[go: up one dir, main page]

JPS63242397A - Treatment of waste water - Google Patents

Treatment of waste water

Info

Publication number
JPS63242397A
JPS63242397A JP62080346A JP8034687A JPS63242397A JP S63242397 A JPS63242397 A JP S63242397A JP 62080346 A JP62080346 A JP 62080346A JP 8034687 A JP8034687 A JP 8034687A JP S63242397 A JPS63242397 A JP S63242397A
Authority
JP
Japan
Prior art keywords
sludge
tank
water
treated
treated water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62080346A
Other languages
Japanese (ja)
Inventor
Koji Ishida
宏司 石田
Seiji Izumi
清司 和泉
Mineo Tachibana
峰生 橘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP62080346A priority Critical patent/JPS63242397A/en
Publication of JPS63242397A publication Critical patent/JPS63242397A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Activated Sludge Processes (AREA)

Abstract

PURPOSE:To prevent filtration velocity from being reduced by mixing an inorganic flocculating agent with treatment water before separating sludge and allowing it to adsorb COD. CONSTITUTION:Organic waste water is subjected to biological treatment with activated sludge while aerating it in a biological treatment tank 30. Water to be treated which is deaerated in a deaeration tank 31 is sent to a flocculation tank 32 and an inorganic flocculating agent (e.g. aluminum sulfate and ferric chloride, etc.,) for flocculating activated sludge is mixed with the water to be treated. COD contained in the water to be treated is reduced by allowing the flock of flocculated activated sludge to adsorb COD. The water discharged from the flocculation tank 32 is separated from sludge and a part of the separated sludge is returned to the biological treatment tank 30, and the residual part is drawn out as excess sludge. Thereby filtration velocity can be enhanced.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、有機廃水を活性汚泥により生物処理し、生物
処理後の処理水から限外ろ過により活性汚泥を分離して
浄化水を得る廃水処理方法に関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention is directed to biologically treating organic wastewater with activated sludge, and separating the activated sludge from the treated water after the biological treatment by ultrafiltration to obtain purified water. Regarding processing method.

〔従来の技術〕[Conventional technology]

従来上記廃水処理方法は、限外ろ過によって処理水から
汚泥をほとんど分離できるために、生物処理後の処理水
は、そのまま限外ろ過していた。
Conventionally, in the above-mentioned wastewater treatment method, since most of the sludge can be separated from the treated water by ultrafiltration, the treated water after biological treatment was directly subjected to ultrafiltration.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかし、汚泥の分離に伴って、限外ろ過膜の表面にはゲ
ル層が形成しやす(、これが膜を透過する時の抵抗とな
ってろ過膜透過速度が低下するという欠点があった。
However, as the sludge is separated, a gel layer tends to form on the surface of the ultrafiltration membrane (this has the disadvantage that this becomes a resistance when passing through the membrane and reduces the rate of permeation through the filtration membrane).

本発明の目的は、処理水のろ過膜透過速度を低下させな
いようにする点にある。
An object of the present invention is to prevent the rate of permeation of treated water through a filtration membrane from decreasing.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、処理水中に溶存するCODが少いほど限外ろ
過膜の表面にゲル層が形成しにくいことを見出すに至り
、その廃水処理方法の特徴手段は、汚泥分離前の処理水
に無機凝集剤を混入して、その無機凝集剤によって凝集
する活性汚泥に処理水中のCODを吸着させることにあ
り、その作用効果は、次の通りである。
The present invention has led to the discovery that the less COD dissolved in the treated water, the more difficult it is to form a gel layer on the surface of the ultrafiltration membrane. The purpose is to mix a flocculant and cause COD in the treated water to be adsorbed to the activated sludge flocculated by the inorganic flocculant, and its effects are as follows.

〔作 用〕[For production]

つまり、無機凝集剤によって凝集する活性汚泥にCOD
を吸着させることによって、生成した活性汚泥フロック
が限外ろ過膜面に形成される濃度分極層やゲル層が撹乱
して、濃度分極層の厚み(St)やゲル層の厚み(tg
)が薄くなり、例えば硫酸バンドをAlzOzで500
mg/ l添加すると、限外ろ過膜に対する処理水の透
過流束は1.58rrr / m−日となり、硫酸バン
ドの無添加の場合の処理水の透過流束が0.92n?/
m・日である場合の1.71倍になり、膜透過速度が大
巾に向上する。
In other words, COD is added to activated sludge that is flocculated by an inorganic flocculant.
By adsorbing activated sludge flocs, the concentration polarized layer and gel layer formed on the surface of the ultrafiltration membrane are disturbed, and the thickness of the concentration polarized layer (St) and gel layer thickness (tg
) becomes thinner, for example, when sulfuric acid band is treated with AlzOz to 500%
When mg/l is added, the permeation flux of the treated water to the ultrafiltration membrane is 1.58rrr/m-day, and the permeation flux of the treated water when no sulfate is added is 0.92n? /
This is 1.71 times that in the case of m day, and the membrane permeation rate is greatly improved.

〔発明の効果〕〔Effect of the invention〕

従って、汚泥の混入している処理水を、限外ろ過する前
に無機凝集剤の混入によってCODを低減させるという
ような従来者えられなかった方法によって、処理水のろ
過膜透過速度を低下させずに、長期にわたって良質の浄
化水を効率良く得ることができるようになった。
Therefore, it is possible to reduce the permeation rate of treated water through a filtration membrane by a method that has not been possible in the past, such as reducing the COD by adding an inorganic flocculant to treated water containing sludge before ultrafiltration. It has now become possible to efficiently obtain high-quality purified water over a long period of time.

〔実施例〕〔Example〕

次に、本発明の実施例を、図面に基づいて説明する。 Next, embodiments of the present invention will be described based on the drawings.

第1図に示すように、し尿等の有機廃水の処理プロセス
を示すと、有機廃水を生物処理槽(30)で曝気しなが
ら活性汚泥により生物処理し、この時廃液中の有機物及
び窒素化合物は、分解すると共に、含有リン酸イオンも
少し活性汚泥に吸着除去され、次に、生物処理後の処理
水から、脱気槽(31)で汚泥に付着した気泡を脱気し
た処理水を、凝集槽(32)へ送って、活性汚泥を凝集
させる無機凝集剤として硫酸バンド(八1z(SO4)
3)又は塩化第2鉄(FeC13)等を、処理水に混入
する。
As shown in Figure 1, the treatment process for organic wastewater such as human waste is biologically treated using activated sludge while aerating organic wastewater in a biological treatment tank (30).At this time, organic matter and nitrogen compounds in the wastewater are removed. As the sludge decomposes, some of the phosphate ions it contains are also adsorbed and removed by the activated sludge.Next, the treated water after biological treatment is degassed to remove air bubbles attached to the sludge in the degassing tank (31), and the treated water is coagulated. Sulfuric acid band (SO4) is sent to the tank (32) as an inorganic flocculant to flocculate the activated sludge.
3) Or ferric chloride (FeC13) or the like is mixed into the treated water.

そして、それら無機凝集剤によって凝集した活性汚泥の
フロックにCODを吸着させて、処理水中のCODを低
減させる。
Then, COD is adsorbed to the activated sludge flocs flocculated by these inorganic flocculants, thereby reducing COD in the treated water.

他方、凝集槽(32)では、処理水に塩化第2鉄(Fe
C13)や硫酸バンド(Atz(so4)i)等を混入
することによって、処理水に、それにオルトリン(Il
zPOm)として多く含まれるリン酸イオン(PO43
−)と反応して、不溶性リン酸塩(FePOa又はAI
PO,)を生成する。
On the other hand, in the coagulation tank (32), ferric chloride (Fe
C13) or sulfuric acid band (Atz(so4)i), etc., can be added to the treated water to add orthorin (Il) to the treated water.
Phosphate ion (PO43), which is abundantly contained as zPOm)
) with insoluble phosphate (FePOa or AI
PO,) is generated.

その後、処理水中に残った未反応の凝集剤(FeC1+
又は八It(SO4)3)中の金属分(Fe3+又はA
I3つを、水酸化ナトリウム(NaOH)や水酸化カル
シウム(Ca (OH) z)等のアルカリを凝集槽(
3)に混入することによって、不溶性の金属水酸化物(
Fe (OH) !又はAI (OH) 3)にすると
共に、処理水へのアルカリの混入によって、処理水は、
PH6〜8にほぼ中和される。
After that, the unreacted flocculant (FeC1+
or the metal content (Fe3+ or A
The three Is are mixed with alkalis such as sodium hydroxide (NaOH) and calcium hydroxide (Ca (OH) z) in a coagulation tank (
3), the insoluble metal hydroxide (
Fe(OH)! or AI (OH) 3), and by mixing alkali into the treated water, the treated water becomes
Almost neutralized to pH 6-8.

前記凝集槽(32)から出た処理水は、ポンプ(P)で
限外ろ過器(33)に送り、処理水中より、CODを吸
着した汚泥及び、リン酸塩(FePO,又は八1PO4
)及び金属水酸化物(Fe (OH) 3)又はAI(
OB)sを含む汚泥を分離して、その分離汚泥の一部を
生物処理槽(30)へ返送すると共に、残部を余剰汚泥
として引抜く。
The treated water discharged from the coagulation tank (32) is sent to the ultrafilter (33) by a pump (P), and from the treated water, sludge that has adsorbed COD and phosphates (FePO, or 81PO4) are extracted.
) and metal hydroxides (Fe (OH) 3) or AI (
The sludge containing OB)s is separated, a part of the separated sludge is returned to the biological treatment tank (30), and the remainder is extracted as surplus sludge.

そして、生物処理槽(1)へ返送された凝集汚泥のうち
、金属水酸化物(Fe(OH) 3又はAI(Oil)
s)は、廃液中のリン酸イオン(PO4”−)と次の様
に反応して、 Fe(Otl)z+HiPO4→FePO4+’HzO
又は、 AI(OR)3 +H:lPO4→AlPO4+HzO
になり、廃液中のリン酸イオン(PO43−)除去効果
を発揮する。
Of the flocculated sludge returned to the biological treatment tank (1), metal hydroxide (Fe(OH)3 or AI(Oil)
s) reacts with phosphate ion (PO4''-) in the waste liquid as follows, Fe(Otl)z+HiPO4→FePO4+'HzO
Or AI(OR)3 +H:lPO4→AlPO4+HzO
, and exhibits the effect of removing phosphate ions (PO43-) from waste liquid.

次に、限外ろ過膜に対する無機凝集剤の関係を説明する
Next, the relationship of the inorganic flocculant to the ultrafiltration membrane will be explained.

まず、し尿を生物学的硝化脱窒素性で処理した時の水質
の一例を、次の表1に示す。但し、硫酸バンド及びアル
カリ剤は注入していない。
First, Table 1 below shows an example of water quality when human waste is treated with biological nitrification and denitrification. However, sulfuric acid and alkaline agents were not injected.

表−1(AhO3無添加)     (mg/ (1)
上記の表1よりSSは100%限外ろ過膜で阻止され、
N13.”、NO□−、No:l−1PO4”−、CI
−はほぼ100%膜を通過し、BODは約75%、CO
Dは約66%、有機性窒素は約56%膜で阻止されるこ
とがわかる。
Table-1 (AhO3-free) (mg/ (1)
From Table 1 above, SS is 100% blocked by the ultrafiltration membrane,
N13. ”, NO□-, No:l-1PO4”-, CI
- almost 100% passes through the membrane, BOD is about 75%, CO
It can be seen that about 66% of D and about 56% of organic nitrogen are blocked by the film.

そして、処理水が限外ろ過膜を通過するに伴って、膜近
くには分子の濃度の高い濃度分極層が生成され、これが
膜表面ではゲル層となって、透過速度に抵抗を与える。
As the treated water passes through the ultrafiltration membrane, a polarized layer with a high concentration of molecules is generated near the membrane, and this becomes a gel layer on the membrane surface, providing resistance to the permeation rate.

そこで、処理水の膜透過速度を遅くする主要因子を調べ
ると、第2図からは、し尿の硝化脱窒処理液の活性汚泥
濃度(MLSS1度)は、膜透過流束(FLUX)にほ
とんど影響を及ぼさないことが判り、また、第3図で示
す硫酸バンド注入率(Ah(h添加率)と膜透過流束(
FLUX)の関係のグラフ及び第4図で示す硫酸バンド
注入率を残留CODの関係のグラフから、硫酸バンドの
添加によって凝集した活性汚泥のフロックにCODが吸
着され、処理水中のCODが低いほど水の膜透過速度が
大きくなることが判る。
Therefore, when we investigated the main factors that slow down the membrane permeation rate of treated water, we found that from Figure 2, the activated sludge concentration (MLSS 1 degree) of the human waste nitrification and denitrification treatment liquid has little effect on the membrane permeation flux (FLUX). It was found that the sulfuric acid band injection rate (Ah (h addition rate)) and membrane permeation flux (
From the graph of the relationship between the sulfuric acid band injection rate and the residual COD shown in Figure 4, it can be seen that COD is adsorbed to activated sludge flocs that coagulate due to the addition of sulfuric acid band, and the lower the COD in the treated water, the lower the COD in the treated water. It can be seen that the membrane permeation rate increases.

そこで、し尿を生物学的硝化脱窒素法で処理して、無機
凝集剤の硫酸バンドを、A1□03として500mg/
 l添加して限外ろ過したときの水質の一例を次の表2
に示す。
Therefore, human waste was treated with biological nitrification and denitrification method, and sulfuric acid band, an inorganic flocculant, was added as A1□03 at 500mg/
Table 2 below shows an example of water quality when ultrafiltration is performed with addition of
Shown below.

表−2(mg/ j2 ) 上記表2と表1を比較してみると、硫酸バンドを添加し
た時の透過流速が1.58r+?/m・日であるのに対
し、添加していない時の透過流速が1.58 0.92m/m・日であり、−= 1 、71倍も膜透
0.92 過速度が向上していることが判る。
Table 2 (mg/j2) Comparing Table 2 and Table 1 above, the permeation flow rate when adding sulfuric acid band was 1.58r+? /m/m day, while the permeation flow rate when no addition was made was 1.58 0.92 m/m day, - = 1, the membrane permeation rate was improved by 71 times. I know that there is.

その他、リン酸イオン(PO4’−) も、硫酸バンド
の添加によって減少していることが判る。
In addition, it can be seen that phosphate ion (PO4'-) is also reduced by the addition of sulfuric acid band.

〔別実施例〕[Another example]

前記無機凝集剤として、塩化第2鉄や硫酸バンドの他に
、ポリ塩化アルミニウムを用いても良い。
As the inorganic flocculant, polyaluminum chloride may be used in addition to ferric chloride and aluminum sulfate.

次に、本発明の廃水処理を行う装置の一例として、第5
図又は第6図に示すと、第5図において、(1)はし尿
投入ポンプ、(2)は曝気槽であり、循環ポンプ(3)
により混合液を気液接触管(14)へ揚水するようにな
っている。
Next, as an example of the apparatus for wastewater treatment of the present invention, the fifth
6 or 6, in FIG. 5, (1) is the human waste input pump, (2) is the aeration tank, and the circulation pump (3) is the aeration tank.
The mixed liquid is pumped to the gas-liquid contact pipe (14).

気液接触管(14)には、空気吸引管(13)が設けて
あり、エゼクタ−効果により大気を吸引するようになっ
ている。
The gas-liquid contact tube (14) is provided with an air suction tube (13), which sucks atmospheric air through an ejector effect.

(11)は空気量調節計、(12)は空気調節弁である
。曝気槽■内のDOを0.1〜1 mg/ lとなるよ
う空気吸引量を調節することにより、し尿を生物学的硝
化脱窒素法で処理するようになっている。(4)は脱気
槽であり、空気を吹き込んで汚泥に付着した気泡を脱気
するようになっており、ポンプ(7)により硫酸バンド
、ポンプ(9)によりアルカリ剤を注入するようになっ
ている。(8)は硫酸バンドの貯留槽、(10)はアル
カリ剤の貯留槽である。(5)は限外濾過ポンプ、(6
)は限外濾過装置であり、(16)は濃縮液の戻り管路
である。
(11) is an air amount controller, and (12) is an air control valve. By adjusting the amount of air suction so that the DO in the aeration tank 1 is 0.1 to 1 mg/l, human waste is treated by biological nitrification and denitrification. (4) is a deaeration tank, which blows air to deaerate air bubbles attached to the sludge, pump (7) injects sulfuric acid, and pump (9) injects alkaline agent. ing. (8) is a storage tank for sulfuric acid band, and (10) is a storage tank for alkaline agent. (5) is an ultrafiltration pump, (6
) is an ultrafiltration device, and (16) is a return line for concentrated liquid.

(15)処理水の流出路である。(15) Outflow path for treated water.

硫酸バンド及びアルカリ剤の注入点は、曝気槽(2)で
あってもよい。
The injection point for the sulfuric acid band and alkaline agent may be the aeration tank (2).

次に、第6図においては、(1)はし尿投入ポンプ、(
20)は脱窒槽、(23)は撹拌ポンプである。
Next, in FIG. 6, (1) human waste input pump, (
20) is a denitrification tank, and (23) is a stirring pump.

(24)は硝化槽、(25)は曝気装置でありブロワ(
B)より空気を吹き込むようになっている。(26)は
硝化液循環ポンプであり、硝化液循環路(35)を通じ
て脱窒槽(20)へ循環するようになっている。
(24) is a nitrification tank, and (25) is an aeration device with a blower (
B) It allows more air to be blown into it. (26) is a nitrification liquid circulation pump, which circulates the nitrification liquid to the denitrification tank (20) through the nitrification liquid circulation path (35).

脱窒槽(20)では、し尿中のBODを炭素源として循
環されて来たNOx−、N0z−を脱窒する槽である。
The denitrification tank (20) is a tank for denitrifying NOx- and NOz- that have been circulated using BOD in human waste as a carbon source.

硝化槽(24)を出た処理液は第2脱窒槽(28)へ導
かれDo欠乏条件下でNo、−、Not−の脱窒を行う
ようになっている。
The treated liquid coming out of the nitrification tank (24) is led to a second denitrification tank (28), where No, -, and Not- denitrification is performed under Do-deficient conditions.

(27)は撹拌ポンプである。(4)は脱窒槽であり、
曝気装置(29)を備えており、空気を吹き込んで活性
汚泥に付着した気泡を除くようになっている。(7)は
硫酸バンドの注入ポンプ、(9)はアルカリ剤の注入ポ
ンプである。
(27) is a stirring pump. (4) is a denitrification tank,
It is equipped with an aeration device (29), which blows air to remove air bubbles attached to the activated sludge. (7) is an injection pump for sulfuric acid, and (9) is an injection pump for alkaline agent.

(8)は硫酸バンド貯留槽、(10)はアルカリ剤貯留
槽である。(5)は限外濾過ポンプ、(6)は限外濾過
膜装置であり、濃縮液を管路(16)を通して脱窒槽(
20)へ戻すようになっている。(15)は処理水の流
出管である。
(8) is a sulfuric acid band storage tank, and (10) is an alkali agent storage tank. (5) is an ultrafiltration pump, (6) is an ultrafiltration membrane device, and the concentrated liquid is passed through the pipe (16) to the denitrification tank (
20). (15) is an outflow pipe for treated water.

硫酸バンドの注入点は、脱窒槽(20)、硝化槽(24
)、第2脱窒槽(28)であってもよい。
The injection points for sulfate band are the denitrification tank (20) and the nitrification tank (24).
), the second denitrification tank (28).

尚、図中(17)は余剰汚泥の引抜き管である。Note that (17) in the figure is a pipe for extracting excess sludge.

第5図において、曝気槽(2)のDOを0.5mg/l
以下と1mg/ 1以上の交互に生ぜしめるようにして
も良い。
In Figure 5, the DO in the aeration tank (2) is 0.5 mg/l.
The amount below and 1 mg/1 or more may be produced alternately.

第5図、第6図において、濃縮液の一部を脱気槽へ戻し
てもよい。但し、全量脱気槽へ戻すことは望ましくない
In FIGS. 5 and 6, a portion of the concentrated liquid may be returned to the degassing tank. However, it is not desirable to return the entire amount to the deaeration tank.

また、アルカリ剤の注入点を脱気槽ではなくて濃縮液の
戻り流路もしくは、活性汚泥処理槽の入口部へ持ってき
てもよい。
Furthermore, the injection point of the alkali agent may be placed not in the deaeration tank but in the return flow path of the concentrated liquid or the inlet of the activated sludge treatment tank.

この場合は、脱気槽内のPH値が低下し、(P H5程
度が望ましい)溶存有機物濃度が低下し、透過速度を更
に向上させる利点がある。
In this case, there is an advantage that the pH value in the degassing tank is lowered, the dissolved organic matter concentration is lowered (preferably around PH5), and the permeation rate is further improved.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明に係る廃水処理方法の実施例を示し、第1
図は処理プロセスを示す概略図、第2図、第3図、第4
図は夫々変化を示すグラフ第5図及び第6図は、夫々処
理プロセスを実施するための装置の概略図である。
The drawings show an embodiment of the wastewater treatment method according to the present invention.
The figures are schematic diagrams showing the processing process, Figures 2, 3, and 4.
5 and 6 are schematic diagrams of apparatus for carrying out the treatment process, respectively.

Claims (1)

【特許請求の範囲】[Claims] 有機廃水を活性汚泥により生物処理し、生物処理後の処
理水から限外ろ過により活性汚泥を分離して浄化水を得
る。廃水処理方法であって、汚泥分離前の処理水に無機
凝集剤を混入して、その無機凝集剤によって凝集する活
性汚泥に処理水中のCODを吸着させる廃水処理方法。
Organic wastewater is subjected to biological treatment using activated sludge, and purified water is obtained by separating activated sludge from the biologically treated treated water by ultrafiltration. A wastewater treatment method in which an inorganic flocculant is mixed into treated water before sludge separation, and COD in the treated water is adsorbed to activated sludge flocculated by the inorganic flocculant.
JP62080346A 1987-03-31 1987-03-31 Treatment of waste water Pending JPS63242397A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62080346A JPS63242397A (en) 1987-03-31 1987-03-31 Treatment of waste water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62080346A JPS63242397A (en) 1987-03-31 1987-03-31 Treatment of waste water

Publications (1)

Publication Number Publication Date
JPS63242397A true JPS63242397A (en) 1988-10-07

Family

ID=13715693

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62080346A Pending JPS63242397A (en) 1987-03-31 1987-03-31 Treatment of waste water

Country Status (1)

Country Link
JP (1) JPS63242397A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020022390A (en) * 2000-09-20 2002-03-27 이정학 Submerged membrane coupled activated sludge process using alum
SG125100A1 (en) * 2003-01-09 2006-09-29 Kuraray Co Waste water tratment method
WO2008041765A1 (en) * 2006-10-05 2008-04-10 Ngk Insulators, Ltd. Method of treating organic drainage

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63175687A (en) * 1987-01-14 1988-07-20 Ebara Infilco Co Ltd Treatment method for organic contaminated water containing phosphoric acid
JPS6363199B2 (en) * 1980-07-01 1988-12-06

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6363199B2 (en) * 1980-07-01 1988-12-06
JPS63175687A (en) * 1987-01-14 1988-07-20 Ebara Infilco Co Ltd Treatment method for organic contaminated water containing phosphoric acid

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020022390A (en) * 2000-09-20 2002-03-27 이정학 Submerged membrane coupled activated sludge process using alum
SG125100A1 (en) * 2003-01-09 2006-09-29 Kuraray Co Waste water tratment method
WO2008041765A1 (en) * 2006-10-05 2008-04-10 Ngk Insulators, Ltd. Method of treating organic drainage

Similar Documents

Publication Publication Date Title
CN118561394B (en) Preparation method and application of a tunnel construction wastewater treatment agent
JPS6210720B2 (en)
JP3368938B2 (en) Wastewater treatment method and apparatus
KR101270060B1 (en) Apparatus for phosphorous removal from waste water
JPS63242397A (en) Treatment of waste water
JPH05115882A (en) Treatment for alkaline photosensitive film development waste water containing peeled-off resin
CN109987745A (en) A kind of processing method of printed circuit board sewage
JPH0647118B2 (en) Organic wastewater treatment method
JPH05104090A (en) Method for treating sewage or sludge and apparatus therefor
JPH02172597A (en) Treatment of organic sewage
JPH0230320B2 (en)
JPS60153999A (en) Treatment of waste water
JPH034996A (en) Treatment of waste liquid containing high concentration nitrogen and phosphorus
JPH10137779A (en) Landfill leachate treatment equipment
JPH02172598A (en) Treatment of organic sewage
JPH0592198A (en) Softening treatment of hard water
JPH0141118B2 (en)
JP3870481B2 (en) Wastewater treatment equipment
JPH01176498A (en) Treatment of organic waste water
JPS59186696A (en) Treatment of waste water
JP2848041B2 (en) Treatment method of copper plating wastewater containing Rochelle salt
JPH0310396B2 (en)
JPH0418994A (en) How to treat organic wastewater
JPS5851995A (en) Treatment of night soil
JPH0433519B2 (en)