[go: up one dir, main page]

JPS6322454B2 - - Google Patents

Info

Publication number
JPS6322454B2
JPS6322454B2 JP55132914A JP13291480A JPS6322454B2 JP S6322454 B2 JPS6322454 B2 JP S6322454B2 JP 55132914 A JP55132914 A JP 55132914A JP 13291480 A JP13291480 A JP 13291480A JP S6322454 B2 JPS6322454 B2 JP S6322454B2
Authority
JP
Japan
Prior art keywords
chuck
wafer
replacement
flatness
chucks
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55132914A
Other languages
Japanese (ja)
Other versions
JPS5758319A (en
Inventor
Yukio Kenbo
Yasuo Nakagawa
Nobuyuki Akyama
Susumu Aiuchi
Mineo Nomoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP55132914A priority Critical patent/JPS5758319A/en
Priority to DE3110341A priority patent/DE3110341C2/en
Priority to US06/245,193 priority patent/US4391511A/en
Publication of JPS5758319A publication Critical patent/JPS5758319A/en
Publication of JPS6322454B2 publication Critical patent/JPS6322454B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70691Handling of masks or workpieces
    • G03F7/707Chucks, e.g. chucking or un-chucking operations or structural details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Description

【発明の詳細な説明】 基板にマスクパターンを転写焼付する際のチヤ
ツク装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION This invention relates to a chuck device for transferring and baking a mask pattern onto a substrate.

半導体集積回路は、年々微細化しており、従来
の密着式アライナに代わり、投影式アライナが主
流になりつつある。投影式アライナは、マスクパ
ターンをウエハ上に投影焼付するものであるか
ら、ウエハチエツクに吸着されたウエア面の平坦
度が不良であると、焦点面から外れた部分は結像
せずパターンが焼付けられない。このウエハ面の
平坦度の要求は、パターンが微細な程厳格であ
る。
Semiconductor integrated circuits are becoming smaller year by year, and projection type aligners are becoming mainstream instead of conventional contact type aligners. Since a projection aligner projects and prints a mask pattern onto a wafer, if the flatness of the wear surface adsorbed to the wafer chuck is poor, the pattern will not be printed in areas that are out of the focal plane. do not have. The requirements for flatness of the wafer surface are more stringent as the pattern becomes finer.

第1図は、従来のCobilt社の投影式アライナの
概略構成図である。マスク1表面の、図中矢印で
示されるパターン2は、露光光3により凹面鏡
M1、凸面鏡M2及び平面鏡M3からなるミラー光
学系を介して、ウエハ5上に結像し焼付けられ
る。符号7は結像パターンを示している。ウエハ
5とマスク1を搭載したキヤリツジ8は、図中矢
印Aのように往復の走査をなし、マスクパターン
2は、走査に対応してウエハ5上に転写される。
なお、ウエハ5が上面に吸着できるように、ウエ
ハチヤツク9は、上面に配列された多孔が下面の
孔9aに連結される空気通路を形成している。そ
して、孔9aは矢印10で示される配管を介して
図示されない真空発生器に連通している。第2図
a及びbは、それぞれ、ウエハチヤツク9上に載
せられたウエハ5の拡大断面図と、その平面図で
ある。第2図bでは、ウエハ5の平坦度を等高線
11で示しており、この例では上方に突出する球
状に形成されていることを示す。第2図aに示す
ように、ウエハ5の表面12が光学系の結像面1
3に対して一致しない場合、ラインパターン14
(第2図b参照)を転写しようとしても、焦点深
度内にあるウエハ面12にしか結像されないか
ら、ラインパターン14は一部しか転写されな
い。結像面13の焦点深度は、光学系の解像度に
よつて決まり3μm線幅を転写するのに、必要な解
像度での焦点深度は±5μmである。転写する線幅
が小さくなる程、高解像度が要求され、焦点深度
は浅くなるが、線幅2μmでは±3μm以下の焦点深
度が要求される。これに対して、平坦なチヤツク
面16上に吸着されたウエハ面12の平坦度は普
通±2μm以上であり、集積回路製造プロセスを経
るに従つて増加して、±10μmを越える場合もあり
歩留りの低下を招いていた。しかも、平坦度の悪
化の原因は、不明な場合が多く、平坦度の改善に
大きな期待をかけることができない。
FIG. 1 is a schematic diagram of a conventional projection type aligner manufactured by Cobilt. A pattern 2 on the surface of the mask 1, indicated by an arrow in the figure, is formed by a concave mirror due to the exposure light 3.
An image is formed and printed onto the wafer 5 via a mirror optical system consisting of a convex mirror M 1 , a convex mirror M 2 and a plane mirror M 3 . Reference numeral 7 indicates an imaging pattern. The carriage 8 carrying the wafer 5 and the mask 1 scans back and forth as indicated by arrow A in the figure, and the mask pattern 2 is transferred onto the wafer 5 in accordance with the scanning.
In order to attract the wafer 5 to the upper surface, the wafer chuck 9 forms an air passage in which the holes arranged on the upper surface are connected to the holes 9a on the lower surface. The hole 9a communicates with a vacuum generator (not shown) via a pipe indicated by an arrow 10. FIGS. 2a and 2b are an enlarged sectional view and a plan view of the wafer 5 placed on the wafer chuck 9, respectively. In FIG. 2b, the flatness of the wafer 5 is shown by contour lines 11, which in this example shows that it is formed into a spherical shape that projects upward. As shown in FIG. 2a, the surface 12 of the wafer 5 is the imaging plane 1 of the optical system.
If there is no match for 3, line pattern 14
Even if an attempt is made to transfer the line pattern 14 (see FIG. 2b), the image is only formed on the wafer surface 12 within the depth of focus, so only a portion of the line pattern 14 is transferred. The depth of focus of the imaging plane 13 is determined by the resolution of the optical system, and to transfer a line width of 3 μm, the depth of focus at the resolution required is ±5 μm. The smaller the line width to be transferred, the higher the resolution is required and the shallower the depth of focus becomes. For a line width of 2 μm, a depth of focus of ±3 μm or less is required. On the other hand, the flatness of the wafer surface 12 adsorbed onto the flat chuck surface 16 is usually ±2 μm or more, and increases as the integrated circuit manufacturing process progresses, sometimes exceeding ±10 μm, which reduces the yield. was causing a decline in In addition, the cause of the deterioration of flatness is often unknown, and it is difficult to expect much improvement in flatness.

そこで、平坦度の悪いウエハにマスクパターン
を結像、焼付けるために、ウエハ面12に焦点を
合わせる方法が考えられる。第3図を参照して、
焦点合わせによるウエハ回路の作成について説明
する。ウエハ5は第2図a,bと同様に上方に突
出する球状とし、等高線11の2本分を焦点深度
とする。焦点合わせをせずに、焼付範囲W1で矢
印方向に走査すると、回路パターンは、焦点深度
に相当するR0幅のリング状面積内にしか焼付け
られない。次に、同範囲W1で、焦点合わせしな
がら走査するとR1の範囲で焼付けられる。次に、
狭い焼付範囲W3で、図において上下方向に3回
に分けて焦点合わせしながら走査すれば、R3
範囲で焼付けられる。以上の説明から、分割して
露光するのが最も歩留まりが良いことが理解され
よう。しかし、3回に分割した場合は、スループ
ツトが1/3になり、大幅な損失を招いてしまう。
また、焦点位置の検出、焦点面の調整等のために
複雑な操作を必要とし、かつ高価なものとなる上
に、修理、点検のための保守作業が困難で煩しい
欠点を有する。
Therefore, in order to image and print a mask pattern on a wafer with poor flatness, a method of focusing on the wafer surface 12 can be considered. Referring to Figure 3,
The creation of a wafer circuit by focusing will be explained. The wafer 5 has a spherical shape projecting upward as in FIGS. 2a and 2b, and the depth of focus is defined by two contour lines 11. When scanning in the direction of the arrow in the printing range W 1 without focusing, the circuit pattern is printed only within a ring-shaped area with a width R 0 corresponding to the depth of focus. Next, if you scan in the same range W 1 while focusing, the image will be printed in the range R 1 . next,
If the image is scanned in the narrow printing range W 3 while focusing three times in the vertical direction in the figure, printing will be done in the range R 3 . From the above explanation, it will be understood that the yield is best if the exposure is carried out in parts. However, if the process is divided into three times, the throughput will be reduced to 1/3, resulting in a large loss.
Further, it requires complicated operations for detecting the focal point position, adjusting the focal plane, etc., is expensive, and has the disadvantage that maintenance work for repair and inspection is difficult and troublesome.

本発明の目的は、上述の欠点を解消して、マス
クのパターンを高精度に転写焼付することができ
るようにしたチヤツク装置を提供することであ
る。
SUMMARY OF THE INVENTION An object of the present invention is to provide a chuck device which eliminates the above-mentioned drawbacks and is capable of transferring and printing a mask pattern with high precision.

本発明は、この目的を達成するために、基板を
吸着可能で、平坦度が異なる複数の交換用チヤツ
クと、これらのチヤツクを収納するチヤツクマガ
ジンと、前記交換用チヤツクを択一的に所定位置
に吸着するチヤツクベースと、前記交換用チヤツ
クとチヤツクベースに吸着作用を行なわせる真空
発生器と、基板の平坦度を検出する検出手段と、
この検出手段の信号により最適の交換用チヤツク
を選択する選択手段と、この選択手段の信号によ
り最適の交換用チヤツクを前記チヤツクマガジン
より前記チヤツクベースへ搬送する搬送手段を備
え、基板形状を検出し、該基板形状と略補形的な
形状を有する交換用チヤツクを選択し、所定位置
に搬送して、前記基板を前記交換用チヤツクに吸
着させることによりウエハ面を平坦にすることを
特徴とする。
In order to achieve this object, the present invention provides a plurality of replacement chucks capable of adsorbing substrates and having different degrees of flatness, a chuck magazine that stores these chucks, and a system that selectively stores the replacement chucks in a predetermined manner. a chuck base that attracts the chuck in position; a vacuum generator that causes the replacement chuck and the chuck base to perform a suction action; and a detection means that detects the flatness of the substrate;
A selection means for selecting an optimal replacement chuck based on a signal from the detection means, and a transport means for transporting an optimal replacement chuck from the chuck magazine to the chuck base based on the signal from the selection means, and detects the shape of the board. , the wafer surface is flattened by selecting a replacement chuck having a substantially complementary shape to the substrate shape, transporting it to a predetermined position, and adsorbing the substrate to the replacement chuck. .

以下、図示の実施例につき詳細に説明する。第
4図は、本発明に係るウエハチヤツク装置の一例
を示し、複数の交換用チヤツク20を収納するチ
ヤツクマガジン21、前記交換用チヤツク20を
前記チヤツクマガジン21からチヤツクベース2
2に搬送し、また使用後元の位置へ戻すためのチ
ヤツクハンドリング機構23;モータ24a,2
4b;コントローラ25等よりなる搬送手段、焼
付前のウエハを収納するウエハマガジン27、こ
のウエハマガジン27からウエハを択一的に所定
位置に載置又は取外すウエハローダ・アンローダ
26、チヤツク移動用テーブル28;パルスモー
タ29:チヤツク上のウエハ平坦度を検出する検
出部30;検出信号入力回路31からなる検出手
段、前記ウエハの形状と略補形的な形状を有する
交換用チヤツクを選択するチヤツク選択回路3
2;全体制御機構33からなる選択手段によつて
構成されている。
The illustrated embodiment will be described in detail below. FIG. 4 shows an example of a wafer chuck device according to the present invention, which includes a chuck magazine 21 that stores a plurality of replacement chucks 20, and a chuck magazine 21 that transports the replacement chucks 20 from the chuck magazine 21 to the chuck base 2.
chuck handling mechanism 23 for transporting the chuck to 2 and returning it to the original position after use; motor 24a, 2;
4b; a transport means consisting of a controller 25, etc.; a wafer magazine 27 for storing wafers before baking; a wafer loader/unloader 26 for selectively placing or removing wafers from the wafer magazine 27 at a predetermined position; and a chuck moving table 28; Pulse motor 29: Detection section 30 for detecting the flatness of the wafer on the chuck; Detection means consisting of a detection signal input circuit 31; Chuck selection circuit 3 for selecting a replacement chuck having a shape substantially complementary to the shape of the wafer.
2; It is constituted by a selection means consisting of the overall control mechanism 33.

さらに詳しくは、交換用チヤツクは上面が平坦
なもの(符号34)及び上面が曲率半径を異にす
る上方凹形のもの(符号20)が複数個用意され
ており、何れも段付き円筒状をなしている。そし
て、チヤツクマガジン21は、チヤツクハンドリ
ング機構23に向つて開口する溝部21aが、交
換用チヤツクの数だけ設けられ、溝部21aの幅
は交換用チヤツクの小径部が摺動可能な寸法にな
つている。チヤツクハンドリング機構23は、交
換用チヤツク20を掴持自在に開閉する2本のア
ーム23aと、このアーム23aを図中矢印Bで
示される略直角の範囲を揺動自在に支持する第1
支持部材23bと、この第1支持部材23bをモ
ータ24aの駆動により矢印C方向すなわち、前
記交換用チヤツク20を溝21aに沿つて抜き挿
し自在に支持する第2支持部材23cと、この第
2支持部材23cを矢印D方向すなわち、前記交
換用チヤツク20の配列方向に沿つて往復動可能
にするモータ24b等からなつている。一方チヤ
ツク移動用テーブル28は、パルスモータ28の
駆動により矢印E方向すなわち、前記矢印C方向
に平行して移動し、チヤツクベース22を取付け
ている。チヤツクベース22の上部は、前記交換
用チヤツク20,34の段付き部と補形的な形状
をなして、該チヤツクと密嵌するようになつてい
て、第5図に示すように、チヤツクベース22に
穿設した空気孔及び交換用チヤツク20,34に
穿設した空気孔を介してウエハ5を吸着できるよ
うになつている。検出部30は、チヤツク移動用
テーブル28の移動位置に同期して、ウエハ5の
表面高さを検出して検出信号入力回路31に入力
するようになつている。チヤツク選択回路32
は、該検出信号によつて後記する計算を行ない、
前記ウエハ5に最適な交換用チヤツクを選択する
信号を、搬送手段に指令するようになつている。
More specifically, a plurality of replacement chucks are available, one with a flat top surface (34) and one with an upwardly concave top surface with different radii of curvature (20), all of which have a stepped cylindrical shape. I am doing it. The chuck magazine 21 is provided with grooves 21a that open toward the chuck handling mechanism 23 in equal numbers to the number of replacement chucks, and the width of the grooves 21a is such that the small diameter portion of the replacement chuck can slide therein. ing. The chuck handling mechanism 23 includes two arms 23a that grip and open and close the replacement chuck 20, and a first arm 23a that swingably supports the arms 23a in a substantially right-angled range indicated by arrow B in the figure.
A supporting member 23b, a second supporting member 23c that supports the first supporting member 23b in the direction of arrow C, that is, the replacement chuck 20 can be freely inserted and removed along the groove 21a by driving the motor 24a, and the second supporting member 23c. It consists of a motor 24b, etc., which enables the member 23c to reciprocate in the direction of arrow D, that is, along the arrangement direction of the replacement chucks 20. On the other hand, the chuck moving table 28 is driven by the pulse motor 28 to move in the direction of arrow E, that is, parallel to the direction of arrow C, and attaches the chuck base 22 thereto. The upper part of the chuck base 22 has a complementary shape to the stepped portion of the replacement chuck 20, 34, and is adapted to fit tightly with the chuck, as shown in FIG. The wafer 5 can be sucked through the air holes provided in the replacement chucks 20 and 34. The detecting section 30 detects the surface height of the wafer 5 in synchronization with the moving position of the chuck moving table 28, and inputs the detected surface height to the detection signal input circuit 31. Check selection circuit 32
performs the calculation described later using the detection signal,
A signal for selecting a replacement chuck most suitable for the wafer 5 is commanded to the transfer means.

さて、本発明のウエハチヤツク装置の作用につ
いて説明する。
Now, the operation of the wafer chuck device of the present invention will be explained.

まず、チヤツクマガジン21より平坦チヤツク
34を選択してチヤツク移動用テーブル28に取
付けたチヤツクベース22に嵌合させる。この間
の操作は、図示されない操作ボタンを押圧するこ
とにより、選択手段及び搬送手段が動作して行な
われる。次にウエハ5をウエハマガジン27より
取出し、前記チヤツクベース22に載置させ、真
空発生器を介してウエハ5を吸着させる。そし
て、パルスモータ29をコントロールしながら、
チヤツク移動用テーブル28上のウエハ5を走査
し、ウエハ全面の平坦度をテーブル28の移動位
置に同期して検出信号入力回路31に入力する。
このデータは、第6図aに示すような上方突出型
の場合で、たとえばWφ(x,y)としてあらわ
され、第7図に示すように、テーブル28の走査
方向をx方向とし、走査と直交する向きをy方向
にとつたメツシユ35上の各交点における値が記
録される。チヤツク選択回路32において、交換
用チヤツク20a(第6図b)、20b(第6図c)
の面の平坦度のデータC1(x,y)及びC2(x,
y)より、ウエハ5をこれらのチヤツクにそれぞ
れ真空吸引した場合のウエハ12a,12bの平
坦度を下記の式に基いて計算する。
First, a flat chuck 34 is selected from the chuck magazine 21 and fitted onto the chuck base 22 attached to the chuck moving table 28. Operations during this time are performed by pressing an operation button (not shown) to operate the selection means and conveyance means. Next, the wafer 5 is taken out from the wafer magazine 27, placed on the chuck base 22, and sucked through the vacuum generator. Then, while controlling the pulse motor 29,
The wafer 5 on the chuck moving table 28 is scanned, and the flatness of the entire surface of the wafer is input to the detection signal input circuit 31 in synchronization with the moving position of the table 28.
This data is expressed, for example, as Wφ(x, y) in the case of an upwardly protruding type as shown in FIG. 6a, and as shown in FIG. The value at each intersection on the mesh 35, which is perpendicular to the y direction, is recorded. In the chuck selection circuit 32, replacement chucks 20a (FIG. 6b) and 20b (FIG. 6c) are selected.
Flatness data of the surface C 1 (x, y) and C 2 (x,
y), the flatness of the wafers 12a and 12b when the wafer 5 is vacuum-suctioned into these chucks is calculated based on the following formula.

Wf1(x,y) =Wφ(x,y)+C1(x,y) Wf2(x,y) =Wφ(x,y)+C2(x,y) このWf1,Wf2より焦点深度(WF1〜WF2)内の
面積SFを次式により計算する。すなわち、 SF=‖(xi,yi)|WF1≦Wf(xi,yi)≦WF2なる
xi,yi‖ この式にWf1,Wf2及びWφを代入して、SFの値が
最も大きい交換用チヤツクを選択する。
W f1 (x, y) = Wφ (x, y) + C 1 (x, y) W f2 (x, y) = Wφ (x, y) + C 2 (x, y) Focus from W f1 and W f2 The area S F within the depth (W F1 to W F2 ) is calculated using the following formula. In other words, S F =‖(x i , y i ) | W F1 ≦W f (x i , y i )≦W F2
x i , y i ‖ Substitute W f1 , W f2 and Wφ into this equation and select the replacement chuck with the largest value of SF .

その結果、平坦チヤツク34がSF値最大であれ
ば、平坦チヤツク34に吸着されたウエハ5はそ
のまま露光部(図示しない)により、露光焼付け
作業が行なわれる。露光焼付されたウエハ5は、
図示しない手段で平坦チヤツク34より取除かれ
る。次に、第4図において、ウエハマガジン27
から新しいウエハ5を取出して、平坦チヤツク3
4に載置する。次に再び前記検出信号入力回路3
1及びチヤツク選択回路32の作用によつて、計
算の結果、SF値最大を示すものが、例えば交換用
チヤツク20aであると判断した場合、ウエハ5
は平坦チヤツク34より取外され、搬送手段によ
つてこの平坦チヤツク34は、チヤツクマガジン
21の空いている位置34Aに戻され、代りに交
換用チヤツク20aを、チヤツクベース22の上
に密嵌させる。次に、ウエハ5を交換用チヤツク
20a上に載置し、検出部30でウエハの平坦度
を確認して、露光部により露光、焼付けを行な
う。検出部30での確認が、前記計算結果と一致
しない場合には、新たな検出値に基づいて交換用
チヤツクを選択し直す。このようなやり直しが数
回繰返えした場合や、異常値があつた場合には、
装置の作動は停止して、露光不能を作業者に知ら
せるようになつている。
As a result, if the flat chuck 34 has the maximum SF value, the wafer 5 attracted to the flat chuck 34 is subjected to an exposure printing operation by an exposure section (not shown). The exposed and baked wafer 5 is
It is removed from the flat chuck 34 by means not shown. Next, in FIG. 4, the wafer magazine 27
Take out a new wafer 5 from the flat chuck 3.
Place it on 4. Next, the detection signal input circuit 3
1 and chuck selection circuit 32, if it is determined that, as a result of calculation, the chuck showing the maximum S F value is, for example, the replacement chuck 20a, the wafer 5
is removed from the flat chuck 34, and the flat chuck 34 is returned to the vacant position 34A of the chuck magazine 21 by the conveying means, and a replacement chuck 20a is tightly fitted onto the chuck base 22 in its place. . Next, the wafer 5 is placed on the replacement chuck 20a, the flatness of the wafer is checked by the detection section 30, and the exposure section performs exposure and printing. If the confirmation by the detection unit 30 does not match the calculation result, a chuck for replacement is reselected based on the new detected value. If this kind of rework is repeated several times or if there are abnormal values,
The operation of the device is stopped to notify the operator that exposure is not possible.

本実施例では、交換チヤツクの個数は平坦チヤ
ツクを含めて3個であるが、この個数は、ウエハ
の平坦度により設定される。また検出メツシユ間
隔も同様にウエハ平坦度により設定されるべきで
ある。さらに、検出部30は、非接触式の検出器
(エアマイクロ、電気容量式、超音波式、光式、
うず電流式等)を並列で用いてもよく、または高
速で走査してもよい。さらに、ウエハ生産プロセ
スによつて、平坦度が決まつている場合には、ウ
エハ面12(第6図a)の平坦度検出及び最適交
換チヤツクを選択するための計算は不要となる。
焦点深度とプロセスの歩留まりとを考慮して最適
な評価関数をきめて計算をすればよく、交換チヤ
ツクと平坦チヤツクを交換せずに、最初から最適
な交換チエツク上に載置するシステムにしてもよ
い。
In this embodiment, the number of exchange chucks is three including the flat chuck, and this number is set depending on the flatness of the wafer. Furthermore, the detection mesh interval should be similarly set based on the wafer flatness. Furthermore, the detection unit 30 includes a non-contact type detector (air micro, capacitance type, ultrasonic type, optical type,
(eddy current type, etc.) may be used in parallel, or may be scanned at high speed. Furthermore, if the flatness is determined by the wafer production process, there is no need for flatness detection of the wafer surface 12 (FIG. 6a) and calculations for selecting the optimum exchange chuck.
All you need to do is determine and calculate the optimal evaluation function taking into account the depth of focus and process yield, and it is also possible to use a system that places the chuck on the optimal exchange chuck from the beginning without exchanging the exchange chuck and the flat chuck. good.

以上、本発明によれば、結像度を向上させて高
精度な転写焼付を実現できる作用効果を奏する。
As described above, according to the present invention, it is possible to improve the degree of image formation and realize highly accurate transfer printing.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、従来の投影式アライナの概略構成
図、第2図a,bはウエハの平坦度と結像との関
係を説明する図、第3図は分割露光を説明する
図、第4図は、本発明の一実施例の構成図、第5
図は前記実施例に適用されるウエハチヤツク部の
断面図、第6図a,b及びcは、各チヤツク上の
ウエハ面の平坦度を説明する図、第7図は、ウエ
ハ面の平坦度の検出メツシユを説明する図であ
る。 2……マスク上のパターン、5……ウエハ、2
0,20a,20b……交換用チヤツク、21…
…チヤツクマガジン、22……チヤツクベース、
23……チヤツクハンドリング機構、30……検
出部、32……チヤツク選択回路、34……平坦
チヤツク。
Figure 1 is a schematic configuration diagram of a conventional projection aligner, Figures 2a and b are diagrams explaining the relationship between wafer flatness and image formation, Figure 3 is a diagram explaining divided exposure, and Figure 4 is a diagram explaining the relationship between wafer flatness and image formation. Figure 5 is a configuration diagram of an embodiment of the present invention.
The figure is a sectional view of the wafer chuck part applied to the above embodiment, Figures 6a, b and c are diagrams explaining the flatness of the wafer surface on each chuck, and Figure 7 is a diagram illustrating the flatness of the wafer surface. It is a figure explaining a detection mesh. 2...Pattern on mask, 5...Wafer, 2
0, 20a, 20b...replacement chuck, 21...
...Chuck Magazine, 22...Chuck Base,
23... Chuck handling mechanism, 30... Detection section, 32... Chuck selection circuit, 34... Flat chuck.

Claims (1)

【特許請求の範囲】[Claims] 1 マスクパターンが投影、結像される基板と、
この基板を吸着可能であつて、平坦度が異なる複
数の交換用チヤツクと、これらのチヤツクを収納
するチヤツクマガジンと、前記交換用チヤツクを
択一的に所定位置に吸着するチヤツクベースと、
前記交換用チヤツクとチヤツクベースに吸着作用
を行なわせる真空発生器と、基板の平坦度を検出
する検出手段と、この検出手段の信号により最適
の交換用チヤツクを選択する選択手段と、この選
択手段の信号により最適の交換用チヤツクを前記
チヤツクマガジンより前記チヤツクベースへ搬送
する搬送手段を有するチヤツク装置。
1. A substrate on which the mask pattern is projected and imaged,
a plurality of replacement chucks capable of adsorbing the substrate and having different flatness; a chuck magazine for storing these chucks; and a chuck base for selectively adsorbing the replacement chucks at predetermined positions;
a vacuum generator for performing an adsorption action on the replacement chuck and the chuck base; a detection means for detecting the flatness of the substrate; a selection means for selecting an optimal replacement chuck based on a signal from the detection means; A chuck device comprising a conveying means for conveying an optimal replacement chuck from the chuck magazine to the chuck base in response to a signal.
JP55132914A 1980-03-19 1980-09-26 Wafer chuck device Granted JPS5758319A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP55132914A JPS5758319A (en) 1980-09-26 1980-09-26 Wafer chuck device
DE3110341A DE3110341C2 (en) 1980-03-19 1981-03-17 Method and apparatus for aligning a thin substrate in the image plane of a copier
US06/245,193 US4391511A (en) 1980-03-19 1981-03-18 Light exposure device and method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP55132914A JPS5758319A (en) 1980-09-26 1980-09-26 Wafer chuck device

Publications (2)

Publication Number Publication Date
JPS5758319A JPS5758319A (en) 1982-04-08
JPS6322454B2 true JPS6322454B2 (en) 1988-05-12

Family

ID=15092466

Family Applications (1)

Application Number Title Priority Date Filing Date
JP55132914A Granted JPS5758319A (en) 1980-03-19 1980-09-26 Wafer chuck device

Country Status (1)

Country Link
JP (1) JPS5758319A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59121932A (en) * 1982-12-28 1984-07-14 Fujitsu Ltd automatic focus control device
NL2006565A (en) 2010-06-30 2012-01-02 Asml Holding Nv Reticle clamping system.

Also Published As

Publication number Publication date
JPS5758319A (en) 1982-04-08

Similar Documents

Publication Publication Date Title
US6862080B2 (en) Substrate holding device, semiconductor manufacturing apparatus and device manufacturing method
US7361234B2 (en) Photolithographic stepper and/or scanner machines including cleaning devices and methods of cleaning photolithographic stepper and/or scanner machines
JP3978140B2 (en) Configuration and method for detecting defects on a substrate in a processing tool
JPH11207611A (en) Automatic work carrier device for double-side grinding device
JPH06196381A (en) Holding device of substrate
JPS6322454B2 (en)
JPS587055B2 (en) Gap setting device in proximity aligner
US4648708A (en) Pattern transfer apparatus
JP4544761B2 (en) Proximity gap control method, proximity gap control apparatus, and proximity exposure apparatus
JP5825268B2 (en) Board inspection equipment
JP2002198304A (en) Treatment liquid supply system and treatment liquid supply method
JPH0147007B2 (en)
JP2001168010A (en) Method and device for inspecting wafer
JP4769451B2 (en) Exposure equipment
JP3624057B2 (en) Exposure equipment
JP7229307B2 (en) Installation system, installation method, and storage medium for semiconductor manufacturing equipment
JPH11260676A (en) Semiconductor wafer, aligner, aligning method, and method for positioning semiconductor wafer
JP3252549B2 (en) Confocal scanning laser microscope for mask or reticle
JPH11176743A (en) Aligner and method of exposure
JPH07142348A (en) Aligner
JP2024032620A (en) Substrate holding device, substrate holding method, and lithography device
JP3483403B2 (en) Exposure equipment
JPH06151271A (en) Aligner
JPH01129435A (en) Manufacture of semiconductor
JPH10106934A (en) Method and device of exposing