[go: up one dir, main page]

JPS63229792A - Temperature compensated light emitting element drive circuit - Google Patents

Temperature compensated light emitting element drive circuit

Info

Publication number
JPS63229792A
JPS63229792A JP62064600A JP6460087A JPS63229792A JP S63229792 A JPS63229792 A JP S63229792A JP 62064600 A JP62064600 A JP 62064600A JP 6460087 A JP6460087 A JP 6460087A JP S63229792 A JPS63229792 A JP S63229792A
Authority
JP
Japan
Prior art keywords
emitting element
light emitting
circuit
element drive
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62064600A
Other languages
Japanese (ja)
Inventor
Hiroshi Okada
博司 岡田
Noriaki Saito
斉藤 憲敬
Mikihiro Okuno
奥野 幹広
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP62064600A priority Critical patent/JPS63229792A/en
Publication of JPS63229792A publication Critical patent/JPS63229792A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/068Stabilisation of laser output parameters
    • H01S5/06804Stabilisation of laser output parameters by monitoring an external parameter, e.g. temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/068Stabilisation of laser output parameters
    • H01S5/06808Stabilisation of laser output parameters by monitoring the electrical laser parameters, e.g. voltage or current

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Semiconductor Lasers (AREA)
  • Led Devices (AREA)

Abstract

PURPOSE:To reduce the power consumption of a whole circuit by applying the output signal of a difference detector as a control signal to a light emitting element drive current controller. CONSTITUTION:A switching circuit 20 which closes and opens in response to an input signal is provided, and connected in series with a light emitting element drive current controller 10 connected in series with a light emitting element. A current flowing to the element is detected by a current monitor 30, an environmental temperature is simultaneously detected, the detection signals are added, the difference from a reference value is detected by a difference detector 40, and a difference signal is fed back to the controller 10 to control the energization of the element. That is, when the environmental temperature varies during the lighting of the element, the output of a temperature monitor 35 is varied to control to feed back to cancel the light emitting power of the element, i.e., the variation in the light emitting intensity. Thus, it can prevent a wasteful current consumption.

Description

【発明の詳細な説明】 (産業上の利用分野1 本発明は、デジタル信号によりLEDや半導体レーザ等
の発光素子を駆動・発光せしめる回路に関し、特に光通
信等に用いられる定電流駆動回路における温度補償型回
路に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field 1) The present invention relates to a circuit that drives a light emitting element such as an LED or a semiconductor laser to emit light using a digital signal. Regarding compensation type circuits.

[従来の技術] 従来から種々の光通信方式が開発されているが、デジタ
ル信号によって発光素子を駆動することによりデジタル
信号を光信号に変換l−で送信する方式の発光素子駆動
回路においては、周囲温度の変化によって発光素子の発
光パワーが変化することを防止するために温度補償を行
うことがある。かかる従来の回路としては、第3図に示
すオートパワーコントロール回路が用いられてきた。
[Prior Art] Various optical communication systems have been developed in the past, but in a light-emitting element drive circuit that converts the digital signal into an optical signal and transmits it by driving the light-emitting element with a digital signal, Temperature compensation may be performed to prevent the light emitting power of the light emitting element from changing due to changes in ambient temperature. As such a conventional circuit, an auto power control circuit shown in FIG. 3 has been used.

plS3図において66は発光素子として用いられるL
ED、 71は受光素子として用いられるフォトダイオ
ードである。発光素子66から発射した光は光分岐68
に与えられて、ここで出力光69とモニタ用の信号光7
0とに分割される。モニタ用の信号光70は受光素子7
1に導かれて出射パワーモニタ回路72にて出射パワー
を検出する。出射バーワモニタ回路72の出力回路は制
御信号発生回路74に与えられ、ここで基準値と検出し
た出射パワーを比較し、その差分を補償するための制御
信号を作り、発光素子駆動電流制御回路65に送ってこ
れを制御する。
In the plS3 diagram, 66 is L used as a light emitting element.
ED, 71 is a photodiode used as a light receiving element. The light emitted from the light emitting element 66 is split into a light branch 68
Here, the output light 69 and the signal light 7 for monitoring are
It is divided into 0 and 0. The signal light 70 for monitoring is transmitted to the light receiving element 7
1, the output power is detected by the output power monitor circuit 72. The output circuit of the output power monitor circuit 72 is given to a control signal generation circuit 74, which compares the detected output power with a reference value, creates a control signal to compensate for the difference, and sends it to the light emitting element drive current control circuit 65. Send and control this.

即ち、従来の回路においては出射光の強度を測定して、
これをフィードバック制御するものであった。
That is, in the conventional circuit, the intensity of the emitted light is measured,
This was controlled by feedback.

[発明が解決しようとする問題点1 かかる従来の発光素子駆動回路は、出射光の強度を測定
・検出してフィードバックする構成であるため、光分岐
や受光素子を必要とし、構造が複雑となりコスト上昇、
保守・点検の必要等の問題を生じていた。更に出射光の
光路に光分岐を挿入したため、挿入損失の分だけ送信出
力が減少するという欠点もあった。特に入力信号のデユ
ーティ比が一定でないデジタル信号の場合は、出射光も
これに応じてそのデユーティ比が変化するから基準値を
定めることが非常に困難である。従ってデユーティ比が
一定であるか、あるいは連続信号のときしか実際上は使
用できなかった。
[Problem to be Solved by the Invention 1] Such a conventional light emitting element drive circuit is configured to measure and detect the intensity of emitted light and feed it back, so it requires a light branch and a light receiving element, resulting in a complicated structure and high cost. rise,
This caused problems such as the need for maintenance and inspection. Furthermore, since an optical branch is inserted into the optical path of the emitted light, there is also the drawback that the transmission output is reduced by the amount of insertion loss. Particularly in the case of a digital signal in which the duty ratio of the input signal is not constant, it is very difficult to determine a reference value because the duty ratio of the output light changes accordingly. Therefore, in practice, it could only be used when the duty ratio was constant or when the signal was continuous.

[問題点を解決するための手段] 上記従来の発光素子駆動回路の欠点を克服するために本
発明においてはその原理図を示す第1図のブロックグイ
7グラムに示されるように人力信号に応じて開閉するス
イッチング回路20を設け、発光素子に直列に接続され
た発光素子駆動電流制御回路10にこのスイッチング回
路20を直列に接続し、−力発光素子を流れる電流を電
流モニタ回路30で検出すると同時に周囲温度を検出し
、これらの検出信号を加算した後に差検出回路40にて
基準値との差を検出し、この差信号を上記発光素子駆動
回路10にフィードバックすることにより発光素子への
通電を制御するものである。
[Means for Solving the Problems] In order to overcome the drawbacks of the conventional light emitting element drive circuit, the present invention provides a system that responds to human input signals as shown in block diagram 7 of FIG. A switching circuit 20 that opens and closes is provided, and this switching circuit 20 is connected in series to the light emitting element drive current control circuit 10 connected in series to the light emitting element, and the current flowing through the light emitting element is detected by the current monitor circuit 30. At the same time, the ambient temperature is detected, and after adding these detection signals, the difference detection circuit 40 detects the difference from the reference value, and this difference signal is fed back to the light emitting element drive circuit 10 to energize the light emitting element. It controls the

即ち、本発明によれば入力信号に応じて発光素子への通
電を制御する発光素子駆動回路であって、該発光素子へ
の通電を制御する発光素子駆動電流制御回路と、該発光
素子駆動電流制御回路に直列に接続され該入力信号に応
じて開閉するスイッチング回路と、該発光素子への通電
量を検出する電流モニタ回路と、周囲温度を検出する温
度モニタ回路と、該電流モニタ回路からの信号と該温度
モニタ回路からの信号を加算する加算回路と、基準電圧
を発生する基準電圧発生回路と、該加算回路からの信号
電圧と該基準電圧の差に応じた信号を出力する差検出回
路とからなり、該差検出回路の出力信号を該発光素子駆
動電流制御回路に制御信号として与える構成としたこと
を特徴とする温度補償型発光素子駆動回路が提供される
That is, according to the present invention, there is provided a light emitting element drive circuit that controls energization to a light emitting element according to an input signal, the light emitting element drive current control circuit controlling energization to the light emitting element, and the light emitting element drive current. A switching circuit that is connected in series to the control circuit and opens and closes according to the input signal, a current monitor circuit that detects the amount of current flowing to the light emitting element, a temperature monitor circuit that detects the ambient temperature, and a current monitor circuit that detects the ambient temperature. An addition circuit that adds the signal and the signal from the temperature monitor circuit, a reference voltage generation circuit that generates a reference voltage, and a difference detection circuit that outputs a signal according to the difference between the signal voltage from the addition circuit and the reference voltage. There is provided a temperature-compensated light emitting element drive circuit characterized in that the output signal of the difference detection circuit is provided as a control signal to the light emitting element drive current control circuit.

[作用j 本発明は上述の構成としたため、発光素子が点灯中に周
囲温度に変化があった場合、温度モニタ回路の出力が変
化して発光素子の発光パワー、即ち発光強度の変化を打
ち済すよう、フイードバッり制御を行うことを可能とし
ている。更に入力信号がHレベルのときはフィードバッ
ク制御により発光素子の駆動電流は一定に保たれ、又入
力信号がLレベルのときは、上記スイッチング回路も発
光素子駆動電流制御回路も非通電状態となるので無駄な
消費電流を防止することができる。
[Function j] Since the present invention has the above-described configuration, if there is a change in the ambient temperature while the light emitting element is lit, the output of the temperature monitor circuit changes to compensate for the change in the light emitting power of the light emitting element, that is, the light emitting intensity. This makes it possible to perform feedback control to ensure that Furthermore, when the input signal is at H level, the drive current of the light emitting element is kept constant by feedback control, and when the input signal is at L level, both the switching circuit and the light emitting element drive current control circuit are de-energized. It is possible to prevent unnecessary current consumption.

[実施例] 以下実施例によって本発明をより詳細に説明する。[Example] The present invention will be explained in more detail with reference to Examples below.

第2図は本発明の温度補償型発光素子駆動回路の実施例
を示す回路図である。第2図において12は発光素子で
あり、LED又は半導体レーザ等が用いられる。14は
発光素子12の通電を制御するためのトランジスタであ
り、そのコレクタ〜エミッタ通路が発光素予見に直列に
接続されている。図示の実施例では発光索子12の7ノ
ードが直流電源端子+■に又カソードがトランジスタ1
4のコレクタに接続されている。16はトランジスタ1
4のベースに接続された抵抗であり後述する差動増幅器
42の出力信号を伝達する。上記発光素子12、トラン
ジスタ14、抵抗16からなる部分は第1図の発光素子
駆動電流回路10に相当する。22はトランジスタであ
り、そのコレクタ〜エミッタ通路が前記トランジスタ1
4のコレクタ〜エミッタ通路に直列に接続されている。
FIG. 2 is a circuit diagram showing an embodiment of the temperature compensated light emitting element driving circuit of the present invention. In FIG. 2, 12 is a light emitting element, such as an LED or a semiconductor laser. Reference numeral 14 denotes a transistor for controlling energization of the light emitting element 12, and its collector-emitter path is connected in series to the light emitting element. In the illustrated embodiment, seven nodes of the light emitting cable 12 are connected to the DC power supply terminal +■, and the cathode is connected to the transistor 1.
4 collector. 16 is transistor 1
4, and transmits an output signal of a differential amplifier 42, which will be described later. The portion consisting of the light emitting element 12, transistor 14, and resistor 16 corresponds to the light emitting element drive current circuit 10 in FIG. 22 is a transistor whose collector-emitter path is connected to the transistor 1
It is connected in series to the collector-emitter path of No. 4.

トランジスタ22のベースは入力端子60に接続されて
いる。このトランジスタZ2が第1図のスイッチング回
路20に相当する。
The base of transistor 22 is connected to input terminal 60. This transistor Z2 corresponds to the switching circuit 20 in FIG.

上記トランジスタ22のエミッタと接地間にはダイオー
ド36と抵抗32の直列回路が接続されている。
A series circuit of a diode 36 and a resistor 32 is connected between the emitter of the transistor 22 and ground.

この抵抗32は第1図の電流モニタ回路30に相当し、
そこを流れる電流に比例した電圧Vmを両端子間に発生
する。一方、上記ダイオード36は第1図の電流モニタ
回路35に相当し、周囲温度に反比例した電圧Vtをそ
の両端に生ずる。かかるダイオードとしては、一般のシ
リコンダイオードが用いられる。トランジスタ22のエ
ミッタと上記抵抗32の接続点は前記差動増幅器42と
して用いられるオペアンプの反転入力端子(−)へ接続
されている。一方オペアンプ42の非反転入力端子(+
)には第1図の基準電圧発生回路50を構成する抵抗5
2とツェナーダイオード54の直列回路からの基準直流
電圧Vrが与えられている。この直列回路は図示の如く
直流電圧端子+Vと接地間に接続されている。
This resistor 32 corresponds to the current monitor circuit 30 in FIG.
A voltage Vm proportional to the current flowing therethrough is generated between both terminals. On the other hand, the diode 36 corresponds to the current monitor circuit 35 in FIG. 1, and generates a voltage Vt across it that is inversely proportional to the ambient temperature. A general silicon diode is used as such a diode. A connection point between the emitter of the transistor 22 and the resistor 32 is connected to an inverting input terminal (-) of an operational amplifier used as the differential amplifier 42. On the other hand, the non-inverting input terminal (+
) is a resistor 5 that constitutes the reference voltage generation circuit 50 in FIG.
A reference DC voltage Vr is provided from a series circuit of 2 and a Zener diode 54. This series circuit is connected between the DC voltage terminal +V and ground as shown.

次に上記第2図の実施例の動作について説明する。入力
端子60には図示しない回路からデノタル信号が入力さ
れている。今、このデノタル信号がHレベルであるとす
ると、トランジスタ14.22が導通し、発光素子12
に駆動電流■が流れる。この駆動電流工はトランジスタ
14のコレクタ〜エミッタ通路及びトランジスタ22の
コレクタ〜エミッタ通路を介して抵抗32に流入するの
で、抵抗32の両端には駆動電流Iに比例した電圧降下
Vmが発生する。即ち、抵抗32は第1図の電流モニタ
回路3゜として作用するのである。
Next, the operation of the embodiment shown in FIG. 2 will be explained. A digital signal is input to the input terminal 60 from a circuit not shown. Now, if this digital signal is at H level, the transistors 14 and 22 become conductive, and the light emitting element 12
Drive current ■ flows through. Since this drive current flows into the resistor 32 via the collector-emitter path of the transistor 14 and the collector-emitter path of the transistor 22, a voltage drop Vm proportional to the drive current I occurs across the resistor 32. That is, the resistor 32 functions as the current monitor circuit 3° of FIG.

一方、ダイオード36の両端には曲述の順方向電圧Vt
が発生しているから、この電圧Vしと抵抗3Zの両端間
に発生した電圧Vmの和Vs=Vt十Vmがオペアンプ
42へ送られツェナーダイオード54によって定められ
る基1電圧Vrとの差が検出される。
On the other hand, the forward voltage Vt as described above is applied across the diode 36.
is generated, the sum of this voltage V and the voltage Vm generated across the resistor 3Z, Vs = Vt + Vm, is sent to the operational amplifier 42, and the difference between it and the base voltage Vr determined by the Zener diode 54 is detected. be done.

従ってオペアンプ42の出力には差電圧Vd=Vr−V
sが得られ、この差電圧Vdは抵抗16を介してトラン
ジスタ14のベースにバイアスとして与えられる。
Therefore, the output of the operational amplifier 42 has a differential voltage Vd = Vr - V
s is obtained, and this differential voltage Vd is applied to the base of the transistor 14 via the resistor 16 as a bias.

まず最初に周囲温度が一定していて、ダイオード36の
両端電圧Vtが一定の場合について説明する。今、発光
素子12の駆動電流Iが何らかの原因で増加したとする
。■が増加すると抵抗32における電圧降下Vn+が増
大するのでオペアンプ4Zの出力である差電圧Vdが減
少する。従ってトランジスタ14のベースバイアス電圧
が低下し、駆動電流工が減少する。■が減少すると抵抗
32による電圧降下Vmも減少し、よってVs=Vt+
Vmも減少しオペアンプ42の出力電圧Vdが上昇する
。従ってトランジスタ14のベースバイアス電圧が上昇
して駆動電流■が増加する。このようなフィードバック
制御により、入力信号がHレベルの期間内においては、
発光素子12の駆動電流Iは常時一定に保たれる。
First, a case where the ambient temperature is constant and the voltage Vt across the diode 36 is constant will be described. Now, assume that the drive current I of the light emitting element 12 increases for some reason. As (2) increases, the voltage drop Vn+ across the resistor 32 increases, so the differential voltage Vd, which is the output of the operational amplifier 4Z, decreases. Therefore, the base bias voltage of transistor 14 is reduced and the drive current is reduced. When (2) decreases, the voltage drop Vm due to the resistor 32 also decreases, so Vs=Vt+
Vm also decreases and the output voltage Vd of the operational amplifier 42 increases. Therefore, the base bias voltage of the transistor 14 increases, and the drive current (2) increases. With such feedback control, during the period when the input signal is at H level,
The drive current I of the light emitting element 12 is always kept constant.

次に入力信号がLレベルになったとすると、トランジス
タ22が非導通状態となるため発光素子12の駆動電流
Iは流れなくなり発光索子12は消灯する。■がOとな
るため抵抗32における電圧降下v11は0となり、が
っ、ダイオード36の順方向電圧Vtも0となるため、
Vs=0となる。従ってオペアンプ42の出力電圧Vd
はVd=Vrとなり、この電圧Vdが抵抗16を介して
トランジスタ14のベースに与えられているので、入力
信号が次にHレベルとなったときには、トランジスタ1
4.22双方共導通状態となることができる。
Next, when the input signal becomes L level, the transistor 22 becomes non-conductive, so the drive current I of the light emitting element 12 stops flowing, and the light emitting element 12 turns off. Since (2) becomes O, the voltage drop v11 at the resistor 32 becomes 0, and the forward voltage Vt of the diode 36 also becomes 0, so
Vs=0. Therefore, the output voltage Vd of the operational amplifier 42
is Vd=Vr, and this voltage Vd is applied to the base of the transistor 14 via the resistor 16, so when the input signal becomes H level next time, the transistor 1
4.22 Both can be in a conductive state.

以上の説明は周囲温度が一定の場合であったが、周囲温
度が変化すると、駆動電流■が一定であっても発光素子
12の発光強度が低下する。かかる発光強度の変動は次
のように防止される。前述の如く周囲温度の上昇に伴い
ダイオード36の順方向電圧Vtが低下するから、抵抗
32の両端電圧Vmが一定であってもVs=Vt+Vm
は減少する。従ってオペアンプ42の出力電圧Vdは増
加し、発光素子駆動電流Iを増大せしめて発光強度を強
める。一方、逆に周囲温度が低下した場合には発光強度
が増大するが、今度は上記とは逆にVtの増大→Vsの
増大→Vdの減少というような動作により駆動電流Iを
減少せしめて発光強度を弱める。
The above explanation was based on a case where the ambient temperature was constant, but when the ambient temperature changes, the light emission intensity of the light emitting element 12 decreases even if the drive current (2) is constant. Such fluctuations in emission intensity are prevented as follows. As mentioned above, the forward voltage Vt of the diode 36 decreases as the ambient temperature rises, so even if the voltage Vm across the resistor 32 is constant, Vs=Vt+Vm
decreases. Therefore, the output voltage Vd of the operational amplifier 42 increases, increasing the light emitting element drive current I and increasing the light emission intensity. On the other hand, when the ambient temperature decreases, the emission intensity increases, but this time, contrary to the above, the drive current I is decreased by the operation of increasing Vt → increasing Vs → decreasing Vd and emitting light. Reduce intensity.

[発明の効果] 上述の如く本発明による温度補償型発光素子駆動回路に
おいては、簡単な回路構成によって周囲温度の変化によ
る発光素子の発光強度の変動が効果的に防止され、発光
時には常時一定の発光強度に保たれる。従って従来の回
路に必要であった光分岐や受光素子は不要となった。又
、発光素子が点灯中は定電流制御がなされ、発光素子が
消灯中は無駄な電流の消費を防止することが可能である
[Effects of the Invention] As described above, in the temperature-compensated light-emitting element drive circuit according to the present invention, fluctuations in the light emission intensity of the light-emitting element due to changes in ambient temperature are effectively prevented by the simple circuit configuration, and the light emission intensity is always constant during light emission. Emission intensity is maintained. Therefore, the optical branching and light receiving elements required in conventional circuits are no longer necessary. Further, constant current control is performed while the light emitting element is on, and it is possible to prevent unnecessary current consumption while the light emitting element is off.

従ってデユーティ比の小さい入力信号で発光素子を駆動
する場合には、従来の回路と比較すると回路全体の消費
電力を低下させることができるという特長がある。
Therefore, when driving a light emitting element with an input signal having a small duty ratio, the present invention has the advantage that the power consumption of the entire circuit can be reduced compared to conventional circuits.

【図面の簡単な説明】[Brief explanation of the drawing]

!@1図は本発明の温度補償型発光素子駆動回路の原理
を示すブロック図、第2図は本発明の温度補償型発光素
子駆動回路の一実施例を示す回路図、第3図は従゛米の
オートパワーコントロール回路による発光素子駆動回路
の一例を示す回路図である。 10・・・発光素子駆動電流制御回路、12・・・発光
素子、 14・・・ トランジスタ、 16・・・抵抗、 20・・・ スイッチング回路、 22・・・ トランジスタ、 30・・・定電流モニタ回路、 35・・・温度モニタ回路、 36 ・・・ ダイオード、 32・・・抵抗、 40・・・差検出回路、 42・・・差動増幅器、 50・・・基準電圧発生回路、 52・・・抵抗、 54 ・・・ ツェナーダイオード、 60・・・入力端子、 ■ ・・・発光素子駆動電流、 Vm・・・電圧降下、 Vt・・・ダイオード順方向電圧、 ■「・・・基準電圧 Vcl・・・差電圧、 十■ ・・・直流電源端子。 発明者 岡 1) 博 司 斎Il  憲敬 奥  野   幹  広
! @ Figure 1 is a block diagram showing the principle of the temperature compensated light emitting element driving circuit of the present invention, Figure 2 is a circuit diagram showing an embodiment of the temperature compensated light emitting element driving circuit of the present invention, and Figure 3 is a block diagram showing the principle of the temperature compensated light emitting element driving circuit of the present invention. FIG. 2 is a circuit diagram showing an example of a light emitting element drive circuit using a US auto power control circuit. DESCRIPTION OF SYMBOLS 10... Light emitting element drive current control circuit, 12... Light emitting element, 14... Transistor, 16... Resistor, 20... Switching circuit, 22... Transistor, 30... Constant current monitor Circuit, 35...Temperature monitor circuit, 36...Diode, 32...Resistor, 40...Difference detection circuit, 42...Differential amplifier, 50...Reference voltage generation circuit, 52...・Resistance, 54...Zener diode, 60...Input terminal, ■...Light emitting element drive current, Vm...Voltage drop, Vt...Diode forward voltage, ■"...Reference voltage Vcl ...Differential voltage, 10■ ...DC power supply terminal. Inventors: Oka 1) Hiroshi Shisai, Noritaka Okuno, Mikihiro

Claims (7)

【特許請求の範囲】[Claims] (1)入力信号に応じて発光素子への通電を制御する発
光素子駆動回路であって、該発光素子への通電を制御す
る発光素子駆動電流制御回路と、該発光素子駆動電流制
御回路に直列に接続され該入力信号に応じて開閉するス
イッチング回路と、該発光素子への通電量を検出する電
流モニタ回路と、周囲温度を検出する温度モニタ回路と
、該電流モニタ回路からの信号と該温度モニタ回路から
の信号を加算する加算回路と、基準電圧を発生する基準
電圧発生回路と、該加算回路からの信号電圧と該基準電
圧の差に応じた信号を出力する差検出回路とからなり、
該差検出回路の出力信号を該発光素子駆動電流制御回路
に制御信号として与える構成としたことを特徴とする温
度補償型発光素子駆動回路。
(1) A light emitting element drive circuit that controls energization to a light emitting element according to an input signal, the light emitting element drive current control circuit controlling energization to the light emitting element, and the light emitting element drive current control circuit connected in series to the light emitting element drive current control circuit. a switching circuit that is connected to and opens and closes according to the input signal, a current monitor circuit that detects the amount of current flowing to the light emitting element, a temperature monitor circuit that detects the ambient temperature, and a signal from the current monitor circuit and the temperature. Consisting of an adding circuit that adds signals from a monitor circuit, a reference voltage generating circuit that generates a reference voltage, and a difference detection circuit that outputs a signal according to the difference between the signal voltage from the adding circuit and the reference voltage,
A temperature-compensated light-emitting element drive circuit, characterized in that the output signal of the difference detection circuit is provided as a control signal to the light-emitting element drive current control circuit.
(2)該発光素子駆動電流制御回路が該発光素子に直列
に接続されたコレクタ〜エミッタ通路を有するトランジ
スタであることを特徴とする特許請求の範囲第1項記載
の温度補償型発光素子駆動回路。
(2) The temperature compensated light emitting element drive circuit according to claim 1, wherein the light emitting element drive current control circuit is a transistor having a collector-emitter path connected in series to the light emitting element. .
(3)該スイッチング回路が該発光素子と該トランジス
タの直列回路に直列に接続されたトランジスタからなる
ことを特徴とする特許請求の範囲第2項記載の温度補償
型発光素子駆動回路。
(3) The temperature-compensated light-emitting element drive circuit according to claim 2, wherein the switching circuit comprises a transistor connected in series with a series circuit of the light-emitting element and the transistor.
(4)該電流モニタ回路が該発光素子に直列に接続され
た抵抗からなることを特徴とする特許請求の範囲第1項
記載の温度補償型発光素子駆動回路。
(4) The temperature compensated light emitting element drive circuit according to claim 1, wherein the current monitor circuit comprises a resistor connected in series with the light emitting element.
(5)該温度モニタ回路が該発光素子に直列に接続され
たシリコンダイオードからなることを特徴とする特許請
求の範囲第1項記載の温度補償型発光素子駆動回路。
(5) The temperature-compensated light-emitting element drive circuit according to claim 1, wherein the temperature monitor circuit comprises a silicon diode connected in series to the light-emitting element.
(6)該加算回路が該温度モニタ回路と該電流モニタ回
路を直列に接続する手段からなることを特徴とする特許
請求の範囲第1項記載の温度補償型発光素子駆動回路。
(6) The temperature compensated light emitting element drive circuit according to claim 1, wherein the adding circuit comprises means for connecting the temperature monitor circuit and the current monitor circuit in series.
(7)該差検出回路が差動増幅器からなり、その出力信
号を該制御信号として該発光素子駆動電流制御回路を構
成する該トランジスタのベースに与える構成であること
を特徴とする特許請求の範囲第2項記載の温度補償型発
光素子駆動回路。
(7) Claims characterized in that the difference detection circuit is composed of a differential amplifier, and its output signal is applied as the control signal to the base of the transistor constituting the light emitting element drive current control circuit. 2. The temperature compensated light emitting element drive circuit according to item 2.
JP62064600A 1987-03-18 1987-03-18 Temperature compensated light emitting element drive circuit Pending JPS63229792A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62064600A JPS63229792A (en) 1987-03-18 1987-03-18 Temperature compensated light emitting element drive circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62064600A JPS63229792A (en) 1987-03-18 1987-03-18 Temperature compensated light emitting element drive circuit

Publications (1)

Publication Number Publication Date
JPS63229792A true JPS63229792A (en) 1988-09-26

Family

ID=13262910

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62064600A Pending JPS63229792A (en) 1987-03-18 1987-03-18 Temperature compensated light emitting element drive circuit

Country Status (1)

Country Link
JP (1) JPS63229792A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003504828A (en) * 1999-07-07 2003-02-04 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Flyback converter as LED driver
EP4170837A3 (en) * 2021-10-20 2023-07-19 Simmonds Precision Products, Inc. Laser diode drive systems

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003504828A (en) * 1999-07-07 2003-02-04 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Flyback converter as LED driver
EP4170837A3 (en) * 2021-10-20 2023-07-19 Simmonds Precision Products, Inc. Laser diode drive systems
US12272923B2 (en) 2021-10-20 2025-04-08 Simmonds Precision Products, Inc. Laser diode drive systems

Similar Documents

Publication Publication Date Title
US5287375A (en) Apparatus for driving a laser diode array
EP0215311A2 (en) Laser diode driving circuit
EP0492117B1 (en) Current source with adjustable temperature variation
US6118259A (en) Controlled current generator for operating light emitting diodes
JPH0424611A (en) Liquid crystal display device with automatic contrast adjusting function
EP0482520B1 (en) Constant-current circuit for light-emitting element
US5224112A (en) Semiconductor laser device driving circuit
JPS63229792A (en) Temperature compensated light emitting element drive circuit
JP2983038B2 (en) Switching device
US5530936A (en) Semiconductor laser driving circuit
JPS63229791A (en) Drive circuit for light emitting element
JP2518403B2 (en) Light modulation circuit
JPS6151887A (en) Driving device for semiconductor laser
US5425040A (en) Switching regulator control for a laser diode
JPS61224385A (en) Semiconductor laser drive circuit
JPS60113545A (en) Two-line-type transmitter
JPH0685362A (en) Laser diode driving circuit within wide temperature range
JPS59218520A (en) Automatic control circuit
JP2687541B2 (en) Laser diode drive current detection method
JP2746401B2 (en) Semiconductor laser controller
JPH0338841Y2 (en)
EP0295006A3 (en) An optical sensor
JPS6251279A (en) Semiconductor-laser driving circuit
JPH04175679A (en) Optical transmission circuit
JP2993179B2 (en) Laser diode drive circuit