JPS63226624A - Liquid crystal element - Google Patents
Liquid crystal elementInfo
- Publication number
- JPS63226624A JPS63226624A JP61298624A JP29862486A JPS63226624A JP S63226624 A JPS63226624 A JP S63226624A JP 61298624 A JP61298624 A JP 61298624A JP 29862486 A JP29862486 A JP 29862486A JP S63226624 A JPS63226624 A JP S63226624A
- Authority
- JP
- Japan
- Prior art keywords
- liquid crystal
- axis
- crystal element
- phase
- molecule
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000004973 liquid crystal related substance Substances 0.000 title claims abstract description 97
- 239000000758 substrate Substances 0.000 claims abstract description 35
- 238000010521 absorption reaction Methods 0.000 claims abstract description 26
- 239000004990 Smectic liquid crystal Substances 0.000 claims abstract description 24
- 230000005540 biological transmission Effects 0.000 claims abstract description 19
- 230000007704 transition Effects 0.000 claims abstract description 19
- 230000005684 electric field Effects 0.000 claims abstract description 13
- 230000003287 optical effect Effects 0.000 claims abstract description 8
- 210000002858 crystal cell Anatomy 0.000 claims description 20
- 238000001514 detection method Methods 0.000 claims description 3
- 230000007423 decrease Effects 0.000 claims description 2
- 239000005262 ferroelectric liquid crystals (FLCs) Substances 0.000 description 17
- 238000002834 transmittance Methods 0.000 description 7
- 230000004044 response Effects 0.000 description 4
- 210000004027 cell Anatomy 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 230000005621 ferroelectricity Effects 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 230000003098 cholesteric effect Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 description 2
- 239000004642 Polyimide Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 210000003127 knee Anatomy 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000003446 memory effect Effects 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 238000010583 slow cooling Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 125000006850 spacer group Chemical group 0.000 description 1
Landscapes
- Liquid Crystal (AREA)
- Devices For Indicating Variable Information By Combining Individual Elements (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
本発明は、液晶表示素子や液晶−光シャッタ等に用いる
液晶素子に関するものである。DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a liquid crystal element used in a liquid crystal display element, a liquid crystal-optical shutter, and the like.
(従来の技術)
従来より走査電極群と信号電極群とをマトリクス状に構
成し、その電極間に液晶化合物の層を充填して多数の画
素を形成し、画線或いは情報の表示を行う液晶表示素子
はよく知られている。(Prior Art) Conventionally, a liquid crystal display has a scanning electrode group and a signal electrode group configured in a matrix, and a layer of liquid crystal compound is filled between the electrodes to form a large number of pixels, and displays image lines or information. Display elements are well known.
特に、クラーク等が米国特許第4367924号や同第
4563059号明細書で明らかにした単安定状態、双
安定状態や多安定状態を生じる強誘電性スメクチック液
晶素子が知られている。In particular, ferroelectric smectic liquid crystal devices that produce monostable, bistable, or multistable states are known, as disclosed by Clark et al. in US Pat. No. 4,367,924 and US Pat. No. 4,563,059.
この液晶素子は、一対の基板間の間隔をカイラルスメク
チック液晶の固有する螺旋構造を無電界時であっても消
失させているのに十分に薄い間隔に設定しており、これ
によってメモリー効果が付与されている。In this liquid crystal element, the distance between the pair of substrates is set to be thin enough to eliminate the helical structure unique to chiral smectic liquid crystal even in the absence of an electric field, thereby imparting a memory effect. has been done.
(発明が解決しようとしている問題点)前述した強誘電
性液晶素子は、第3図に示す様に温度の変化に応じてチ
ルト角θに変動を生じ、低温領域でのチルト角θに較べ
、高温領域でのチルト角θが小さくなる問題点を有して
いた。(Problem to be Solved by the Invention) The above-mentioned ferroelectric liquid crystal element has a tilt angle θ that fluctuates depending on temperature changes, as shown in FIG. There was a problem in that the tilt angle θ became small in a high temperature region.
第3図に示すチルト角θは、強誘電性液晶の閾値電圧を
越えた電圧を強誘電性液晶層に印加した時のチルト角で
あって、最大チルト角θとして表わしたものである。The tilt angle θ shown in FIG. 3 is the tilt angle when a voltage exceeding the threshold voltage of the ferroelectric liquid crystal is applied to the ferroelectric liquid crystal layer, and is expressed as the maximum tilt angle θ.
また、前述の強誘電性液晶素子をディスプレイパネルに
通用した時には、外部温度の変化に応じて、ディスプレ
イパネルの透過率が変動し、高温領域では低輝度の表示
状態となる問題点を生じていた。Furthermore, when the aforementioned ferroelectric liquid crystal element was used in a display panel, the transmittance of the display panel fluctuated in response to changes in external temperature, resulting in a low-brightness display in high-temperature areas. .
従って本発明の目的は、前述したような従来の液晶素子
或いは液晶光−シャッタにおける問題点を解決した新規
な液晶素子を提供することにある。SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a novel liquid crystal device that solves the problems of conventional liquid crystal devices or liquid crystal light-shutters as described above.
(問題点を解決するための手段)
すなわち、本発明は、互いに対向する電極部を有する第
1及び第2の基板間に、強誘電性スメクチック液晶を配
置した液晶セルと、クロスニコル関係にある偏光子と検
光子とを有する光学的検知手段とを有する液晶素子にお
いて、前記強誘電性スメクチック液晶の降温下における
上限相転移点での最大チルト角θAと下限相転移点での
最大チルト角θBとの中間値(θB−θA)/2に相当
する温度より低い温度領域で最暗状態(又は最明状!a
)を生じる位置に、前記偏光子と検光子の透過軸(又は
吸収軸)を配置したことを特徴とする液晶素子である。(Means for Solving the Problems) That is, the present invention provides a liquid crystal cell in which a ferroelectric smectic liquid crystal is arranged between first and second substrates having electrode portions facing each other, and is in a cross Nicol relationship. In a liquid crystal element having an optical detection means having a polarizer and an analyzer, the maximum tilt angle θA at the upper limit phase transition point and the maximum tilt angle θB at the lower limit phase transition point of the ferroelectric smectic liquid crystal under decreasing temperature. The darkest state (or the brightest state! a
), the transmission axes (or absorption axes) of the polarizer and the analyzer are arranged at positions where the polarizer and the analyzer produce the following effects.
以上の如く液晶素子を構成することによって、素子の使
用時の温度変化により、液晶分子のチルト角が変化した
場合にも、低温度領域において最大のコントラストが達
成され、使用温度範囲内で大きな透過光強度が維持でき
、全体的に大きなコントラストが得られるものである。By configuring the liquid crystal element as described above, even if the tilt angle of the liquid crystal molecules changes due to temperature changes during use of the element, maximum contrast can be achieved in the low temperature range, and large transmission can be achieved within the operating temperature range. The light intensity can be maintained and a large contrast can be obtained overall.
次に本発明を更に詳しく説明する。Next, the present invention will be explained in more detail.
本発明の液晶素子で用いられる強誘電性を有するスメク
チック液晶としては、カイラルスメクティックC相(S
ee”) 、H相(SmH”) 、 F相(Sa+F”
) 、 I相(Sm1″)、J相(SmJ”) 、G相
(SmG’)又はに相(S+aK”)の液晶が適してい
る。As the smectic liquid crystal having ferroelectricity used in the liquid crystal element of the present invention, chiral smectic C phase (S
ee”), H phase (SmH”), F phase (Sa+F”
), I-phase (Sm1''), J-phase (SmJ''), G-phase (SmG') or 2-phase (S+aK'') liquid crystals are suitable.
これらの強誘電性液晶は、”LE JOURNAL D
E PH−YSIOUE LETTERS″36 (L
−69) +975、 Ferroelect−ric
Liquid Crystals ;^pplie
d Ph−ysics Let−ters ″ 3B
(11)1980 Submicro 5ec
ondBistableElectrooptic S
witching in Liquid Crysta
ls ;“固体物理″l6(141)1981 r液
晶」等に記載されており、本発明ではこれらに開示され
た強誘電性液晶はいずれも用いることができる。These ferroelectric liquid crystals are
E PH-YSIOUE LETTERS″36 (L
-69) +975, Ferroelect-ric
Liquid Crystals ;^pplie
d Physics Let-ters'' 3B
(11) 1980 Submicro 5ec
ondBistableElectrooptic S
witching in Liquid Crysta
ls ; “Solid State Physics” 16 (141) 1981 r Liquid Crystals”, and any of the ferroelectric liquid crystals disclosed therein can be used in the present invention.
第4図示の例は、本発明の強誘電性液晶素子の1例を模
式的に示すものであり、図中の41aと41bはIn2
O,、SnO2或いはITO(Indium−TtnO
xide)等の透明電極がコートされた基板(例えばガ
ラス板)であり、これらの一対の基板の少なくとも一方
には絶縁層及び/又は配向膜(いずれも図示なし)が設
けられ、これらの配向制御膜等の間に前記の如きスメク
チック液晶からなる液晶層42が、基板41aと41b
の面に垂直になるように配向した5IICs相等の液晶
層42として封入されている。The example shown in the fourth figure schematically shows one example of the ferroelectric liquid crystal element of the present invention, and 41a and 41b in the figure are In2
O,, SnO2 or ITO (Indium-TtnO
A substrate (e.g., a glass plate) coated with a transparent electrode (e.g. A liquid crystal layer 42 made of smectic liquid crystal as described above is arranged between the substrates 41a and 41b.
The liquid crystal layer 42 is encapsulated as a liquid crystal layer 42 of 5IICs phase or the like, which is oriented perpendicular to the plane.
太線で示した線43が液晶分子を表わしており、この液
晶分子43はその分子に直交した方向に双極子モーメン
ト(P上)44を有している。A thick line 43 represents a liquid crystal molecule, and this liquid crystal molecule 43 has a dipole moment (on P) 44 in a direction perpendicular to the molecule.
このような強誘電性液晶素子の基板41aと41b上の
電極間に一定の閾値以上の電圧を印加すると、液晶分子
43の螺旋構造がほどけ、双極子モーメント(P工)4
4がすべて電界方向に向くように液晶分子43の配向方
向を変えることができる。When a voltage higher than a certain threshold is applied between the electrodes on the substrates 41a and 41b of such a ferroelectric liquid crystal element, the helical structure of the liquid crystal molecules 43 is unraveled, and the dipole moment (P) 4
The orientation direction of the liquid crystal molecules 43 can be changed so that all of the liquid crystal molecules 43 are oriented in the direction of the electric field.
液晶分子43は細長い形状を有しており、その長袖方向
と短軸方向で屈折率の異方性を示し、従フて、例えば、
基板41aと41b面の上下に互いにクロスニコルの位
置関係に配置した偏光子と検光子を有する光学的検知手
段を置けば、電圧印加極性によって光学特性が変化する
液晶光学変調素子となることは容易に理解される。The liquid crystal molecules 43 have an elongated shape and exhibit refractive index anisotropy in the long axis direction and the short axis direction.
By placing an optical detection means having a polarizer and an analyzer disposed in a crossed nicol position above and below the surfaces of the substrates 41a and 41b, it is easy to create a liquid crystal optical modulation element whose optical characteristics change depending on the polarity of applied voltage. be understood.
更に好ましくは、液晶素子の厚さを充分に薄Xした場合
(例えば10μm以下)には、第5図に示すように電界
を印加していない状態でも液晶分子の螺旋構造がほどけ
(非螺旋構造)、その双極子モーメントP又はP′は上
向き(44a)又は下向き(44b)のいずれかの状態
をとる。More preferably, when the thickness of the liquid crystal element is made sufficiently thin (for example, 10 μm or less), the helical structure of the liquid crystal molecules is unraveled (non-helical structure) even when no electric field is applied, as shown in FIG. ), its dipole moment P or P' is either upward (44a) or downward (44b).
このような素子に第5図に示す如く一定の閾値以上の極
性の異なる電界E又はE′を任意の電圧印加手段(図示
なし)により所定時間付与すると、双極子モーメントP
又はP′は電界E又はE′の電界ベクトルに対応して上
向き44a又は下向き44bと向きを変え、それに応じ
て液晶分子43は第1の配向状Fi45aか或いは第二
の配向状態45bの何れか一方に配向する。When an electric field E or E' with a different polarity of a certain threshold value or more is applied to such an element for a predetermined time using an arbitrary voltage applying means (not shown) as shown in FIG. 5, the dipole moment P
Alternatively, P' changes its direction to be upward 44a or downward 44b in response to the electric field E or the electric field vector of E', and accordingly, the liquid crystal molecules 43 are either in the first orientation state Fi 45a or the second orientation state 45b. Orient to one side.
このような強誘電性液晶素子を光学変調素子として用い
ることの利点は先に述べたように2つある。As mentioned above, there are two advantages to using such a ferroelectric liquid crystal element as an optical modulation element.
第1には、応答速度が極めて速いこと、第2には、液晶
分子の配向が双安定性を有することである。第2の点を
例えば第5図によって説明すると、電界Eを印加すると
液晶分子は第1の配向状態45aに配向するが、この状
態では電界を切っても安定である。また、逆向きの電界
E′を印加すると、液晶分子は第2の配向状態45bに
配向してその分子の向き賀変えるが、やはり電界を切っ
てもこの状態に留まっている。また、与える電界Eが一
定の閾値を越えない限り、それぞれの配向状態にやはり
維持されている。このような応答速度の速さと、双安定
性が有効に実現されるには、素子としてできるだけ薄い
方が好ましく、一般的には0.5〜20μm、特に1〜
5μmが通している。Firstly, the response speed is extremely fast, and secondly, the alignment of liquid crystal molecules has bistability. The second point will be explained with reference to FIG. 5, for example. When the electric field E is applied, the liquid crystal molecules are aligned in the first alignment state 45a, and in this state they are stable even when the electric field is turned off. Further, when an electric field E' in the opposite direction is applied, the liquid crystal molecules are aligned to the second alignment state 45b and the orientation of the molecules is changed, but they remain in this state even after the electric field is turned off. Further, as long as the applied electric field E does not exceed a certain threshold value, each orientation state is maintained. In order to effectively realize such fast response speed and bistability, it is preferable that the element be as thin as possible, generally 0.5 to 20 μm, particularly 1 to 20 μm.
5μm is passing through.
また、第1の配向状j9i45aと第2の配向状態45
bのなす角度はチルト角θの2倍の値に設定され、この
チルト角θが22.5°の角度をもっときに、クロスニ
コル下で最大透過率が得られる。また、第4図に示す三
角錐のコーン角度の172の値が最大チルト角に相当し
ている。In addition, the first orientation state j9i45a and the second orientation state 45
The angle formed by b is set to twice the value of the tilt angle θ, and the maximum transmittance is obtained under crossed Nicol conditions when the tilt angle θ is 22.5°. Further, the value of 172 of the cone angle of the triangular pyramid shown in FIG. 4 corresponds to the maximum tilt angle.
この種の強誘電性液晶を用いるマトリックス電極構造を
有する強誘電性液晶素子は、例えば、クラークとラガバ
ルにより、米国特許第4367924号明細書に提案さ
れている。A ferroelectric liquid crystal element having a matrix electrode structure using this kind of ferroelectric liquid crystal is proposed by Clark and Ragaval in US Pat. No. 4,367,924, for example.
本発明者は、上記の如き液晶素子において、強誘電性を
有するスメクチックA相の分子の配列状態及びクロスニ
コル関係の偏光子と検光子との組合せによる液晶素子の
最適化を更に詳細に検討した結果、第1図に示す様に低
温度領域で偏光子の吸収軸を強誘電性液晶の少なくとも
2つの安定状態のうち一方の安定状態に配向した時の液
晶分子の分子軸に合わせることによりて、最暗状態を表
示するようにすると、その温度から高温領域に温度が変
動すると、コントラストは低下するが。In the liquid crystal device as described above, the present inventors investigated in more detail the arrangement state of the molecules of the smectic A phase having ferroelectricity and the optimization of the liquid crystal device by the combination of a polarizer and an analyzer in a crossed Nicol relationship. As a result, as shown in Figure 1, by aligning the absorption axis of the polarizer in the low temperature region with the molecular axis of the liquid crystal molecules when the ferroelectric liquid crystal is oriented in one of at least two stable states. However, if the darkest state is displayed, the contrast will decrease as the temperature changes from that temperature to a high temperature region.
反対に透過光強度は増加し、比較的高輝度となることが
判明した。On the contrary, it was found that the intensity of transmitted light increased, resulting in relatively high brightness.
従って、通常の使用温度範囲(−20℃〜80℃)で常
に大きい透過光強度が維持でき、全体的に大きなコント
ラストが得られることを知った。Therefore, it was found that a high intensity of transmitted light can be maintained at all times in the normal operating temperature range (-20°C to 80°C), and that a large overall contrast can be obtained.
この効果はチルト角の温度依存性が大きい時に特に顕著
である。This effect is particularly noticeable when the temperature dependence of the tilt angle is large.
以下実施例に基づいて本発明を更に詳細に説明する。The present invention will be explained in more detail below based on Examples.
強誘電性液晶材料として、チッソ社製のrcs+014
(商品名)」を使用した。この液晶材料の相転移点は下
記のとおりであった。As a ferroelectric liquid crystal material, rcs+014 manufactured by Chisso Corporation
(Product name)" was used. The phase transition point of this liquid crystal material was as follows.
80.5℃ Ch+Is。80.5℃ Ch+Is.
(Cry;結晶相、Sac” ;カイラルスメクチック
C相、SmA’;スメクチックA相、Ch:コレステリ
ック相、Isa;等労相)
尚、上述の相転移温度の測定は、パーキンエマル−社製
のDSCT型(商品名)に基いたものである。(Cry: crystalline phase, Sac'': chiral smectic C phase, SmA': smectic A phase, Ch: cholesteric phase, Isa: isotonic phase) The above-mentioned phase transition temperature was measured using a DSCT model manufactured by Perkin-Emul. It is based on (product name).
ITO電極が形成されているガラス基板にポリイミドl
1K(商品名:セミコファイン;Sem1cofine
)を400人の厚さでコーティングした。次に回転す
るファーブラシによフて、上記基板を一方向にラビング
処理した。このような2枚の基板を、スペーサを介して
対向して貼り合せたセルを作成した。このセル厚は3μ
mであった。Polyimide l is placed on the glass substrate on which the ITO electrode is formed.
1K (Product name: Sem1cofine
) was coated with a thickness of 400. Next, the substrate was rubbed in one direction using a rotating fur brush. A cell was created by bonding two such substrates facing each other with a spacer interposed therebetween. This cell thickness is 3μ
It was m.
上記セルに前記した液晶材料を等労相となる温度(10
0℃)にて注入して液晶セルを構成した。The liquid crystal material described above is applied to the cell at a temperature (10
0° C.) to construct a liquid crystal cell.
液晶セルの温度をコントロールしながら5℃/時間のス
ピードで徐冷すると、液晶セル内の液晶はCh相(コレ
ステリック相)、SmA’相(スメクチックA相)を経
て、SmC”相(カイラルスメクチックC相)に達する
。When the liquid crystal cell is slowly cooled at a rate of 5°C/hour while controlling the temperature of the liquid crystal cell, the liquid crystal in the liquid crystal cell passes through the Ch phase (cholesteric phase), the SmA' phase (smectic A phase), and then the SmC'' phase (chiral smectic C phase). phase).
これらの相変化は、液晶セルの両側に偏光子と検光子と
を配置することによって同定することができた。SmA
”相に場いては、液晶分子の長袖がラビング方向に揃う
ように配列していた。即ち、スメクティック相の液晶分
子層は、ラビング方向及び基板面に対して垂直となって
いる。These phase changes could be identified by placing a polarizer and analyzer on both sides of the liquid crystal cell. SmA
In the phase, the long sleeves of the liquid crystal molecules were aligned in the rubbing direction. That is, the liquid crystal molecule layer in the smectic phase was perpendicular to the rubbing direction and the substrate surface.
SmA”相から更に温度を下げるとSmC’相となる。When the temperature is further lowered from the SmA'' phase, the SmC' phase becomes the SmC' phase.
この液晶層厚は充分に薄いため、螺旋構造は解けて非螺
旋構造となっており、直交状態にあるクロスニコルの偏
光子と検光子との組合せによフて、2種の安定状態があ
ることを確認することができた。その詳細は下記の如く
である。Since this liquid crystal layer is sufficiently thin, the helical structure dissolves into a non-helical structure, and there are two stable states depending on the combination of a crossed Nicol polarizer and an analyzer that are orthogonal to each other. I was able to confirm that. The details are as follows.
第6図は、光源/偏光子/液晶セル/検光子を光路上に
目を置いて見たときの配置図である。FIG. 6 is a layout diagram of the light source/polarizer/liquid crystal cell/analyzer as seen with the eye placed on the optical path.
軸Oは、ラビング方向(一軸性の方向)であって、p、
、p2及びA、、A2はそれぞれ偏光子及び検光子の透
過軸(又は吸収軸)を示す。The axis O is the rubbing direction (uniaxial direction), and p,
, p2 and A, , A2 indicate the transmission axis (or absorption axis) of the polarizer and analyzer, respectively.
先に述べた如く、等労相より徐冷することによって得ら
れたSmC”相では、2つの安定状態を観察することが
できる。即ち、偏光子及び検光子の透過軸(又は吸収軸
)を直交させて観察するとき、それらと液晶セルの軸0
のなす角度が適正にされたとき、液晶セルは通常は斑模
様となった2種のドメインに分れていることがわかる。As mentioned above, two stable states can be observed in the SmC phase obtained by slow cooling from the iso-ro phase. When observing them, the axis 0 of the liquid crystal cell and
It can be seen that when the angle formed by the liquid crystal cell is set appropriately, the liquid crystal cell is usually divided into two types of domains with a mottled pattern.
例えば、液晶セルの温度が5℃であるとき、第6図の如
く、軸Oと偏光子の吸収軸P1とのなす角度が、偏光子
の透過軸(又は吸収軸)p+と検光子の透過軸(又は吸
収軸)AIとのなす角度を90°とした時に、最も大な
るジントラストすなわち最暗状態を呈した時の角度がチ
ルト角θに相当している。For example, when the temperature of the liquid crystal cell is 5°C, as shown in Figure 6, the angle between the axis O and the absorption axis P1 of the polarizer is the angle between the transmission axis (or absorption axis) p+ of the polarizer and the transmission axis of the analyzer. When the angle formed with the axis (or absorption axis) AI is 90°, the angle at which the greatest gint last, that is, the darkest state is exhibited, corresponds to the tilt angle θ.
また、偏光子/検光子の透過軸(又は吸収軸)を軸0に
関して第6図のように、前述と対称的位置(P2/A2
)にそれぞれ回転すると、上記ドメインは反転する、即
ち(PI/A2)配置において暗(深緑色)であったド
メインは明(黄色)に、一方明(黄色)であフたドメイ
ンは暗(深緑色)に変化する。Also, set the transmission axis (or absorption axis) of the polarizer/analyzer to a position symmetrical to the above (P2/A2) as shown in Figure 6 with respect to axis 0.
), the domains are reversed, i.e. domains that were dark (dark green) in the (PI/A2) configuration become light (yellow), while domains that were bright (yellow) and dull become dark (deep green).
また、偏光子及び検光子の透過軸(又は吸収軸)をPl
及びA1を90°にして配置し、対向する2つの基板間
に特定極性(例えば十とする)の直流電圧パルスを印加
すると、全体が暗(深緑色)に変わる。次に、逆極性(
−)の直流電圧パルスを印加すると、全体が明(黄色)
に変わる。Also, set the transmission axis (or absorption axis) of the polarizer and analyzer to Pl
and A1 are arranged at 90 degrees, and when a DC voltage pulse of a specific polarity (for example, 10) is applied between the two opposing substrates, the entire surface turns dark (deep green). Then reverse polarity (
–), the whole becomes bright (yellow) when a DC voltage pulse of
Changes to
以上のことから2種の安定状態とは、その液晶分子軸の
基板面への射影軸は平均的には軸P、方向を向いている
状態と軸P2方向を向いている状態であると考えること
ができる。また、これらの状態が互いに逆極性の直流電
圧パルスによって転移することから、これら2つの状態
はそれぞれ基板面に垂直方向に有限であり、且つ互いに
逆極性の平均的電気双極子モーメントを有していること
がわかる。From the above, we think that the two stable states are a state in which the projection axis of the liquid crystal molecule axis onto the substrate surface is oriented in the direction of axis P on average, and a state in which it is oriented in the direction of axis P2. be able to. Furthermore, since these states are transferred by DC voltage pulses of opposite polarity, each of these two states is finite in the direction perpendicular to the substrate surface and has an average electric dipole moment of opposite polarity. I know that there is.
次に液晶セルの温度を25〜50℃の範囲で変化させた
。温度変化とともに前記液晶のチルト角も変化し、透過
光強度とコントラストも変化した。チルト角の温度依存
性の測定結果を第3図に示す。第3図に示すチルト角θ
は、前述した最大チルト角として測定したものである。Next, the temperature of the liquid crystal cell was varied within a range of 25 to 50°C. As the temperature changed, the tilt angle of the liquid crystal also changed, and the transmitted light intensity and contrast also changed. Figure 3 shows the measurement results of the temperature dependence of the tilt angle. Tilt angle θ shown in Figure 3
is measured as the maximum tilt angle mentioned above.
また、強誘電性を示す液晶相、特にカイラルスメクチッ
クC相の上限相転移点でのチルト角θえは0°であって
、下限相転移点でのチルト角θBは、下記式(1)によ
って近似した値によって求めた。In addition, the tilt angle θ at the upper limit phase transition point of a liquid crystal phase exhibiting ferroelectricity, especially the chiral smectic C phase, is 0°, and the tilt angle θB at the lower limit phase transition point is calculated by the following formula (1). It was calculated using approximate values.
チルト角θB=に(TA −Ta −TC) l/2◆
C式中:に;比例定数
TA:上限相転移点(1)
′r8:下限相転移点(’C)
TA−Tc;繕乗曲線の原点温度(’e)C;%乗曲線
の原点チルト角(°)
第3図によれば、下限相転移点でのチルト角θ6は、約
26@である。従って、本発明では。Tilt angle θB = (TA - Ta - TC) l/2◆
In the C formula: Proportionality constant TA: Upper limit phase transition point (1) 'r8: Lower limit phase transition point ('C) TA-Tc: Origin temperature of the square power curve ('e) C: Origin tilt of the % power curve Angle (°) According to FIG. 3, the tilt angle θ6 at the lower limit phase transition point is about 26@. Therefore, in the present invention.
チルト角θを13°とした時の温度は、約50℃である
から、温度50℃以下の温度領域、好ましくは上限相転
移点と下限相転移点との中間点での温度以下の温度領域
、特に25℃以下、更に好ましくは20℃以下の温度領
域で、液晶素子が最暗状態(又は最明状態)を生じる位
置に、偏光子と検光子の吸収軸(又は透過軸)を設定す
ることができる。Since the temperature when the tilt angle θ is 13° is about 50°C, the temperature range is below 50°C, preferably below the temperature at the midpoint between the upper limit phase transition point and the lower limit phase transition point. The absorption axes (or transmission axes) of the polarizer and analyzer are set at a position where the liquid crystal element produces its darkest state (or brightest state), particularly in a temperature range of 25° C. or lower, more preferably 20° C. or lower. be able to.
前述した様に、本発明では低温度領域で液晶素子が最暗
状態(又は最明状態)を生じる位置に、偏光子と検光子
の吸収軸(又は透過軸)を設定するものであるが、この
際のチルト角θとしては、最大チルト角を基準にしても
よいが、より好ましくは無電界時又は強誘電性液晶の閾
値電圧以下の印加電圧下でのチルト角を基準にして最暗
(又は最明)状態となる位置に偏光子と検光子の吸収軸
(又は吸収軸)を設定することができる。As mentioned above, in the present invention, the absorption axes (or transmission axes) of the polarizer and analyzer are set at the position where the liquid crystal element produces its darkest state (or brightest state) in a low temperature region. The tilt angle θ at this time may be based on the maximum tilt angle, but more preferably the darkest ( The absorption axes (or absorption axes) of the polarizer and analyzer can be set at positions where the polarizer and analyzer are in the brightest or brightest state.
例えば、液晶セルの温度が50℃の時、液晶セルに強誘
電性液晶の閾値電圧以上の印加電圧、例えば、20Vで
50Iisecのパルス電圧を印加した時のチルト角θ
は、第3図から判る様に約23°であるため、第6図に
示す軸Oと偏光子の吸収軸PIとのなす角度を23°と
設定した時に、パルス電圧印加下で最暗状態を呈するこ
とができる。また、本例の好ましい具体例では、液晶セ
ルにスメクチック液晶液晶の閾値電圧以下の印加電圧、
例えば、5vで50μsecのパレス電圧を印加した時
のチルト角は、約15@であるため、第6図に示す軸0
と偏光子の吸収軸P1とのなす角度を15°を設定する
ことができる。For example, when the temperature of the liquid crystal cell is 50°C, the tilt angle θ when a voltage higher than the threshold voltage of the ferroelectric liquid crystal is applied to the liquid crystal cell, for example, a pulse voltage of 50 Iisec at 20 V is applied to the liquid crystal cell.
is approximately 23° as shown in Fig. 3. Therefore, when the angle between the axis O shown in Fig. 6 and the absorption axis PI of the polarizer is set to 23°, the darkest state is reached under pulsed voltage application. can be exhibited. Further, in a preferred specific example of this example, an applied voltage to the liquid crystal cell that is equal to or lower than the threshold voltage of the smectic liquid crystal,
For example, when applying a pulse voltage of 5V for 50μsec, the tilt angle is approximately 15@, so the axis 0 shown in FIG.
The angle between the polarizer and the absorption axis P1 of the polarizer can be set to 15 degrees.
尚1本発明ではチルト角θの測定は、下記の方法に基い
たものである。In the present invention, the tilt angle θ is measured based on the following method.
(1)液晶セルに閾値電圧以上の正極性電圧を印加する
ことによって、強誘電性液晶を一方の安定配向状態に配
向させ、角度90°クロスニコルの偏光子と検光子で最
暗状態を見い出す。(1) By applying a positive polarity voltage higher than the threshold voltage to the liquid crystal cell, the ferroelectric liquid crystal is aligned to one stable alignment state, and the darkest state is found using a polarizer and an analyzer with a 90° crossed Nicols angle. .
(2)次に、液晶セルに閾値電圧以上の負極性電圧を印
加することによって、最暗状態だった液晶セルを明状態
に反転させ、続いて偏光子と検光子を角度90”クロス
ニコル下で最暗状態となるまで回転させる。この時の回
転角の172の値をチルト角θとした。(2) Next, by applying a negative polarity voltage higher than the threshold voltage to the liquid crystal cell, the liquid crystal cell is reversed from the darkest state to the bright state, and then the polarizer and analyzer are placed at an angle of 90” crossed Nicols. The rotation angle at this time was set at 172 as the tilt angle θ.
第1図は、本例の液晶素子を用いた時のコントラスト及
び透過率の温度依存性を明らかにしている。この際の液
晶素子の偏光子と検光子の吸収軸は、温度5℃で且つ電
圧無印加時に最暗状態を生じる位置に設定した。第1図
によれば、広い温度範囲に亘って高透過率を生じている
。従って、ディスプレイパネルに適用した時には、広範
囲の温度領域で高輝度画面とすることが可能である。FIG. 1 clarifies the temperature dependence of contrast and transmittance when using the liquid crystal element of this example. At this time, the absorption axes of the polarizer and analyzer of the liquid crystal element were set at positions that would produce the darkest state at a temperature of 5° C. and when no voltage was applied. According to FIG. 1, high transmittance occurs over a wide temperature range. Therefore, when applied to a display panel, it is possible to provide a high brightness screen in a wide temperature range.
また、本例では、低温側で高いコントラストのディスプ
レイ画面とすることが可能である。Furthermore, in this example, it is possible to provide a display screen with high contrast on the low temperature side.
第2図は、温度50℃で且つ電圧無印加時に最暗状態を
生じる位置に、液晶素子で用いた偏光子と検光子の吸収
軸を設定した時の透過率の温度依存性を明らかにしたも
のである。第2図によれば、本例に較べ低透過率で、低
コントラストとな7ている。Figure 2 shows the temperature dependence of transmittance when the absorption axes of the polarizer and analyzer used in the liquid crystal element are set at the position where the darkest state occurs when the temperature is 50°C and no voltage is applied. It is something. According to FIG. 2, the transmittance is lower than that of this example, and the contrast is low.
また、本発明では、基板の少なくとも一方の表面は一軸
性の方向を有する配向処理が施されており、上記一軸性
の方向を軸0とし、前記2種の安定状態のうち、第1の
状態における第1の基板表面近傍の液晶分子軸の基板面
への射影軸を軸A、及び第1の状態における第2の基板
表面近傍の液晶分子軸の基板面への射影軸を軸A′とし
、且つ第2の状態における第1の基板表面近傍の液晶分
子軸の基板面への射影軸を軸B、及び第2の状態におけ
る第2の基板表面近傍の液晶分子軸の基板面への射影軸
を軸B′とするとき、軸AとA′並びに軸BとB′が一
致していない様なスプレィ配向状態の強誘電性素子の場
合では、偏光子の透過軸(又は吸収軸)を軸A(又は軸
B)に略一致させ、検光子の吸収軸(又は透過軸)を軸
A”(又は軸B”)に略一致させることができる。Further, in the present invention, at least one surface of the substrate is subjected to an alignment treatment having a uniaxial direction, and the uniaxial direction is defined as axis 0, and the first state of the two types of stable states is set. The projection axis of the liquid crystal molecule axis near the first substrate surface onto the substrate surface in the first state is defined as axis A, and the projection axis of the liquid crystal molecule axis near the second substrate surface in the first state onto the substrate surface is defined as axis A'. , and the projection axis of the liquid crystal molecule axis near the first substrate surface in the second state onto the substrate surface is axis B, and the projection of the liquid crystal molecule axis near the second substrate surface onto the substrate surface in the second state When the axis is axis B', in the case of a ferroelectric element in a splay alignment state where axes A and A' and axes B and B' do not coincide, the transmission axis (or absorption axis) of the polarizer is The absorption axis (or transmission axis) of the analyzer can be made to substantially coincide with axis A'' (or axis B'').
すなわち、本例においては偏光子の透過軸(又は吸収軸
)PI(又はP2)を軸AI(又はA2)に略一致させ
ることにより、温度変化によりチルト角θが変化した場
合にも、使用温度範囲内で全体として大きなコントラス
トと透過光強度が達成でき、また最低温度において最大
のコントラストが得られた。In other words, in this example, by making the transmission axis (or absorption axis) PI (or P2) of the polarizer approximately coincide with the axis AI (or A2), even if the tilt angle θ changes due to temperature changes, the operating temperature can be maintained. Overall high contrast and transmitted light intensity could be achieved within the range, with maximum contrast at the lowest temperatures.
(作用・効果)
以上の如き本発明によれば、2種の安定状態を有する強
誘電性液晶を用いた液晶素子の構成において、液晶素子
の使用温度範囲の低温度領域においていずれかの安定状
態が略最暗状態を表示するように、偏光子を配置するこ
とによって、温度変化により、チルト角が変化した場合
にも低温側において最大のコントラストが達成され、使
用温度範囲内で大きな透過光強度が維持でき、全体的に
大きなコントラストが得られる。(Operations/Effects) According to the present invention as described above, in the configuration of a liquid crystal element using a ferroelectric liquid crystal having two types of stable states, one of the stable states in the low temperature range of the operating temperature range of the liquid crystal element. By arranging the polarizer so that it displays approximately the darkest state, maximum contrast is achieved on the low temperature side even when the tilt angle changes due to temperature changes, and large transmitted light intensity is achieved within the operating temperature range. can be maintained, and a large contrast can be obtained overall.
第1図及び第2図はそれぞれ温度5℃及び50℃で最暗
状態を合わせた時のコントラストと透過率の温度依存性
を示している。
第3図はチルト角の温度変化を示す。
第4図及び第5図は、本発明の液晶素子を模式的に表わ
す斜視図である。
第6図は偏光子と検光子を直交させた時の態様を表わす
説明図である。
PI、P2;偏光子の透過軸(又は吸収軸)A+ 、A
2 ;偏光子の透過軸(又は吸収軸)0 ニー軸性の方
向
第1図
第3図
第6図FIGS. 1 and 2 show the temperature dependence of contrast and transmittance when the darkest state is set at temperatures of 5° C. and 50° C., respectively. FIG. 3 shows the change in tilt angle with temperature. 4 and 5 are perspective views schematically showing the liquid crystal element of the present invention. FIG. 6 is an explanatory diagram showing an aspect when a polarizer and an analyzer are orthogonal to each other. PI, P2; transmission axis (or absorption axis) of polarizer A+, A
2 ; Transmission axis (or absorption axis) of polarizer 0 Direction of knee axis Figure 1 Figure 3 Figure 6
Claims (12)
板間に、強誘電性スメクチック液晶を配置した液晶セル
と、クロスニコル関係にある偏光子と検光子とを有する
光学的検知手段とを有する液晶素子において、前記強誘
電性スメクチック液晶の降温下における上限相転移点で
の最大チルト角θ_Aと下限相転移点での最大チルト角
θ_Bとの中間値(θ_B−θ_A)/2に相当する温
度より低い温度領域で最暗状態(又は最明状態)を生じ
る位置に、前記偏光子と検光子の透過軸(又は吸収軸)
を配置したことを特徴とする液晶素子。(1) An optical detection means having a liquid crystal cell in which a ferroelectric smectic liquid crystal is arranged between first and second substrates having electrode portions facing each other, and a polarizer and an analyzer in a crossed nicol relationship. In the liquid crystal element having the above, the maximum tilt angle θ_A at the upper limit phase transition point and the maximum tilt angle θ_B at the lower limit phase transition point of the ferroelectric smectic liquid crystal as the temperature decreases corresponds to the intermediate value (θ_B - θ_A)/2. The transmission axes (or absorption axes) of the polarizer and analyzer are located at the position where the darkest state (or brightest state) occurs in a temperature range lower than the temperature
A liquid crystal element characterized by arranging.
の中間温度より低い温度領域である特許請求の範囲第(
1)項に記載の液晶素子。(2) The low temperature region is a temperature region lower than the intermediate temperature between the upper limit phase transition point and the lower limit phase transition point (
The liquid crystal element described in item 1).
許請求の範囲第(1)項に記載の液晶素子。(3) The liquid crystal element according to claim (1), wherein the low temperature region is a temperature region of 25° C. or lower.
許請求の範囲第(1)項に記載の液晶素子。(4) The liquid crystal element according to claim (1), wherein the low temperature region is a temperature region of 20° C. or lower.
(又は吸収軸)が、角度90°でクロスしている特許請
求の範囲第(1)項に記載の液晶素子。(5) The liquid crystal element according to claim (1), wherein the transmission axes (or absorption axes) of the polarizer and the analyzer, which are in a crossed nicol relationship, cross at an angle of 90°.
することにより、2種の安定なる分子配列状態間での相
転移を生じさせて表示を行う特許請求の範囲第(1)項
に記載の液晶素子。(6) Claim (1) in which a display is produced by causing a phase transition between two stable molecular arrangement states by selectively applying voltages of opposite polarity to the opposing electrodes. The liquid crystal element described in .
する配向処理が施されており、上記一軸性の方向を軸O
とし、前記2種の安定状態のうち、第1の状態における
第1の基板表面近傍の液晶分子軸の基板面への射影軸を
軸A、及び第1の状態における第2の基板表面近傍の液
晶分子軸の基板面への射影軸を軸A′とし、且つ第2の
状態における第1の基板表面近傍の液晶分子軸の基板面
への射影軸を軸B、及び第2の状態における第2の基板
表面近傍の液晶分子軸の基板面への射影軸を軸B′とす
るとき、偏光子の透過軸(又は吸収軸)を軸Aに(又は
軸Bに)略一致させ、検光子の吸収軸(又は透過軸)を
軸A′に(又は軸B′に)略一致させた特許請求の範囲
第(6)項に記載の液晶素子。(7) At least one surface of the substrate is subjected to an alignment treatment having a uniaxial direction, and the uniaxial direction is aligned with the axis O.
Of the two stable states, the axis A is the projection axis of the liquid crystal molecule axis near the first substrate surface in the first state onto the substrate surface, and the axis A is the projection axis of the liquid crystal molecule axis near the first substrate surface in the first state, and The projection axis of the liquid crystal molecule axis onto the substrate surface is defined as axis A', the projection axis of the liquid crystal molecule axis near the first substrate surface in the second state onto the substrate surface is defined as axis B, and When the projection axis of the liquid crystal molecule axis near the substrate surface in step 2 onto the substrate surface is axis B', the transmission axis (or absorption axis) of the polarizer is approximately aligned with axis A (or axis B), and the analyzer is The liquid crystal element according to claim (6), wherein the absorption axis (or transmission axis) of the liquid crystal element substantially coincides with axis A' (or axis B').
角度を略等しくした特許請求の範囲第(7)項に記載の
液晶素子。(8) The liquid crystal element according to claim (7), wherein the angle between the axis O and the axis A is substantially equal to the angle between the axis O and the axis B'.
角度を略等しくした特許請求の範囲第(8)項に記載の
液晶素子。(9) The liquid crystal element according to claim (8), wherein the angle between the axis O and the axis A' is approximately equal to the angle between the axis O and the axis B.
クティック液晶である特許請求の範囲第(1)項に記載
の液晶素子。(10) The liquid crystal element according to claim (1), wherein the ferroelectric smectic liquid crystal is a chiral smectic liquid crystal.
F相、I相、J相、G相又はK相である特許請求の範囲
第(10)項に記載の液晶素子。(11) Chiral smectic liquid crystal has C phase, H phase,
The liquid crystal element according to claim 10, which is an F phase, an I phase, a J phase, a G phase, or a K phase.
にカイラルスメクチック液晶が固有する螺旋構造を消失
するのに十分に薄い膜厚に設定されている特許請求の範
囲第(10)項に記載の液晶素子。(12) The liquid crystal according to claim (10), wherein the thickness of the chiral smectic liquid crystal is set to be sufficiently thin to eliminate the helical structure inherent in the chiral smectic liquid crystal in the absence of an electric field. element.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61298624A JPS63226624A (en) | 1986-12-17 | 1986-12-17 | Liquid crystal element |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61298624A JPS63226624A (en) | 1986-12-17 | 1986-12-17 | Liquid crystal element |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS63226624A true JPS63226624A (en) | 1988-09-21 |
Family
ID=17862139
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP61298624A Pending JPS63226624A (en) | 1986-12-17 | 1986-12-17 | Liquid crystal element |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS63226624A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6163360A (en) * | 1996-06-24 | 2000-12-19 | Casio Computer Co., Ltd. | Liquid crystal display apparatus |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6123118A (en) * | 1984-07-12 | 1986-01-31 | Hitachi Ltd | Optical switch element |
-
1986
- 1986-12-17 JP JP61298624A patent/JPS63226624A/en active Pending
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6123118A (en) * | 1984-07-12 | 1986-01-31 | Hitachi Ltd | Optical switch element |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6163360A (en) * | 1996-06-24 | 2000-12-19 | Casio Computer Co., Ltd. | Liquid crystal display apparatus |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5005953A (en) | High contrast liquid crystal element | |
JPH10186411A (en) | Liquid crystal display element | |
JP2647828B2 (en) | Liquid crystal device manufacturing method | |
JPH0422487B2 (en) | ||
JPH0422489B2 (en) | ||
JPS62118326A (en) | Driving method for liquid crystal element | |
JPS63226624A (en) | Liquid crystal element | |
JP4605978B2 (en) | Manufacturing method of liquid crystal display device | |
JPS63198024A (en) | Liquid crystal electrooptic device | |
JPS6031121A (en) | Driving method of optical modulating element | |
JPH0422490B2 (en) | ||
JPH0545929B2 (en) | ||
CA1304485C (en) | Liquid crystal display element and method for driving same | |
JPH01198724A (en) | Liquid crystal light modulator and its driving method | |
JP3083016B2 (en) | Liquid crystal alignment treatment method and liquid crystal element manufacturing method | |
JPS6224228A (en) | Driving method for liquid crystal display device | |
JPS61267028A (en) | Control method for orientation of liquid crystal | |
JPH0422493B2 (en) | ||
JPS6279427A (en) | Liquid crystal device | |
JPS6086521A (en) | Phase transition type liquid crystal display element | |
JPH06186569A (en) | Ferroelectric liquid crystal device | |
JPS62235927A (en) | Ferroelectric liquid crystal element | |
JPS6370227A (en) | Ferroelectric liquid crystal display element | |
JPS63192023A (en) | Liquid crystal electrooptic device | |
JP2003195314A (en) | Method for manufacturing liquid crystal element |