational speed of the two-cylinder rotary compressor 100 under a low load condition. In addition, since there is no restriction that the intermediate partition plate 5 is provided with the suction bypass flow path, the flow path cross-sectional area can be increased. Therefore, the pressure loss of the suction bypass passage is relatively small. In addition, a realistic design that can be handled by a conventional processing method is possible. In addition, heating loss, leakage loss, and dead volume loss, which are the problems of the suction bypass, can be designed to be relatively small.

よって、2気筒ロータリ圧縮機100によれば、従来の機械式容量制御方式の課題を解決し、排除容積100%運転時と低負荷運転時の両方において圧縮機損失を低減し、圧縮機効率改善と、ツイン圧縮機運転による回転数範囲拡大が可能となり、実負荷運転での省エネ性能を改善することができる。   Therefore, according to the two-cylinder rotary compressor 100, the problems of the conventional mechanical capacity control method are solved, and the compressor loss is reduced both in the operation of 100% excluded volume and in the low load operation, and the compressor efficiency is improved. Thus, the rotational speed range can be expanded by twin compressor operation, and the energy saving performance in actual load operation can be improved.

実施の形態2.
図4は、本発明の実施の形態2に係る2気筒ロータリ圧縮機100Aの構造を示す概略縦断面図である。図5は、図4のA―A横断面における2気筒ロータリ圧縮機100Aの内部構成を概略的に示す配置図である。図4及び図5に基づいて、2気筒ロータリ圧縮機100Aについて説明する。なお、実施の形態2では実施の形態1との相違点を中心に説明し、実施の形態1と同一部分には、同一符号を付して説明を省略するものとする。
Embodiment 2. FIG.
FIG. 4 is a schematic longitudinal sectional view showing the structure of a two-cylinder rotary compressor 100A according to Embodiment 2 of the present invention. FIG. 5 is a layout diagram schematically showing the internal configuration of the two-cylinder rotary compressor 100A in the AA cross section of FIG. The two-cylinder rotary compressor 100A will be described based on FIGS. In the second embodiment, differences from the first embodiment will be mainly described, and the same parts as those in the first embodiment will be denoted by the same reference numerals and description thereof will be omitted.

2気筒ロータリ圧縮機100Aでは、流路切換稼動部50Aを中間仕切板5Aの内部に収納した点で、実施の形態1に係る2気筒ロータリ圧縮機100と相違している。2気筒ロータリ圧縮機100Aの基本構造と動作は、実施の形態1に係る2気筒ロータリ圧縮機100と同様であるため説明を省略する。   The two-cylinder rotary compressor 100A is different from the two-cylinder rotary compressor 100 according to Embodiment 1 in that the flow path switching operation unit 50A is housed inside the intermediate partition plate 5A. Since the basic structure and operation of the two-cylinder rotary compressor 100A are the same as those of the two-cylinder rotary compressor 100 according to Embodiment 1, the description thereof is omitted.

流路切換稼動部50Aは、円筒形状のピストン形状に構成され、稼動部収納室51Aに収納され、切換背圧室52Aの圧力状態に応じて水平方向に移動するようになっている。なお、流路切換稼動部50Aには、吸入バイパス流路接続溝35、45が形成されていない。稼動部収納室51Aは、流路切換稼動部50Aを水平方向に移動可能に収納するものである。この稼働部収納室51Aは、中間仕切板5Aを外周側から内周側まで、細くて長い円筒形状の穴として形成されている。   The flow path switching operation unit 50A is configured in a cylindrical piston shape, is stored in the operation unit storage chamber 51A, and moves in the horizontal direction according to the pressure state of the switching back pressure chamber 52A. Note that the suction bypass flow path connection grooves 35 and 45 are not formed in the flow path switching operation portion 50A. The operating part storage chamber 51A stores the flow path switching operating part 50A so as to be movable in the horizontal direction. The operating part storage chamber 51A is formed as a thin and long cylindrical hole from the outer peripheral side to the inner peripheral side of the intermediate partition plate 5A.

切換背圧室52Aは、稼動部収納室51Aの紙面左側端部に形成されており、バルブ55の開閉に応じて高圧状態になったり、低圧状態になったりするものである。バネ53Aは、切換背圧室52Aに設けられており、流路切換稼動部50Aを水平方向に移動可能に支持するものである。高圧油導入絞り穴54Aは、内部空間8aのうちの高圧空間と稼動部収納室51Aとを連通し、高圧状態の潤滑油を稼動部収納室51Aに導くものである。   The switching back pressure chamber 52A is formed at the left end of the working portion storage chamber 51A in the drawing, and becomes a high pressure state or a low pressure state according to the opening and closing of the valve 55. The spring 53A is provided in the switching back pressure chamber 52A and supports the flow path switching operation unit 50A so as to be movable in the horizontal direction. The high-pressure oil introduction throttle hole 54A communicates the high-pressure space of the internal space 8a with the working part storage chamber 51A, and guides the high-pressure lubricating oil to the working part storage chamber 51A.

<吸入バイパス開状態>
図4は、バルブ55を開くことで、差圧で流路切換稼動部50Aが駆動軸6の方向に移動することで、第1シリンダ11の圧縮室バイパス孔33と第2シリンダ21の吸入バイパス孔42とが第2吸入バイパス流路40を介して連通し、また、第2シリンダ21の圧縮室バイパス孔43と第1シリンダ11の吸入バイパス孔32とが第1吸入バイパス流路30を介して連通し、吸入マフラ7の流出管7cに繋がった状態である。
<Inhalation bypass open state>
FIG. 4 shows that by opening the valve 55, the flow path switching operation unit 50 </ b> A moves in the direction of the drive shaft 6 due to the differential pressure, so that the compression chamber bypass hole 33 of the first cylinder 11 and the suction bypass of the second cylinder 21. The hole 42 communicates with the second suction bypass passage 40, and the compression chamber bypass hole 43 of the second cylinder 21 and the suction bypass hole 32 of the first cylinder 11 pass through the first suction bypass passage 30. And connected to the outflow pipe 7c of the suction muffler 7.

<吸入バイパス閉状態>
一方、バルブ55を開くことで、稼動部収納室51Aが低圧となり差圧で流路切換稼動部50Aが密閉容器3の方向に移動することで、圧縮室バイパス孔33と吸入バイパス孔42、圧縮室バイパス孔43と吸入バイパス孔32とが連通しない吸入バイパス閉の状態に切りかえることが可能である。
<Inhalation bypass closed state>
On the other hand, when the valve 55 is opened, the operating part storage chamber 51A becomes a low pressure, and the flow path switching operating part 50A moves toward the sealed container 3 due to the differential pressure, so that the compression chamber bypass hole 33, the suction bypass hole 42, the compression The chamber bypass hole 43 and the suction bypass hole 32 can be switched to a closed state where the suction bypass is not communicated.

<2気筒ロータリ圧縮機100Aの奏する効果>
2気筒ロータリ圧縮機100Aは、稼働部収納室51Aの加工が、実施の形態1に係る2気筒ロータリ圧縮機100の稼働部収納室51の加工よりも難しくなるものの、実施の形態1に係る2気筒ロータリ圧縮機100と同様の効果が得られる。
<Effects of the two-cylinder rotary compressor 100A>
In the two-cylinder rotary compressor 100A, the working part storage chamber 51A is more difficult to process than the working part storage chamber 51 of the two-cylinder rotary compressor 100 according to the first embodiment. The same effect as the cylinder rotary compressor 100 can be obtained.

よって、2気筒ロータリ圧縮機100Aによれば、従来の機械式容量制御方式の課題を解決し、排除容積100%運転時と低負荷運転時の両方において圧縮機損失を低減し、圧縮機効率改善と、ツイン圧縮機運転による回転数範囲拡大が可能となる、実負荷運転での省エネ性能を改善することができる。   Therefore, according to the two-cylinder rotary compressor 100A, the problems of the conventional mechanical capacity control method are solved, and the compressor loss is reduced both in the operation of 100% displacement volume and in the low load operation, and the compressor efficiency is improved. In addition, energy saving performance in actual load operation can be improved, which enables expansion of the rotation speed range by twin compressor operation.

実施の形態3.
図6は、本発明の実施の形態3に係る2気筒ロータリ圧縮機100Bの構造を示す概略縦断面図である。図7は、図6のA−A横断面における2気筒ロータリ圧縮機100Bの内部構成を概略的に示す配置図である。図6及び図7に基づいて、2気筒ロータリ圧縮機100Bについて説明する。なお、実施の形態3では実施の形態1及び実施の形態2との相違点を中心に説明し、実施の形態1及び実施の形態2と同一部分には、同一符号を付して説明を省略するものとする。
Embodiment 3 FIG.
FIG. 6 is a schematic longitudinal sectional view showing the structure of a two-cylinder rotary compressor 100B according to Embodiment 3 of the present invention. FIG. 7 is a layout diagram schematically showing the internal configuration of the two-cylinder rotary compressor 100B in the AA cross section of FIG. The two-cylinder rotary compressor 100B will be described based on FIGS. In the third embodiment, differences from the first and second embodiments will be mainly described, and the same parts as those in the first and second embodiments will be denoted by the same reference numerals and the description thereof will be omitted. It shall be.

2気筒ロータリ圧縮機100Bでは、吸入バイパス流路の圧力損失を低減するため、吸収室バイパス孔をシリンダの両面に設け、吸入バイパス追加流路部材57を中間仕切板5Bの内部に追加した点と、吸入室バイパス孔32と吸入室バイパス孔42をそれぞれ第1シリンダ11と第2シリンダ21の上面側と下面側の両面に配置した点が異なる。実施の形態1に係る2気筒ロータリ圧縮機100、実施の形態2に係る2気筒ロータリ圧縮機100Aと相違している。2気筒ロータリ圧縮機100Bの基本構造と動作は、実施の形態1に係る2気筒ロータリ圧縮機100と同様であるため説明を省略する。また、流路切換稼動部50Bを中間仕切板5Bの内部に収納した点は、実施の形態2に係る2気筒ロータリ圧縮機100Aと同様であるため説明を省略する。   In the two-cylinder rotary compressor 100B, in order to reduce the pressure loss of the suction bypass flow path, absorption chamber bypass holes are provided on both surfaces of the cylinder, and a suction bypass additional flow path member 57 is added inside the intermediate partition plate 5B. The suction chamber bypass hole 32 and the suction chamber bypass hole 42 are different from each other in that they are arranged on both the upper surface side and the lower surface side of the first cylinder 11 and the second cylinder 21, respectively. This is different from the two-cylinder rotary compressor 100 according to the first embodiment and the two-cylinder rotary compressor 100A according to the second embodiment. Since the basic structure and operation of the two-cylinder rotary compressor 100B are the same as those of the two-cylinder rotary compressor 100 according to Embodiment 1, the description thereof is omitted. Further, the point that the flow path switching operation unit 50B is housed inside the intermediate partition plate 5B is the same as that of the two-cylinder rotary compressor 100A according to the second embodiment, and thus the description thereof is omitted.

流路切換稼動部50Bは、円筒形状のピストン形状に構成され、稼動部収納室51Bに収納され、切換背圧室52Bの圧力状態に応じて水平方向に移動するようになっている。なお、流路切換稼動部50Bには、吸入バイパス流路接続溝35、45が形成されていない。稼動部収納室51Bは、流路切換稼動部50Bを水平方向に移動可能に収納するものである。この稼働部収納室51Bは、中間仕切板5Bを外周側から内周側まで、細くて長い円筒形状の穴として形成されている。   The flow path switching operation unit 50B is formed in a cylindrical piston shape, is stored in the operation unit storage chamber 51B, and moves in the horizontal direction according to the pressure state of the switching back pressure chamber 52B. Note that the suction bypass flow path connection grooves 35 and 45 are not formed in the flow path switching operation unit 50B. The operation part storage chamber 51B stores the flow path switching operation part 50B so as to be movable in the horizontal direction. This working part storage chamber 51B is formed as a thin and long cylindrical hole from the outer peripheral side to the inner peripheral side of the intermediate partition plate 5B.

切換背圧室52Bは、稼動部収納室51Bの紙面左側端部に形成されており、バルブ55の開閉に応じて高圧状態になったり、低圧状態になったりするものである。バネ53Bは、切換背圧室52Bに設けられており、流路切換稼動部50Bを水平方向に移動可能に支持するものである。高圧油導入絞り穴54Bは、内部空間8aのうちの高圧空間と稼動部収納室51Aとを連通し、高圧状態の潤滑油を稼動部収納室51Aに導くものである。   The switching back pressure chamber 52B is formed at the left end of the working portion storage chamber 51B on the paper surface, and becomes a high pressure state or a low pressure state according to the opening / closing of the valve 55. The spring 53B is provided in the switching back pressure chamber 52B and supports the flow path switching operation unit 50B so as to be movable in the horizontal direction. The high-pressure oil introduction throttle hole 54B communicates the high-pressure space of the internal space 8a with the working part storage chamber 51A, and guides the high-pressure lubricating oil to the working part storage chamber 51A.

吸入バイパス追加流路部材57は、流路切換稼動部、稼動部収納室、バネで構成されている。吸入バイパス追加流路部材57を構成する稼動部収納室は、稼動部収納室51Bと対向する位置に形成されている。吸入バイパス追加流路部材57を構成する流路切換稼動部及びバネは、吸入バイパス追加流路部材57を構成する稼動部収納室内において、流路切換稼動部50B及びバネ53Bと対向する位置に設けられている。なお、吸入バイパス追加流路部材57を構成する流路切換稼動部、稼動部収納室、バネは、流路切換稼動部50B、稼動部収納室51B、バネ53Bと同様に構成され、機能する。   The suction bypass additional flow path member 57 includes a flow path switching operation part, an operation part storage chamber, and a spring. The working part storage chamber constituting the suction bypass additional flow path member 57 is formed at a position facing the working part storage chamber 51B. The flow path switching operation part and the spring constituting the suction bypass additional flow path member 57 are provided at positions facing the flow path switching operation part 50B and the spring 53B in the operation part storage chamber constituting the suction bypass additional flow path member 57. It has been. The flow path switching operation part, the operation part storage chamber, and the spring constituting the suction bypass additional flow path member 57 are configured and function similarly to the flow path switching operation part 50B, the operation part storage room 51B, and the spring 53B.

<吸入バイパス開状態>
図6は、バルブ55を開くことで、差圧で流路切換稼動部50Bが駆動軸6の方向に移動することで、第1シリンダ11の圧縮室バイパス孔33と第2シリンダ21の吸入バイパス孔42とが第2吸入バイパス流路40を介して連通し、また、第2シリンダ21の圧縮室バイパス孔43と第1シリンダ11の吸入バイパス孔32とが第1吸入バイパス流路30を介して連通し、吸入マフラ7の流出管7cに繋がった状態である。
<Inhalation bypass open state>
In FIG. 6, when the valve 55 is opened, the flow path switching operation unit 50 </ b> B moves in the direction of the drive shaft 6 due to the differential pressure, and the suction bypass of the compression chamber bypass hole 33 of the first cylinder 11 and the second cylinder 21. The hole 42 communicates with the second suction bypass passage 40, and the compression chamber bypass hole 43 of the second cylinder 21 and the suction bypass hole 32 of the first cylinder 11 pass through the first suction bypass passage 30. And connected to the outflow pipe 7c of the suction muffler 7.

<吸入バイパス閉状態>
一方、バルブ55を開くことで、稼動部収納室51Bが低圧となり差圧で流路切換稼動部50Bが密閉容器3の方向に移動することで、圧縮室バイパス孔33と吸入バイパス孔42、圧縮室バイパス孔43と吸入バイパス孔32とが連通しない吸入バイパス閉の状態に切りかえることが可能である。
<Inhalation bypass closed state>
On the other hand, when the valve 55 is opened, the operating portion storage chamber 51B becomes a low pressure, and the flow path switching operating portion 50B moves toward the sealed container 3 due to the differential pressure, so that the compression chamber bypass hole 33, the suction bypass hole 42, the compression The chamber bypass hole 43 and the suction bypass hole 32 can be switched to a closed state where the suction bypass is not communicated.

<2気筒ロータリ圧縮機100Bの奏する効果>
2気筒ロータリ圧縮機100Bは、稼動部収納室51Bの加工が、実施の形態1に係る2気筒ロータリ圧縮機100の稼動部収納室51の加工よりも難しくなるものの、実施の形態1に係る2気筒ロータリ圧縮機100と同様の効果が得られる。加えて、2気筒ロータリ圧縮機100Bは、2気筒ロータリ圧縮機100A以上に吸入バイパス流路の圧力損失が低減できるので、より大きな改善効果が得られる。
<Effects of the two-cylinder rotary compressor 100B>
In the two-cylinder rotary compressor 100B, the working part storage chamber 51B is more difficult to process than the working part storage chamber 51 of the two-cylinder rotary compressor 100 according to the first embodiment. The same effect as the cylinder rotary compressor 100 can be obtained. In addition, the two-cylinder rotary compressor 100B can reduce the pressure loss of the suction bypass passage more than the two-cylinder rotary compressor 100A, and thus a greater improvement effect can be obtained.

よって、2気筒ロータリ圧縮機100Bによれば、従来の機械式容量制御方式の課題を解決し、排除容積100%運転時と低負荷運転時の両方において圧縮機損失を低減し、圧縮機効率改善と、ツイン圧縮機運転による回転数範囲拡大が可能となる、実負荷運転での省エネ性能を改善することができる。   Therefore, according to the two-cylinder rotary compressor 100B, the problems of the conventional mechanical capacity control system are solved, and the compressor loss is reduced both during the operation of 100% excluded volume and during the low load operation, thereby improving the compressor efficiency. In addition, energy saving performance in actual load operation can be improved, which enables expansion of the rotation speed range by twin compressor operation.

以上の実施の形態1〜3では、高圧密閉シェル形、回転ピストン式ロータリ圧縮形の圧縮機について説明したが、シリンダを積層した2気筒ロータリ圧縮機であれば、その他のシェル形式やその他の圧縮形式においても同様の手段を用いて同様の効果が得られる。例えば、半密閉式の場合も同様の効果が得られる。あるいは、中間圧シェル形式の場合も同様の効果が得られる。また、その他のロータリ圧縮方式(スライデイングベーン式、スイング式など)についても同様の効果が得られる。   In the above first to third embodiments, the high-pressure hermetic shell type and rotary piston type rotary compression type compressors have been described. However, if the two-cylinder rotary compressor with stacked cylinders is used, other shell types and other compression types are used. Similar effects can be obtained by using similar means in the form. For example, the same effect can be obtained in the case of a semi-sealing type. Alternatively, the same effect can be obtained in the case of the intermediate pressure shell type. The same effect can be obtained for other rotary compression methods (sliding vane method, swing method, etc.).

2 圧縮機吐出管、3 密閉容器、3a 潤滑油貯蔵部、5 中間仕切板、5A 中間仕切板、5B 中間仕切板、6 駆動軸、6a 短軸部、6b 長軸部、6c 偏心ピン部、6d 偏心ピン部、6e 中間軸部、7 吸入マフラ、7a 流入管、7b 容器、7c 流出管、8a 内部空間、9 電動機部、10 第1圧縮要素、11 第1シリンダ、12 シリンダ室、12a 吸入室、12b 圧縮室、13 回転ピストン、15 シリンダ吸入口、16 吐出口、20 第2圧縮要素、21 第2シリンダ、22 シリンダ室、22a 吸入室、22b 圧縮室、23 回転ピストン、24 ベーン、25 シリンダ吸入口、26 吐出口、30 第1吸入バイパス流路、31 第1吸入バイパス流路部材、32 吸入室バイパス孔、33 圧縮室バイパス孔、35 吸入バイパス流路接続溝、40 第2吸入バイパス流路、41 第2吸入バイパス流路部材、42 吸入室バイパス孔、43 圧縮室バイパス孔、45 吸入バイパス流路接続溝、50 流路切換稼動部、50A 流路切換稼動部、50B 流路切換稼動部、51 稼動部収納室、51A 稼動部収納室、51B 稼動部収納室、52 切換背圧室、52A 切換背圧室、52B 切換背圧室、53 バネ、53A バネ、53B バネ、54 高圧油導入絞り穴、54A 高圧油導入絞り穴、54B 高圧油導入絞り穴、55 バルブ、56 低圧導入管、57 吸入バイパス追加流路部材、60 第1支持部材、60b 吐出側面側、63 吐出マフラ、70 第2支持部材、70b 吐出側面側、73 吐出マフラ、99 圧縮機構、100 2気筒ロータリ圧縮機、100A 2気筒ロータリ圧縮機、100B 2気筒ロータリ圧縮機。   2 compressor discharge pipe, 3 sealed container, 3a lubricating oil storage section, 5 intermediate partition plate, 5A intermediate partition plate, 5B intermediate partition plate, 6 drive shaft, 6a short shaft portion, 6b long shaft portion, 6c eccentric pin portion, 6d Eccentric pin part, 6e Intermediate shaft part, 7 Suction muffler, 7a Inflow pipe, 7b Container, 7c Outflow pipe, 8a Inner space, 9 Motor part, 10 First compression element, 11 First cylinder, 12 Cylinder chamber, 12a Suction Chamber, 12b compression chamber, 13 rotary piston, 15 cylinder suction port, 16 discharge port, 20 second compression element, 21 second cylinder, 22 cylinder chamber, 22a suction chamber, 22b compression chamber, 23 rotary piston, 24 vane, 25 Cylinder suction port, 26 discharge port, 30 first suction bypass channel, 31 first suction bypass channel member, 32 suction chamber bypass hole, 33 compression chamber bypass , 35 Suction bypass channel connection groove, 40 Second suction bypass channel, 41 Second suction bypass channel member, 42 Suction chamber bypass hole, 43 Compression chamber bypass hole, 45 Suction bypass channel connection groove, 50 Channel switching Operating section, 50A channel switching operating section, 50B channel switching operating section, 51 operating section storage room, 51A operating section storage room, 51B operating section storage room, 52 switching back pressure chamber, 52A switching back pressure chamber, 52B switching back Pressure chamber, 53 spring, 53A spring, 53B spring, 54 High pressure oil introduction throttle hole, 54A High pressure oil introduction throttle hole, 54B High pressure oil introduction throttle hole, 55 Valve, 56 Low pressure introduction pipe, 57 Suction bypass additional flow path member, 60 First support member, 60b discharge side face, 63 discharge muffler, 70 Second support member, 70b discharge side face, 73 discharge muffler, 99 compression mechanism, 100 2 air Rotary compressor, 100A 2-cylinder rotary compressor, 100B 2-cylinder rotary compressor.

Claims (7)

密閉容器内に中間仕切板を挟んで並設された2つの圧縮要素と、
前記密閉容器内に配置され、前記圧縮要素を駆動する電動機部と、
前記電動機部からの回転動力を前記圧縮要素に伝える駆動軸と、を有し、
前記圧縮要素は、
2つのシリンダと、
前記シリンダの一方を前記中間仕切板との間に挟む長軸支持部材と、
前記シリンダの他方を前記中間仕切板との間に挟む短軸支持部材と、
前記長軸支持部材側及び前記短軸支持部材側の双方に形成され、一方のシリンダの圧縮室と他方のシリンダの吸入室とを連通する2本の吸入バイパス流路と、
前記吸入バイパス流路を開放させた吸入バイパス運転時に前記シリンダの圧縮室側となる角度方向に配置され、前記吸入バイパス流路を開閉する開閉機構と、を備えた
ことを特徴とする2気筒ロータリ圧縮機。
Two compression elements arranged side by side with an intermediate partition plate in a sealed container;
An electric motor unit disposed in the sealed container and driving the compression element;
A drive shaft for transmitting rotational power from the electric motor unit to the compression element,
The compression element is
Two cylinders,
A long shaft support member sandwiching one of the cylinders with the intermediate partition plate;
A short shaft support member that sandwiches the other of the cylinders with the intermediate partition plate;
Two suction bypass passages formed on both the long shaft support member side and the short shaft support member side, and communicating the compression chamber of one cylinder and the suction chamber of the other cylinder;
A two-cylinder rotary provided with an opening / closing mechanism that is disposed in an angle direction on the compression chamber side of the cylinder during the suction bypass operation in which the suction bypass passage is opened, and opens and closes the suction bypass passage. Compressor.
前記2つの圧縮要素の回転位相を180度ずらして運転させて、回転位相角が180度以上のときに、
一方のシリンダの圧縮室に連通させた圧縮室バイパス孔と、
他方のシリンダの吸入室に連通させた吸入室バイパス孔と、が前記吸入バイパス流路で繋がるように、前記圧縮室バイパス孔及び前記吸入室バイパス孔を配置した
ことを特徴とする請求項1に記載の2気筒ロータリ圧縮機。
When the rotational phase angle of the two compression elements is shifted by 180 degrees and the rotational phase angle is 180 degrees or more,
A compression chamber bypass hole communicating with the compression chamber of one of the cylinders;
The compression chamber bypass hole and the suction chamber bypass hole are disposed so that the suction chamber bypass hole communicated with the suction chamber of the other cylinder is connected to the suction bypass flow path. The two-cylinder rotary compressor described.
前記吸入室バイパス孔を回転位相角が90度付近に配置し、
前記圧縮室バイパス孔を回転位相角270度付近に配置した
ことを特徴とする請求項2に記載の2気筒ロータリ圧縮機。
The suction chamber bypass hole is arranged at a rotation phase angle of around 90 degrees,
The two-cylinder rotary compressor according to claim 2, wherein the compression chamber bypass hole is disposed in the vicinity of a rotational phase angle of 270 degrees.
前記開閉機構は、
ピストン形状に構成された流路切換稼動部と、
前記流路切換稼動部を上下方向又は水平方向に移動可能に収納する稼動部収納部と、
前記稼動部収納部に連通し、圧力状態に応じて前記流路切換稼動部を駆動する切換背圧室と、を有し、
前記吸入バイパス運転時に前記切換背圧室を低圧状態にして前記流路切換稼動部を駆動させることによって前記吸入バイパス流路を開放させる
ことを特徴とする請求項1〜3のいずれか一項に記載の2気筒ロータリ圧縮機。
The opening and closing mechanism is
A flow path switching operation part configured in a piston shape;
An operation section storage section for storing the flow path switching operation section so as to be movable in the vertical direction or the horizontal direction;
A switching back pressure chamber that communicates with the working portion storage portion and drives the flow path switching working portion according to a pressure state;
4. The suction bypass flow path is opened by driving the flow path switching operation unit with the switching back pressure chamber in a low pressure state during the suction bypass operation. 5. The two-cylinder rotary compressor described.
前記稼動部収納部は、
前記中間仕切板を上下に貫通するように形成されている
ことを特徴とする請求項4に記載の2気筒ロータリ圧縮機。
The operating part storage part is
The two-cylinder rotary compressor according to claim 4, wherein the two-cylinder rotary compressor is formed so as to penetrate the intermediate partition plate vertically.
前記稼動部収納部は、
前記中間仕切板の外周側から内周側まで円筒形状の穴として形成されている
ことを特徴とする請求項4に記載の2気筒ロータリ圧縮機。
The operating part storage part is
The two-cylinder rotary compressor according to claim 4, wherein the two-cylinder rotary compressor is formed as a cylindrical hole from an outer peripheral side to an inner peripheral side of the intermediate partition plate.
前記吸入室バイパス孔を前記シリンダの両面に設け、
前記流路切換稼動部及び前記稼動部収納部と同様に構成された吸入バイパス追加流路部材を前記中間仕切板に設けた
ことを特徴とする請求項6に記載の2気筒ロータリ圧縮機。
Providing the suction chamber bypass holes on both sides of the cylinder;
The two-cylinder rotary compressor according to claim 6, wherein a suction bypass additional flow path member configured in the same manner as the flow path switching operation section and the operation section storage section is provided in the intermediate partition plate.
JP2012096446A 2012-04-20 2012-04-20 Two-cylinder rotary compressor Pending JP2013224595A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012096446A JP2013224595A (en) 2012-04-20 2012-04-20 Two-cylinder rotary compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012096446A JP2013224595A (en) 2012-04-20 2012-04-20 Two-cylinder rotary compressor

Publications (1)

Publication Number Publication Date
JP2013224595A true JP2013224595A (en) 2013-10-31

Family

ID=49594814

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012096446A Pending JP2013224595A (en) 2012-04-20 2012-04-20 Two-cylinder rotary compressor

Country Status (1)

Country Link
JP (1) JP2013224595A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105545752A (en) * 2016-01-21 2016-05-04 珠海格力节能环保制冷技术研究中心有限公司 Compressor and refrigeration system comprising same
CN107883600A (en) * 2016-09-30 2018-04-06 上海海立电器有限公司 One drag two air-conditioning system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105545752A (en) * 2016-01-21 2016-05-04 珠海格力节能环保制冷技术研究中心有限公司 Compressor and refrigeration system comprising same
CN107883600A (en) * 2016-09-30 2018-04-06 上海海立电器有限公司 One drag two air-conditioning system
CN107883600B (en) * 2016-09-30 2023-11-28 上海海立电器有限公司 One-driving-two air conditioning system

Similar Documents

Publication Publication Date Title
JP5040907B2 (en) Refrigeration equipment
JP5306478B2 (en) Heat pump device, two-stage compressor, and operation method of heat pump device
US8419395B2 (en) Compressor and refrigeration apparatus
JP2008286037A (en) Rotary compressor and heat pump system
WO2005108793A1 (en) Rotary compressor
JP5228905B2 (en) Refrigeration equipment
JP5760836B2 (en) Rotary compressor
JP5338314B2 (en) Compressor and refrigeration equipment
CN107191372B (en) Rotary compressor and refrigerating device with same
CN101772649A (en) Two-cylinder rotary type compressor, and refrigerating cycle device
JP5515289B2 (en) Refrigeration equipment
JP2013224595A (en) Two-cylinder rotary compressor
JP5401899B2 (en) Refrigeration equipment
JP5807175B2 (en) Rotary compressor
JP5234168B2 (en) Refrigeration equipment
WO2022004027A1 (en) Rotary compressor and refrigeration cycle device
KR100585807B1 (en) Capacity variable double rotary compressor and its operation method
JP4617822B2 (en) Rotary expander
KR101337082B1 (en) Rotary compressor
CN108799115A (en) Become four cylinder Two-stage Compression compressor with rolling rotor of discharge capacity
JP5321055B2 (en) Refrigeration equipment
JP5835299B2 (en) Refrigeration equipment
JP4655051B2 (en) Rotary compressor
KR100677527B1 (en) Rotary compressor
JP2012136967A (en) Two-stage compressor