[go: up one dir, main page]

JPS5851995A - Treatment of night soil - Google Patents

Treatment of night soil

Info

Publication number
JPS5851995A
JPS5851995A JP56150753A JP15075381A JPS5851995A JP S5851995 A JPS5851995 A JP S5851995A JP 56150753 A JP56150753 A JP 56150753A JP 15075381 A JP15075381 A JP 15075381A JP S5851995 A JPS5851995 A JP S5851995A
Authority
JP
Japan
Prior art keywords
liquid
biological
separated
sludge
denitrification
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP56150753A
Other languages
Japanese (ja)
Other versions
JPS6254077B2 (en
Inventor
Katsuyuki Kataoka
克之 片岡
Takayuki Suzuki
隆幸 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Infilco Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Infilco Co Ltd filed Critical Ebara Infilco Co Ltd
Priority to JP56150753A priority Critical patent/JPS5851995A/en
Publication of JPS5851995A publication Critical patent/JPS5851995A/en
Publication of JPS6254077B2 publication Critical patent/JPS6254077B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Separation Of Suspended Particles By Flocculating Agents (AREA)
  • Activated Sludge Processes (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Abstract

PURPOSE:To enhance the concentration of MLSS and to improve the speed of biological reaction, by biologically nitrifying and denitrifying ammonia-contg. organic waste liquid such as night soil, separating it into solid matter and liquid, and further biologically denitrifying the separated liquid. CONSTITUTION:After sludge-removed night soil 1 is let flow into a biological nitrifying-denitrifying step 2 such as a nitrified liquid-circulating type or a step inflow type, outflow slurry 3 is separated into thickened sludge 5 and separated slurry 6 by a solid-liquid separator 4 such as a centrifugal thickener. The separated thickened sludge 5 is partially or wholly returned to the biological nitrifying-denitrifying step 2. The separated slurry 6 flows into a biological denitrifying step or a biological nitrifying-denitrifying step 7 at the latter stage, where NH3-N, NOX-N and BOD which were not removed in the nitrifying- denitrifying step 2 are removed with high efficiency.

Description

【発明の詳細な説明】 本発明はし尿など、アンモニア性窒素含有有機性廃液を
合理的に処理する方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for rationally treating ammonia nitrogen-containing organic waste liquids such as human waste.

従来し尿などアンモニア性窒素含有有機性廃液の各種処
理方法のなかで最も新らしい処理プロセスとして、第1
図のように低希釈活性汚泥法カ広<知られ実施例も多い
。このプロセスは河川水、地下水などの希釈水をし尿処
理量に対して10倍添加して、生物学的硝化脱窒素処理
−3− を行なったのち、生物学的硝化脱窒素処理水を凝集固液
分離し、リン酸1色度、難生物分解性00D 、及び8
Sを除去し、高度処理するものであり、生物学的硝化脱
窒素工程から発生する余剰生物汚泥と凝集固液分離工程
から発生する凝集汚泥の両者に、カチオンポリマーなと
の脱水助剤を加えて脱水するというプロセスである。
Among the various treatment methods for organic waste liquids containing ammonia nitrogen, such as human waste, this is the most recent treatment process.
As shown in the figure, the low dilution activated sludge method is widely known and there are many examples. In this process, diluted water such as river water or groundwater is added 10 times the amount of human waste treated to perform biological nitrification and denitrification treatment, and then the biologically nitrified and denitrified water is coagulated and solidified. Liquid separation, phosphoric acid 1 chromaticity, hardly biodegradable 00D, and 8
This is an advanced treatment method that removes S and adds a dewatering aid such as a cationic polymer to both the excess biological sludge generated from the biological nitrification and denitrification process and the flocculated sludge generated from the flocculation solid-liquid separation process. This process involves dehydration.

なお、極く最近の傾向として、第1図のプロセスにおい
て希釈水の使用量をさらに節減することを目的として、
希釈倍率1〜2倍の超低希釈法が開発されているが、こ
の超低希釈法、低希釈法のいずれも次のような重大な問
題点が未解決であり、さらに秀れたプロセスの開発が要
請されているのが現状である。即ち、 ■ 生物余剰汚泥と凝集汚泥を脱水機によって脱水処理
する場合にカチオンポリマーなとの脱水助剤を多量に必
要とするので、脱水処理工程の維持管理費が著しく高額
となっていること。
In addition, as a very recent trend, with the aim of further reducing the amount of dilution water used in the process shown in Figure 1,
An ultra-low dilution method with a dilution ratio of 1 to 2 times has been developed, but both the ultra-low dilution method and the low dilution method have the following serious problems that remain unresolved, and even better processes are still needed. The current situation is that development is required. That is, (1) When biological surplus sludge and flocculated sludge are dehydrated using a dehydrator, a large amount of a dehydration aid such as a cationic polymer is required, so the maintenance and management costs for the dewatering process are extremely high.

■ しかも脱水ケーキの含水率が80%程度とスト化す
る場合1重油などの補助燃料を多量に要し、エネルギー
浪費型になっていること。
■ Moreover, when the moisture content of the dehydrated cake is about 80%, a large amount of auxiliary fuel such as heavy oil is required when the dehydrated cake is dehydrated and the moisture content is around 80%, resulting in a waste of energy.

■ 脱水ケーキ含水率を低下させるため、フィルタプレ
スを採用する場合には、塩化第2鉄。
■ Ferric chloride when using a filter press to reduce the moisture content of the dehydrated cake.

消石灰などの無機凝集剤を生物余剰汚泥、凝集汚泥に対
して多量に添加しなければ良好に脱水できない。従って
高度処理工程と汚泥処理工程の両者に無機薬品を添加す
ることになり、脱水ケーキ中の無機物量が多量になる。
Good dewatering cannot be achieved unless a large amount of inorganic flocculant such as slaked lime is added to biological surplus sludge and flocculated sludge. Therefore, inorganic chemicals are added to both the advanced treatment process and the sludge treatment process, resulting in a large amount of inorganic substances in the dewatered cake.

この結果、焼却灰量が増加し、コンポスト化にも障害と
なる。また脱水ケーキの発熱量も低下するので、焼却時
の補助燃料が期待するほど節約できないこと。
As a result, the amount of incinerated ash increases and becomes an obstacle to composting. Furthermore, since the calorific value of the dehydrated cake also decreases, the auxiliary fuel used during incineration cannot be saved as much as expected.

など多くの問題点がまだある。There are still many problems.

本発明はこれら従来の諸欠点を適確に除去しようとする
もので、とくに高度処理、汚泥処理工程を著しく合理化
することができる省資源。
The present invention is intended to accurately eliminate these conventional drawbacks, and in particular, to save resources by significantly streamlining advanced treatment and sludge treatment processes.

省エネルギータイプの有効なプロセスを提供することを
目的としたものである。
The aim is to provide an energy-saving type of effective process.

 5− ′本発明は、し尿などアンモニア含有有機性廃液を生物
学的硝化脱窒素処理したのち、固液分離し1分離汚泥を
前記生物処理工程に返送する一方1分離液をさらに生物
学的膜窒素工程にて処理したのち、該工程の流出水と前
記生物処理工程の余剰汚泥との混合iK少な(とも鉄系
5-' The present invention performs biological nitrification and denitrification treatment on ammonia-containing organic waste liquid such as human waste, performs solid-liquid separation, and returns the 1-separated sludge to the biological treatment process, while the 1-separated liquid is further passed through a biological membrane. After being treated in the nitrogen process, the effluent from the process and the surplus sludge from the biological treatment process are mixed to a low iK (both iron-based).

アルミニウム系凝集剤1右灰のいずれかを添加して凝集
固液分離することを特徴とするし尿処理方法である。
This is a human waste treatment method characterized by adding either of the aluminum-based flocculants 1 and ash to perform flocculation and solid-liquid separation.

本発明の一実施態様を第2図を参照して説明すると、除
渣し尿1は硝化液循環型ステップ流入型、ジエトエアレ
ーションによる単一槽好気性脱窒素型など公知の生物学
的硝化脱窒素工程2に流入し、希釈用水を添加しないで
無希釈処理される。次にこの生物学的硝化脱窒素工程2
の流出スラリー3は遠心濃縮機などの任意の固液分離装
置4にて濃縮汚泥5と分離スラリー6に分離され1分離
された濃縮汚泥5は生物学的′硝化脱窒素工程2に返送
汚泥として全量又は一部が返送される。一方前記分離ス
ラリ−6(生 6− 物学的硝化脱窒素工程2にて発生した余剰汚泥と、生物
学的硝化脱窒素処理水との混合スラリーに相当する)は
後段の生物学的膜窒素工程又は生物学的硝化脱窒素工程
7に流入し、前記生物学的硝化脱窒素工程2にて除去さ
れなかったNH3−N 、 NOX N 、 BODが
、ここで高度に除去される。また後段の生物学的硝化脱
窒素工程7では固液分離装置4にて濃縮され、返送され
る汚泥5の一部、さらにこれ以外の汚泥を後段の生物学
的膜窒素工程又は生物学的硝化脱窒素工程7に流入せし
めると有利である。
One embodiment of the present invention will be described with reference to FIG. 2. The desalted human waste 1 can be processed using known biological nitrification and denitrification methods, such as a nitrification liquid circulation type, a step inflow type, and a single-tank aerobic denitrification type using diet aeration. It flows into the nitrogen step 2 and is treated without dilution without adding dilution water. Next, this biological nitrification and denitrification process 2
The effluent slurry 3 is separated into thickened sludge 5 and separated slurry 6 by an arbitrary solid-liquid separator 4 such as a centrifugal thickener, and the separated thickened sludge 5 is returned to the biological nitrification and denitrification process 2 as sludge. All or part of the amount will be returned. On the other hand, the separation slurry 6 (corresponding to the mixed slurry of surplus sludge generated in the biological nitrification and denitrification process 2 and biological nitrification and denitrification treated water) The NH3-N, NOXN, and BOD that flowed into the biological nitrification and denitrification process 7 and were not removed in the biological nitrification and denitrification process 2 are highly removed here. In addition, in the subsequent biological nitrification and denitrification process 7, a part of the sludge 5 that is concentrated in the solid-liquid separator 4 and returned, and the remaining sludge are used in the subsequent biological membrane nitrogenation process or biological nitrification process. Advantageously, it flows into the denitrification step 7.

しかし、て、高度にBOD、N、CODが除去された生
物処理水と生物学的硝化脱窒素工程2および後段の生物
学的膜窒素工程又は生物学的硝化脱窒素工程7から発生
する余剰汚泥との混合液8に少なくとも塩化第2鉄、ポ
リ硫酸鉄、硫酸鉄などの鉄系無機凝集剤、硫酸ばん土、
pAe。
However, biologically treated water from which BOD, N, and COD have been highly removed and surplus sludge generated from the biological nitrification and denitrification process 2 and the subsequent biological membrane nitrogen process or biological nitrification and denitrification process 7. At least an iron-based inorganic flocculant such as ferric chloride, polyferric sulfate, or iron sulfate, sulfuric acid clay,
pAe.

塩化アルミ、含鉄硫酸ばん土(MIO)などのアルミニ
ウム系凝集剤、消石灰、生石灰などのカルシウム系凝集
剤のうちの一つ、最も好ましく−7− は鉄系凝集剤と高分子凝集剤9とを例えば10〜500
 : 1の割合で添加し、凝集固液分離工程10にてリ
ン酸1色度、COD、88が高度に除去された高度処理
水11と凝集汚泥12に分離する。この凝集汚泥12は
脱水機16で脱水しケーキ14と脱水r液15とに分離
処理されるものである。
One of aluminum-based flocculants such as aluminum chloride and iron-containing sulfuric acid (MIO), and calcium-based flocculants such as slaked lime and quicklime, most preferably -7- is a combination of an iron-based flocculant and a polymer flocculant 9. For example 10-500
: added at a ratio of 1:1 and separated into highly treated water 11 and flocculated sludge 12 in which phosphoric acid 1 chromaticity, COD, 88 has been highly removed in a coagulation solid-liquid separation step 10. This flocculated sludge 12 is dehydrated in a dehydrator 16 and separated into a cake 14 and a dehydrated liquid 15.

なお、凝集剤9に鉄系凝集剤を使用する場合は、過酸化
水素又はオゾンを併用すると、C,OD除去1色度の除
去率が向上するので重要な実施態様であり、驚くべきこ
とに、このプロセスによって発生する凝集汚泥12は極
めて脱水性が秀れており、そのまま無薬注で脱水機13
によって脱水可能であり脱水ケーキ含水率60〜65饅
の低含水率ケーキ14が得られることが確認された。
In addition, when an iron-based flocculant is used as the flocculant 9, when hydrogen peroxide or ozone is used in combination, it is an important embodiment because the removal rate of C, OD removal 1 chromaticity is improved, and surprisingly, The flocculated sludge 12 generated by this process has extremely excellent dewatering properties, and can be directly transferred to the dewatering machine 13 without chemical injection.
It was confirmed that a low moisture content cake 14 which can be dehydrated and has a dehydrated cake moisture content of 60 to 65 moss can be obtained.

さらに、凝集固液分離工程10に直接フィルタプレス、
ロールプレスなどの機械脱水機13を採用すれば凝集沈
殿装置、加圧浮上装置、スクリーン分離装置などの凝集
固液分離工程10が不ほか、機械脱水機分離水としての
脱水f液15をそのまま処理水とでき、リサイクルさせ
る必要がなく、極めて好ましい。とくに機械脱水機にフ
ィルタブ1/スを採用すると、フィルタプレスの原理が
ケーキr過であるため、P液が著しく清澄となるがこの
r液を処理水とすることかできるので最も好適な実施態
様である。
Furthermore, a filter press is used directly in the coagulation solid-liquid separation step 10.
If a mechanical dehydrator 13 such as a roll press is adopted, the coagulating solid-liquid separation process 10 using a coagulating sedimentation device, pressure flotation device, screen separation device, etc. can be performed, and the dehydrated liquid f 15 as separated water by the mechanical dehydrator can be directly processed. It can be used as water and does not need to be recycled, which is extremely desirable. In particular, when a filter press is used in a mechanical dehydrator, the P liquid becomes extremely clear because the principle of the filter press is cake filtration, but this R liquid can be used as treated water, which is the most preferred embodiment. It is.

前記脱水沢液15はそのまま処理水11に混入せしめて
もよいが、脱水f液15中に溶解性BOD、、CODが
溶出してくることがあるので後段の生物学的膜窒素工程
又は生物学的硝化脱墾素工程7にリサイクルするのが最
も適切であなお、濃縮汚泥5の一部を後段の生物学的膜
窒素工程又は生物学的硝化脱窒素工程7に流入させたり
或いはこれをバイパスして流出スラリーとして導出され
る混合液8に混入させれば後段の生物学的膜窒素工程又
は生物学的硝化脱窒 9− 素工程Z内のMLSS濃度を自由に制御できて効果的で
ある。
The dewatered effluent 15 may be mixed into the treated water 11 as it is, but soluble BOD and COD may be eluted into the dehydrated effluent 15. It is most appropriate to recycle the concentrated sludge 5 to the biological nitrification and denitrification process 7, but a part of the thickened sludge 5 may be allowed to flow into the subsequent biological membrane nitrogenation process or the biological nitrification and denitrification process 7, or this may be bypassed. It is effective to freely control the MLSS concentration in the subsequent biological membrane nitrogen step or biological nitrification and denitrification step Z by mixing it into the mixed liquid 8 which is discharged as an effluent slurry. .

本発明は、2段生物処理を採用した結果一段の生物処理
では田難な高度のBOD窒素除去率が得られ、しかも処
理水質が安定しているし。
The present invention employs two-stage biological treatment, resulting in a high BOD nitrogen removal rate that is difficult to achieve with single-stage biological treatment, and the quality of treated water is stable.

(凝集処理工程において)生物余剰汚泥の脱水性の改善
と同時に生物学的硝化脱窒素処理水中のリン酸1色度、
難生物分解性00D、コロイド状SSが、−挙に除去さ
れ、極めて清澄な無希釈高度処理水が得られるし、かつ
生物学的硝化脱窒素処理工程から発生する余剰汚泥と生
物処理工程処理水の凝集固液工程から発生する凝集スラ
ッジを無薬注で脱水できるので、従来プロセスにおいて
不可欠であったカナオンポリマーなとの脱水助剤が不要
となり、この結果汚泥脱水工程の維持管理費が著しく節
約でき、しかも。
(In the flocculation treatment process) At the same time as improving the dewaterability of biological surplus sludge, the chromaticity of phosphoric acid in biological nitrification and denitrification treated water,
Difficult to biodegradable 00D and colloidal SS are removed at once, resulting in extremely clear, undiluted advanced treated water, and excess sludge generated from the biological nitrification and denitrification treatment process and treated water from the biological treatment process. Since the flocculated sludge generated from the flocculation solid-liquid process can be dewatered without using chemicals, there is no need for a dehydration aid such as Kanaon Polymer, which was indispensable in the conventional process, and as a result, the maintenance costs of the sludge dewatering process are significantly reduced. You can save money, and what's more.

含水率60〜65%という極めて低含水率の脱水ケーキ
が得られるのでケーキのコンポスト化乾燥焼却に従来多
量に必要とされていた補助燃料が著しく節減され、卓越
した省エネルギ、省 10− 資源効果が得られるほか、生物学的硝化脱窒素工程の処
理水と余剰汚泥を従来プロセスのように分離して処理す
ることなく1両者を一体化せしめた混合スラリーを凝集
処理するようにしたのでプロセス構成が簡潔になり、処
理運転維持管理が容易であると共に前段の生物学的硝化
脱窒素工程において大部分のBOD、窒素成分を除去し
たのち、固液分離工程を介在して後段の生物学的膜窒素
工程又は生物学的硝化脱窒素工程に、前段の生物学的硝
化脱窒素工程から返送汚泥以外の汚泥を流入せしめれば
、後段の生物学的膜窒素工程又は生物学的硝化脱窒素工
程のMLSS濃度を高く維持でき、生物反応速度をも著
しく向上させることも可能となり、従来プロセスの重大
欠点をことごとく解決できるものである。
Since a dehydrated cake with an extremely low moisture content of 60 to 65% can be obtained, the amount of auxiliary fuel that was conventionally required for composting, drying and incineration of the cake can be significantly reduced, leading to outstanding energy and resource savings. In addition, the process structure has been improved because the treated water and excess sludge from the biological nitrification and denitrification process are not separated and treated as in the conventional process, but a mixed slurry that combines both is flocculated. This makes treatment operation and maintenance easier, and after removing most of the BOD and nitrogen components in the biological nitrification and denitrification process, the biological membrane If sludge other than the returned sludge from the previous biological nitrification and denitrification process is allowed to flow into the nitrogen process or biological nitrification and denitrification process, the flow of sludge from the biological membrane nitrogenation process or biological nitrification and denitrification process will be reduced. It is possible to maintain a high MLSS concentration, and it is also possible to significantly improve the biological reaction rate, thus solving all the major drawbacks of conventional processes.

次に本発明の実施例を示す。Next, examples of the present invention will be shown.

実施例 第1表の水質を有する除渣生し尿を第2図実線のフロー
により無希釈処理した。
EXAMPLES The desalted human waste having the water quality shown in Table 1 was treated without dilution according to the flow shown by the solid line in FIG.

−11− 第1表 固液分離工程4の前段の第1生物学的硝化脱 ゛窒素工
程2には水深10mのポンプ循環エアレーションによる
深槽型硝化脱窒素槽(硝化液循環型)を採用し、固液分
離工程2はデカンタ−型遠心濃縮機を採用した。遠心濃
縮機2に後続する第2の生物学的硝化脱窒素工程7は水
深5mの槽を用い、硝化槽→脱窒素→再曝気槽の順序で
直列配置した。
-11- Table 1 In the first biological nitrification and denitrification process 2, which is the first stage of the solid-liquid separation process 4, a deep tank type nitrification and denitrification tank (nitrification liquid circulation type) with a water depth of 10 m and a pump circulation aeration is used. In the solid-liquid separation step 2, a decanter-type centrifugal concentrator was used. The second biological nitrification and denitrification process 7 following the centrifugal concentrator 2 used tanks with a water depth of 5 m, which were arranged in series in the order of nitrification tank → denitrification → reaeration tank.

第1生物学的硝化脱窒素工程2及び第2生物学的硝化脱
窒素工程7の仕様は第2表のように設定した。
The specifications of the first biological nitrification and denitrification process 2 and the second biological nitrification and denitrification process 7 were set as shown in Table 2.

第2生物学的硝化脱窒素工程再曝気槽より流出する生物
処理水と余剰汚泥との混合スラリーに対し、塩化第2鉄
F6Cts 3000 Twtを添加後アルカリ剤(C
a(OH)2)でpH4,5〜5.8に中和したのち、
高分子凝集剤(アコフロックA720 )を10w/を
添加し、フロック形成し、溶解空気による加圧浮上法に
よって固液分離した結果。
Second biological nitrification and denitrification process After adding 3000 Twt of ferric chloride F6Cts to the mixed slurry of biologically treated water and excess sludge flowing out from the re-aeration tank, an alkaline agent (C
After neutralizing to pH 4.5 to 5.8 with a(OH)2),
Results of solid-liquid separation by adding 10w of polymer flocculant (Acofloc A720) to form flocs and using a pressure flotation method using dissolved air.

表−3の極めて良好な水質を有するし尿無希釈処理水を
得た。浮上フロスはそのまま無薬注でフィルタプレスに
よって容易に脱水可能であり。
Undiluted treated water with human waste having extremely good water quality as shown in Table 3 was obtained. Floating floss can be easily dehydrated using a filter press without any chemicals.

沢過速度2.0〜2,5 kVTn”・br 、脱水ケ
ーキ含水率63−+55%が得られた。
A flow overrate of 2.0-2.5 kVTn".br and a water content of the dehydrated cake of 63-+55% were obtained.

−13− 表−3 脱水ケーキの低位発熱量は無薬注脱水の結果ケーキ中の
無機物が少ないため3000〜3200Kaa経f−D
E3 と高く、含水率が前述のように著しく少ないため
容易に焼却炉において自燃し1重油などの補助燃料が全
く不要となり、著しい省エネルギー効果が得られた。
-13- Table-3 The lower calorific value of the dehydrated cake is 3000 to 3200 Kaa f-D due to the lack of inorganic substances in the cake as a result of chemical-free dehydration.
Since it has a high E3 and extremely low water content as mentioned above, it easily burns itself in an incinerator, eliminating the need for any auxiliary fuel such as heavy oil, resulting in a significant energy-saving effect.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のプロセスのフローシート、第2図は本発
明の一実施態様を示す系統説明図である。 1・・・除渣し尿、2・・・生物学的硝化脱窒素工程。 −14− 6・・・流出スラリー、4・・・固液分離装置、5・・
・濃縮汚泥、6・・・分離スラリー、7・・・生物学的
硝化脱窒素工程、8・・・混合液、9・・・凝集剤、1
0・・・凝集固液分離工程、11・・・高度処理水、1
2・・・凝集汚泥、16・・・脱水機、14・・・ケー
キ、15・・・脱水F液。
FIG. 1 is a flow sheet of a conventional process, and FIG. 2 is a system explanatory diagram showing one embodiment of the present invention. 1... Sludge removal human waste, 2... Biological nitrification and denitrification process. -14- 6... Effluent slurry, 4... Solid-liquid separator, 5...
・Thickened sludge, 6... Separated slurry, 7... Biological nitrification and denitrification process, 8... Mixed liquid, 9... Coagulant, 1
0...Coagulation solid-liquid separation step, 11...Highly treated water, 1
2...Flocculated sludge, 16...Dehydrator, 14...Cake, 15...Dehydrated F liquid.

Claims (5)

【特許請求の範囲】[Claims] (1)  アンモニア含有有機性廃液を前段の生物学的
硝化脱窒素工程で処理してから固液分離し。 分離汚泥を前記生物学的硝化脱窒素工程へ返送する一方
1分離液をさらに後段の生物学的硝化脱窒素工程又は生
物学的膜窒素工程で処理したのち、該工程の流出水と前
記前段の工程で発生する余剰汚泥との混合液に少なくと
も鉄系凝集剤、アルミニウム系凝集剤および石灰のいず
れか一つの凝集剤を添加し、凝集固液分離することを特
徴とするし尿処理方法。
(1) Ammonia-containing organic waste liquid is treated in the biological nitrification and denitrification process in the first stage, and then subjected to solid-liquid separation. The separated sludge is returned to the biological nitrification and denitrification process, while the separated liquid is further treated in the subsequent biological nitrification and denitrification process or the biological membrane nitrogen process, and then the effluent from this process and the previous process are combined. A method for treating human waste, which comprises adding at least one of an iron-based flocculant, an aluminum-based flocculant, and lime to a mixed liquid with excess sludge generated in a process, and performing coagulation solid-liquid separation.
(2)前記後段の生物処理工程が、前記固液分離液と前
記前段の生物処理工程で発生する余剰汚泥の両方を処理
するものである特許請求の範囲第1項記載の方法。
(2) The method according to claim 1, wherein the latter biological treatment step treats both the solid-liquid separated liquid and surplus sludge generated in the first biological treatment step.
(3)前記アンモニア含有有機性廃液を生物学的硝化脱
窒素処理するに際し、希釈水を添加し 2− ないでそのまま処理するものである特許請求の範囲第1
項又は第2項記載の方法。
(3) When the ammonia-containing organic waste liquid is subjected to biological nitrification and denitrification treatment, dilution water is not added to the ammonia-containing organic waste liquid.
or the method described in paragraph 2.
(4)前記後段の生物学的膜窒素工程が、前記凝集固液
分離した凝集汚泥を脱水処理して生ずる脱水f液をリサ
イクルして処理するものである特許請求の範囲、第3項
記載の方法。
(4) The biological membrane nitrogen step in the latter stage is a process in which the dehydrated liquid produced by dehydrating the coagulated solid-liquid separated flocculated sludge is recycled and treated. Method.
(5)前記凝集剤が、鉄系無機凝集剤と高分子凝集剤と
を用い前記混合液に添加併用されるものである特許請求
の範囲第3項又は第4項記載の方法。
(5) The method according to claim 3 or 4, wherein the flocculant includes an iron-based inorganic flocculant and a polymer flocculant, which are added to the mixed solution.
JP56150753A 1981-09-25 1981-09-25 Treatment of night soil Granted JPS5851995A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56150753A JPS5851995A (en) 1981-09-25 1981-09-25 Treatment of night soil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56150753A JPS5851995A (en) 1981-09-25 1981-09-25 Treatment of night soil

Publications (2)

Publication Number Publication Date
JPS5851995A true JPS5851995A (en) 1983-03-26
JPS6254077B2 JPS6254077B2 (en) 1987-11-13

Family

ID=15503656

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56150753A Granted JPS5851995A (en) 1981-09-25 1981-09-25 Treatment of night soil

Country Status (1)

Country Link
JP (1) JPS5851995A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60153999A (en) * 1984-01-24 1985-08-13 Ebara Infilco Co Ltd Treatment of waste water
JPS62140699A (en) * 1985-12-17 1987-06-24 Ebara Infilco Co Ltd Biological treatment of organic waste water
JPH04100598A (en) * 1990-08-17 1992-04-02 Ebara Infilco Co Ltd Sewage-type wastewater treatment method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60153999A (en) * 1984-01-24 1985-08-13 Ebara Infilco Co Ltd Treatment of waste water
JPH0134119B2 (en) * 1984-01-24 1989-07-18 Ebara Infilco
JPS62140699A (en) * 1985-12-17 1987-06-24 Ebara Infilco Co Ltd Biological treatment of organic waste water
JPH0134680B2 (en) * 1985-12-17 1989-07-20 Ebara Infuiruko Kk
JPH04100598A (en) * 1990-08-17 1992-04-02 Ebara Infilco Co Ltd Sewage-type wastewater treatment method

Also Published As

Publication number Publication date
JPS6254077B2 (en) 1987-11-13

Similar Documents

Publication Publication Date Title
JPS5845920B2 (en) Biochemical treatment method for organic waste liquid
JPS6210720B2 (en)
JP3368938B2 (en) Wastewater treatment method and apparatus
JP2796909B2 (en) Wastewater treatment method
JP2019107593A (en) Deodorization treatment system and organic matter treatment method
JPS6328500A (en) Treatment device for night soil sanitary sewage
JPH0124558B2 (en)
JPS58153594A (en) Treatment of organic waste
JPS5851995A (en) Treatment of night soil
JPS6320600B2 (en)
JPH0230320B2 (en)
JP2939156B2 (en) Sewage treatment equipment
JPS6133639B2 (en)
JPH10314757A (en) Method for treating sewage turned back water
JPH029497A (en) Treating equipment for excretion-series sewage
JPS5898198A (en) Treatment of sewage sludge
KR850001172B1 (en) Treatment method of organic wastewater
JP3229806B2 (en) Human wastewater treatment equipment
JPS6254078B2 (en)
JPH0141399B2 (en)
JPH02139099A (en) Treatment of organic sewage
JPS64119B2 (en)
JPS637840B2 (en)
JPS6244996B2 (en)
JPH10156381A (en) Method for reducing volume of organic sludge