[go: up one dir, main page]

JPH0147007B2 - - Google Patents

Info

Publication number
JPH0147007B2
JPH0147007B2 JP55033882A JP3388280A JPH0147007B2 JP H0147007 B2 JPH0147007 B2 JP H0147007B2 JP 55033882 A JP55033882 A JP 55033882A JP 3388280 A JP3388280 A JP 3388280A JP H0147007 B2 JPH0147007 B2 JP H0147007B2
Authority
JP
Japan
Prior art keywords
substrate
flexible plate
exposed surface
deformation
chuck
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55033882A
Other languages
Japanese (ja)
Other versions
JPS56130738A (en
Inventor
Nobuyuki Akyama
Yukio Kenbo
Yasuo Nakagawa
Susumu Aiuchi
Mineo Nomoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP3388280A priority Critical patent/JPS56130738A/en
Priority to DE3110341A priority patent/DE3110341C2/en
Priority to US06/245,193 priority patent/US4391511A/en
Publication of JPS56130738A publication Critical patent/JPS56130738A/en
Publication of JPH0147007B2 publication Critical patent/JPH0147007B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70691Handling of masks or workpieces
    • G03F7/707Chucks, e.g. chucking or un-chucking operations or structural details

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Description

【発明の詳細な説明】 本発明は、シリコンウエハ、バブルウエハ、セ
ラミツク基板、プリント基板などの基板に所定の
パターン、詳細にはホトマスクやレチクルなどの
写真作成技術により形成されたパターンを焼付け
る露光方法及び装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides an exposure method for printing a predetermined pattern on a substrate such as a silicon wafer, bubble wafer, ceramic substrate, printed circuit board, etc., specifically a pattern formed by a photographic technique such as a photomask or reticle. and devices.

例えばウエハ上にLSIパターンを形成するに
は、LSIウエハ上にホトレジストを塗布し、この
ウエハ上にホトマスクパターンを露光して、ホト
レジストを感光させるのが一般的である。
For example, in order to form an LSI pattern on a wafer, it is common to apply photoresist on the LSI wafer and expose the wafer to a photomask pattern to expose the photoresist.

この作業ホトリソグラフイと呼び、密着式(マ
スクとウエハを密着して露光する)、近接式(マ
スクとウエハを数ミクロン〜数十ミクロン離して
露光する)、投影式(マスク上のパターンをウエ
ハ上に投影する)などがある。
This process is called photolithography, and includes contact type (exposes the mask and wafer in close contact with each other), close-range type (exposes the mask and wafer with a distance of several microns to several tens of microns), and projection type (exposes the pattern on the mask onto the wafer). ).

第1図は、露光装置の一例である投影式露光装
置の概略構成を示す図である。マスク1表面の、
図中矢印で示されるパターン2は、露光光3によ
り凹面鏡M1、凸面鏡M2及び平面鏡M3からなる
ミラー光学系を介して、ウエハ4上に結像し焼付
けられる。符号5は結像パターンを示している。
ウエハ4とマスク1を塔載したキヤリツジ6は図
中矢印Aのように往復の走査をなし、マスクパタ
ーン2は走査に対応してウエハ4上に転写され
る。なお、ウエハ4が上面に吸着できるように、
ウエハチヤツク7は、上面に配列された多孔が下
面の穴8に連結される空気通路を形成している。
そして孔8は矢印9で示される配管を介して図示
されない真空発生器に連通している。第2図a及
びbは、それぞれ、ウエハチヤツク7上に載せら
れたウエハ4の拡大断面図とその平面図である。
第2図bではウエハ4の平坦度を等高線10で示
しており、この例では上方に突出する球状に形成
されていることを示す。第2図aに示すように、
ウエハ4の表面が光学系の結像面12に対して一
致しない場合、ラインパターン13(第2図b参
照)を転写しようとしても、焦点深度内にあるウ
エハ面11にしか結像されないから、ラインパタ
ーン13は一部しか転写されない。結像面12の
焦点深度は、転写に必要な光学系の解像度によつ
て決まり3μm線幅を転写するのに必要な解像度で
の焦点深度は±5μmである。この焦点深度をマス
ク設定誤差等と分配するとウエハの側の焦点深度
として許されるのは±3μmとなる。又、転写する
線幅が2μmではウエハ側の焦点深度として許され
るのは±2μmである。これに対して、平坦なチヤ
ツク面15上に吸着されたウエハ面11の平坦度
は普通±4μm以上であり、中には±10μm以上の
ものもあり歩留りの低下を招いている。これに対
し、ウエハそのものの平坦度の改善は非常に困難
である。
FIG. 1 is a diagram showing a schematic configuration of a projection type exposure apparatus, which is an example of an exposure apparatus. On the surface of mask 1,
A pattern 2 indicated by an arrow in the figure is imaged and printed onto a wafer 4 by exposure light 3 through a mirror optical system consisting of a concave mirror M 1 , a convex mirror M 2 and a plane mirror M 3 . Reference numeral 5 indicates an imaging pattern.
The carriage 6 carrying the wafer 4 and the mask 1 scans back and forth as indicated by arrow A in the figure, and the mask pattern 2 is transferred onto the wafer 4 in accordance with the scanning. In addition, so that the wafer 4 can be attracted to the upper surface,
The wafer chuck 7 forms an air passage in which porous holes arranged on the upper surface are connected to holes 8 on the lower surface.
The hole 8 communicates with a vacuum generator (not shown) via a pipe indicated by an arrow 9. FIGS. 2a and 2b are an enlarged sectional view and a plan view of the wafer 4 placed on the wafer chuck 7, respectively.
In FIG. 2b, the flatness of the wafer 4 is shown by contour lines 10, which in this example indicate that it is formed into an upwardly protruding spherical shape. As shown in Figure 2a,
If the surface of the wafer 4 does not match the imaging plane 12 of the optical system, even if you try to transfer the line pattern 13 (see FIG. 2b), the image will only be focused on the wafer surface 11 within the depth of focus. Only a portion of the line pattern 13 is transferred. The depth of focus of the imaging plane 12 is determined by the resolution of the optical system required for transfer, and the depth of focus at the resolution required to transfer a line width of 3 μm is ±5 μm. If this depth of focus is divided into mask setting errors, etc., the allowable depth of focus on the wafer side is ±3 μm. Further, if the line width to be transferred is 2 μm, the depth of focus on the wafer side is allowed to be ±2 μm. On the other hand, the flatness of the wafer surface 11 adsorbed onto the flat chuck surface 15 is usually ±4 μm or more, and some flatness is ±10 μm or more, resulting in a decrease in yield. On the other hand, it is extremely difficult to improve the flatness of the wafer itself.

そこで、平坦度の悪いウエハにマスクパターン
を結像、焼付けるために、ウエハ面11に焦点を
合わせる方法が考えられる。第3図を参照して、
焦点合わせによるウエハ上への回路パターンの焼
付けについて説明する。ウエハ4は第2図a,b
と同様に上方に突出する球状とし、等高線10の
2本分を焦点深度とする。焦点合せをせずに焼付
範囲W1で矢印方向に走査すると、回路パターン
は焦点深度に相当するR0幅のリング状面積内に
しか焼付けられない。次に同範囲W1で範囲W1
の中心に沿つて焦点合せしながら走査するとR1
の範囲で焼付けられる。次に狭い焼付範囲W3で、
図において上下方向に3回に分けて焦点合わせし
ながら走査すればR3の範囲で焼付けられる。以
上の説明から分割して露光するのが最も歩留りが
良いことが理解されよう。しかし3回に分割した
場合は、スループツトが1/3になり、大幅な損失
を招く上、焼付範囲間のパターンのつなぎが非常
に困難であり高精度なパターン焼付けを実現しに
くい。また、焦点位置の検出、焦点面の調整等の
ために複雑な機構、操作を必要とし、かつ高価な
ものになる上に、メンテナンスが困難で煩しい欠
点を有する。
Therefore, in order to image and print a mask pattern on a wafer with poor flatness, a method of focusing on the wafer surface 11 can be considered. Referring to Figure 3,
The printing of a circuit pattern onto a wafer by focusing will be explained. Wafer 4 is shown in Figure 2 a and b.
Similarly, it is assumed to have a spherical shape that protrudes upward, and the depth of focus is defined as two contour lines 10. When scanning in the direction of the arrow in the printing range W1 without focusing, the circuit pattern is printed only within a ring-shaped area with a width R 0 corresponding to the depth of focus. Next, in the same range W1, range W1
When scanning while focusing along the center of R 1
Burned within the range of . Next, in the narrow burning range W 3 ,
In the figure, if you scan in the vertical direction three times while adjusting the focus, you can print within the range R3 . From the above explanation, it will be understood that the yield is best if the exposure is performed in parts. However, if the pattern is divided into three times, the throughput will be reduced to 1/3, resulting in a large loss, and it will be extremely difficult to connect patterns between printing areas, making it difficult to achieve high-precision pattern printing. Further, it requires complicated mechanisms and operations for detecting the focal position, adjusting the focal plane, etc., is expensive, and has the disadvantage that maintenance is difficult and troublesome.

以上はLSIを例にとつて説明したが、他の基板
(磁気バブル基板、厚膜、薄膜回路基板、プリン
ト基板)の場合でも、全く同様に論ずることが出
来る。
The above explanation has been made using LSI as an example, but the same discussion can be made in the case of other substrates (magnetic bubble substrate, thick film, thin film circuit board, printed circuit board).

本発明の目的は、上記した従来技術の欠点をな
くし、いかなる条件下にあつても、チヤツク本体
に対して基板を水平方向にずれることなく、基板
表面を変形させて露光領域に亘つて結像面に位置
付けして均一に露光することにより、半導体や磁
気バブルや、厚膜・薄膜回路やプリント基板の歩
留りを向上させるようにした露光方法及び装置を
提供することにある。
An object of the present invention is to eliminate the above-mentioned drawbacks of the prior art, and to form an image over the exposed area by deforming the substrate surface without horizontally shifting the substrate with respect to the chuck body under any conditions. An object of the present invention is to provide an exposure method and apparatus that improves the yield of semiconductors, magnetic bubbles, thick film/thin film circuits, and printed circuit boards by uniformly exposing the light to a surface.

即ち、上記目的を達成するために、本発明は、
基板の露光面の変形量を測定する測定工程と、上
記基板の露光面と反対側の基板の裏面をほぼ全面
に亘つて吸着保持させるべく形成した可撓性の板
を複数箇所において各々独立して上下に変位を発
生すべく設置された複数の上下変位発生手段の
各々を上記測定工程により測定された基板の露光
面の変形量に基いて駆動して可撓性の板に裏側か
ら力を付与して可撓性の板を変形させると共にこ
の可撓性の板にほぼ全面に亘つて吸着保持された
基板を可撓性の板の変形に倣わせて変形させて基
板の露光面を結像面に位置付ける制御工程と、該
制御工程によつて露光面を変形させた基板上に所
定のパターンを露光焼付する露光工程とを備えた
ことを特徴とする露光方法であり、また本発明
は、基板の露光面の変形量を測定する測定手段
と、上記基板の露光面と反対側の基板の裏面をほ
ぼ全面に亘つて吸着保持させるべく形成した可撓
性の板と複数箇所において各々独立して上記可撓
性の板の裏面に係合して上下方向に微動させて可
撓性の板を部分的に変形させる複数の上下変位発
生手段とを有するチヤツクと、上記測定手段によ
つて測定された基板の露光面の変形量に基いて、
上記チヤツクの各上下変位発生手段を駆動して可
撓性の板に裏側から力を付与して可撓性の板を変
形させると共にこの可撓性の板にほぼ全面に亘つ
て吸着保持された基板を可撓性の板に変形に倣わ
せて変形させ、基板の露光面を結像面に位置付け
る制御手段と、該制御手段により露光面を変形さ
せた基板上に所定の回路パターンを露光焼付する
露光手段とを備えたことを特徴とする露光装置で
ある。
That is, in order to achieve the above object, the present invention
A measurement process of measuring the amount of deformation of the exposed surface of the substrate, and a flexible plate formed to suction and hold almost the entire back surface of the substrate opposite to the exposed surface of the substrate at multiple locations, each independently. Each of the plurality of vertical displacement generating means installed to generate vertical displacement is driven based on the amount of deformation of the exposed surface of the substrate measured in the above measurement step, and force is applied to the flexible plate from the back side. At the same time, the exposed surface of the substrate is deformed by deforming the substrate, which is adsorbed and held on almost the entire surface of the flexible plate, following the deformation of the flexible plate. An exposure method characterized by comprising a control step of positioning the image plane, and an exposure step of exposing and printing a predetermined pattern on a substrate whose exposure surface has been deformed by the control step, and the present invention also provides an exposure method. , a measuring means for measuring the amount of deformation of the exposed surface of the substrate, a flexible plate formed to suction and hold almost the entire back surface of the substrate opposite to the exposed surface of the substrate, and each independently at multiple locations. a chuck having a plurality of vertical displacement generating means that partially deforms the flexible plate by engaging with the back surface of the flexible plate and slightly moving the flexible plate in the vertical direction; Based on the measured amount of deformation of the exposed surface of the substrate,
Each vertical displacement generating means of the chuck is driven to apply force to the flexible plate from the back side to deform the flexible plate, and the chuck is held by suction over almost the entire surface of the flexible plate. A control means for deforming the substrate by making a flexible plate follow the deformation and positioning the exposed surface of the substrate on the imaging plane, and exposing and printing a predetermined circuit pattern on the substrate whose exposed surface has been deformed by the control means. This is an exposure apparatus characterized by comprising an exposure means.

以下本発明を図に示す実施例にもとづいて具体
的に説明する。第4図は本発明の露光装置の全体
概略構成を示す。即ち4はウエハと称する基板、
16は基板平坦化チヤツクで、基板4の「うね
り」、「そり」を矯正する機能を有している。また
基板平坦化チヤツク16は基板平坦化位置イから
露光焼付位置ロへベース22上を往復摺動自在に
支持されたキヤリツジ6に位置決め手段(図示せ
ず)によつて位置決めされて取付けられる。17
は基板平坦化位置イに設置された基板4の表面の
平坦度を測定する装置である。基板平坦化位置イ
において平坦度測定装置17で得た基板4の表面
の平坦度情報を、基板平坦化チヤツク16にフイ
ードバツクして基板4の表面を水平且、平坦にす
る。以上の操作の後基板4と基板平坦化チヤツク
16を移動し、露光装置ロにセツトする。この位
置ロにはホトマスク上のパターンを露光する装置
21があり、基板4の上にパターンが露光され
る。更に詳述すると、本露光装置は本体38に対
してウエハである基板4を平坦にする変位発生装
置を1個以上有する基板平坦化チヤツク16、平
坦度測定装置17、変位発生装置のコントローラ
18、基板4とマスク1を載せて走査するキヤリ
ツジ6、焼付け前後の基板4を収納するカートリ
ツジ19、カートリツジ19と基板平坦化チヤツ
ク16の間の搬送機構20、露光光学系21、お
よびベース22からなる。ウエハ等の基板4はカ
ートリツジ19より搬送機構20により、予め平
坦にしてある基板平坦化チヤツク16の上にセツ
トされ、平坦度測定装置17によりチヤツクされ
た基板4の平坦度を検出し、コントローラ18が
演算して必要な量だけ、平坦化チヤツク16の各
分割部分の変位発生装置を動かして基板4を必要
な形状、すなわちこの場合は平坦にする。次に平
坦度測定装置17で平坦度を確認し、規格範囲内
でなければ、所定の回数変位発生装置を上下に微
動変位させてウエハの変形動作を繰返し、規格範
囲内になつた後露光光学系21の下にキヤリツジ
6を動かして、マスク1のパターンを焼付ける。
焼付けの終わつたウエハ等の基板は搬送機構20
により焼付用カートリツジ19に入る。以上を末
焼付基板がなくなるまで繰り返す。ここで、基板
4の変形形状は焼付時にマスク面パターンの結像
面に合うようにするのが良い。しかし、露光装置
ではマスク面パターンの結像面は平坦になるよう
にしており、必要精度に対し十分平坦である場合
は、平坦に合わせれば良い。マスク結像面に合わ
せる場合は図にはないが、マスク結像面をあらか
じめ検出しておく手段を必要とする。これは露光
光学系21を通して、マスクパターンの基板4上
への結像を、変位発生装置16を動しながら検出
すれば良い。又、簡便法としてはマスクの平坦度
を検出して、平坦な時の結像位置からのずれを知
りウエハ上の何点かのリフアレンス点とウエハ面
の平坦度より、先に求めたずれた結像位置に合わ
せる方法も考えられる。
The present invention will be specifically described below based on embodiments shown in the drawings. FIG. 4 shows the overall schematic structure of the exposure apparatus of the present invention. That is, 4 is a substrate called a wafer,
Reference numeral 16 denotes a substrate flattening chuck, which has the function of correcting "undulations" and "warpage" of the substrate 4. Further, the substrate flattening chuck 16 is positioned and attached by a positioning means (not shown) to the carriage 6 supported so as to be able to reciprocate and slide on the base 22 from the substrate flattening position A to the exposure/printing position L. 17
is a device for measuring the flatness of the surface of the substrate 4 installed at the substrate flattening position A. The flatness information of the surface of the substrate 4 obtained by the flatness measuring device 17 at the substrate flattening position A is fed back to the substrate flattening chuck 16 to make the surface of the substrate 4 horizontal and flat. After the above operations, the substrate 4 and the substrate flattening chuck 16 are moved and set in the exposure apparatus. At this position, there is a device 21 for exposing the pattern on the photomask, and the pattern is exposed on the substrate 4. More specifically, this exposure apparatus includes a substrate flattening chuck 16 having one or more displacement generating devices for flattening the substrate 4, which is a wafer, with respect to the main body 38, a flatness measuring device 17, a controller 18 for the displacement generating device, It consists of a carriage 6 on which the substrate 4 and mask 1 are placed and scanned, a cartridge 19 that stores the substrate 4 before and after printing, a transport mechanism 20 between the cartridge 19 and the substrate flattening chuck 16, an exposure optical system 21, and a base 22. A substrate 4 such as a wafer is set from a cartridge 19 onto a substrate flattening chuck 16 which has been flattened in advance by a transport mechanism 20, and a flatness measurement device 17 detects the flatness of the substrate 4, and a controller 18 detects the flatness of the substrate 4. is calculated and the displacement generating device of each divided portion of the flattening chuck 16 is moved by the necessary amount to make the substrate 4 into the required shape, that is, in this case, flattened. Next, the flatness is checked with the flatness measuring device 17, and if it is not within the standard range, the displacement generator is slightly moved up and down a predetermined number of times to repeat the deformation operation of the wafer, and after the flatness is within the standard range, the exposure optical Move the carriage 6 under the system 21 and print the pattern of the mask 1.
The substrate such as a wafer that has been baked is transferred to a transport mechanism 20.
It enters the printing cartridge 19. Repeat the above steps until there are no more unbaked boards left. Here, it is preferable that the deformed shape of the substrate 4 matches the imaging plane of the mask surface pattern at the time of printing. However, in the exposure apparatus, the imaging plane of the mask surface pattern is made flat, and if it is sufficiently flat for the required accuracy, it is sufficient to make it flat. Although not shown in the figure, when aligning with the mask image plane, a means for detecting the mask image plane in advance is required. This can be done by detecting the image formation of the mask pattern on the substrate 4 through the exposure optical system 21 while moving the displacement generating device 16. In addition, a simple method is to detect the flatness of the mask, find out the deviation from the image formation position when it is flat, and use the flatness of the wafer surface and several reference points on the wafer to determine the deviation that was previously determined. Another possible method is to match the image formation position.

第5図a,b,c,dは基板平坦化チヤツク1
6の原理を示したものである。aに示す凸レンズ
状の基板4をbのように従来の平坦な真空チヤツ
ク23に吸引すると、基板上面11は凸状にな
る。ここでcのように基板の厚さに応じて任意な
形状で選択できるチヤツク24で吸引すれば、基
板上面11を平坦にできる。基板を変形させる力
はこの例ではチヤツクの真空力により発生する大
気圧25が基板をチヤツクに押しつける力であ
る。変形力としては他に静電力、粘着力、基板上
面11への接触による力、基板周囲に加える力等
が考えられる。又、基板の変形は任意であるが基
板の弾性変形係数と変形力によつて決まる基板の
変形曲線で決まり、dのように小さな変形力26
の場合にはチヤツクにならわないこともある。基
板の内例えばウエハの場合は多くは変形量は10μ
m程度であり形状も2次曲線で±2μm内に近似で
きるような単純な形であるので、大気圧による変
形で十分である。
Figure 5 a, b, c, d are substrate planarization chuck 1
This shows the principle of 6. When the convex lens-shaped substrate 4 shown in a is sucked into a conventional flat vacuum chuck 23 as shown in b, the upper surface 11 of the substrate becomes convex. Here, the upper surface 11 of the substrate can be flattened by suctioning with the chuck 24, which can be selected in any shape depending on the thickness of the substrate as shown in c. The force that deforms the substrate is, in this example, the force of the atmospheric pressure 25 generated by the vacuum force of the chuck pressing the substrate against the chuck. Other possible deforming forces include electrostatic force, adhesive force, force due to contact with the upper surface 11 of the substrate, and force applied around the substrate. Although the deformation of the substrate is arbitrary, it is determined by the deformation curve of the substrate determined by the elastic deformation coefficient of the substrate and the deformation force, and a small deformation force 26 such as d
In some cases, it may not follow the chuck. For example, in the case of wafers, the amount of deformation in most substrates is 10μ.
Since it has a simple shape that can be approximated by a quadratic curve within ±2 μm, deformation due to atmospheric pressure is sufficient.

第6図a,bは、更に本発明の原理を補足説明
するために、各分割部分を上下することにより凸
レンズ状の基板を平坦に変形させる基板平坦化装
置を示した平面図と断面図である。aの様に分割
した格子の1つ1つにbのように、モータ33、
ギヤ34、送りネジによる上下コマ35で1組の
上下変位発生装置36を構成し、各組が独立な上
下変位発生装置36、各上下変位発生装置36に
対応したギヤツプ検出器37、上下変位発生装置
36を内蔵し、且基板4を吸引するためのチヤツ
ク本体38、本図には記されていない真空配管に
連通しチヤツク本体内を真空にする配管8、全ギ
ヤツプ検出器37の値を演算し、各上下変位発生
装置機構36の上下量を決定するコントローラ3
9、各モータ33を駆動するドライバ40からな
る。
In order to further explain the principle of the present invention, FIGS. 6a and 6b are a plan view and a sectional view showing a substrate flattening device that flattens a convex lens-shaped substrate by moving each divided portion up and down. be. As shown in b, a motor 33 is attached to each of the grids divided as shown in a.
A gear 34 and a vertical displacement generating device 35 formed by a feed screw constitute one set of vertical displacement generating devices 36, and each group includes an independent vertical displacement generating device 36, a gap detector 37 corresponding to each vertical displacement generating device 36, and a vertical displacement generating device 36. Calculate the values of the chuck body 38 which incorporates the device 36 and sucks the substrate 4, the piping 8 that communicates with vacuum piping (not shown in this figure) to create a vacuum inside the chuck body, and the full gap detector 37. and a controller 3 that determines the vertical amount of each vertical displacement generator mechanism 36.
9, a driver 40 for driving each motor 33;

基板4は真空吸引されて上下変位発生装置36
の先端にならい、個々の上下変位発生装置36に
対応した基板面11を上下させることができる。
基板上面11の平坦度を検出した後、修正量にも
とづいて各モータ33が回転し、減速ギヤ34に
より減速した回転運動は送りネジで上下コマ35
を上下させる。モータ36がDCモータの場合減
速ギヤ比は1万〜10万等の十分な減速が必要とな
るが、パルスモータの場合は0.5μm単位程度に上
下コマ2を制御できる程度なら良く、大きなギヤ
比を必要としない。又、DCモータは、検出器3
7を用いてのクローズドループによる上下量制御
が易しいが、パルスモータではオープンループで
制御可能である。ただし、パルスモータはDCモ
ータより大きく、停止中も熱を持つ欠点を有す
る。いずれもバツクラツシ、ガタをなくすかある
いはあつてもコントロール可能な値に抑える必要
がある。
The substrate 4 is vacuum-suctioned and the vertical displacement generator 36
The substrate surface 11 corresponding to each vertical displacement generating device 36 can be moved up and down following the tip of the vertical displacement generating device 36.
After detecting the flatness of the top surface 11 of the board, each motor 33 rotates based on the amount of correction, and the rotational movement decelerated by the reduction gear 34 is transferred to the upper and lower frames 35 by the feed screw.
Raise and lower. If the motor 36 is a DC motor, a sufficient reduction gear ratio of 10,000 to 100,000 is required, but in the case of a pulse motor, it is sufficient to control the upper and lower pieces 2 in units of about 0.5 μm, and a large gear ratio is required. does not require. Also, for DC motors, detector 3
It is easy to control the vertical amount in a closed loop using a motor 7, but it is possible to control in an open loop with a pulse motor. However, pulse motors are larger than DC motors and have the disadvantage of generating heat even when stopped. In either case, it is necessary to eliminate bumpiness and play, or to keep it to a controllable value even if it occurs.

即ち基板平坦化チヤツクの上面は1個以上のコ
マ35から成つており、各々のコマは変位発生装
置36により、各々独立に微小距離上下可能にな
つている。同チヤツク本体38には周辺に円形、
矩形またはそれに近い形状のフランジ部分が設け
られており、本体のフランジ部分及び変位発生装
置36の上に基板4が塔載される。またこれには
真空用の穴8とチユーブが接続しており、このチ
ユーブは真空源9に接続されている。
That is, the upper surface of the substrate flattening chuck consists of one or more pieces 35, and each piece can be moved up and down by a small distance independently by a displacement generator 36. The chuck body 38 has a circular shape around the periphery.
A flange portion having a rectangular or nearly rectangular shape is provided, and the substrate 4 is mounted on the flange portion of the main body and the displacement generator 36 . Further, a vacuum hole 8 and a tube are connected to this, and this tube is connected to a vacuum source 9.

以上により基板8全体を真空で下方に吸着しな
がら、コマ13を上記平坦度測定装置17から各
コマ13に対応する基板の位置において検出され
た平坦度を上記変位発生装置36にフイードバツ
クして上下方向に微小距離駆動することにより、
例えば基板に凸凹やそりやうねりがある場合も基
板とコマの間に異物が介在した場合でも、基板の
表面を平坦化することが出来る。
As described above, while the entire substrate 8 is sucked downward in a vacuum, the flatness of each piece 13 is fed back to the displacement generator 36 from the flatness measurement device 17 at the position of the substrate corresponding to each piece 13, and the flatness is transferred upward and downward. By driving a small distance in the direction of
For example, even if the substrate has irregularities, warps, or undulations, or if foreign matter is present between the substrate and the frame, the surface of the substrate can be flattened.

また上下変位発生装置36としては上記モータ
に連結されたねじの他に電歪素子、磁歪素子、熱
変形素子、マグネツト利用、流体によるもの、テ
コ等による微細変形機構、それらの組合せでも良
い。基板がウエハの場合、ストローク30μm、位
置決め精度±1μm以上、変形速度がスループツト
に比べ早く、かつ焼付時に安定してなければなら
ない。
In addition to the screw connected to the motor, the vertical displacement generating device 36 may be an electrostrictive element, a magnetostrictive element, a thermal deformation element, a mechanism using a magnet, a mechanism using a fluid, a fine deformation mechanism using a lever, or a combination thereof. If the substrate is a wafer, the stroke must be 30 μm, the positioning accuracy must be ±1 μm or more, the deformation speed must be faster than that of a throughput, and it must be stable during printing.

また基板の平坦度の測定法には、単一測定素子
を用いて、幾つかの点をシリアルに測定する方法
と、複数個の測定素子を用いて、幾つかの点をパ
ラレルに測定する方法とが考えられる。
In addition, there are two methods for measuring the flatness of a substrate: one method uses a single measuring element to measure several points serially, and the other uses multiple measuring elements and measures several points in parallel. You could think so.

いずれにしても、これらの測定装置および測定
方法を用いて基板4の表面のコマ35に対応する
位置の平坦度を測定することが必須の要素であ
る。
In any case, it is essential to measure the flatness of the surface of the substrate 4 at a position corresponding to the top 35 using these measuring devices and measuring methods.

次に露光位置ロを説明する。この露光位置に設
けられた露光装置としてはホトマスクと基板を密
着させて露光する密着式の露光装置や、ホトマス
クと基板との間を数ミクロン〜数十ミクロン離し
て、上方から紫外線、遠赤外線、X線などの露光
手段を照射し、パターンを露光する装置とがあ
る。また他の露光装置としては第9図に示す投影
式露光装置があり、この装置はホトマスク1上の
パターン2を、投影光学系21aを介して基板4
上にパターン5を結像させることにより、基板4
上にパターンを露光するものである。
Next, the exposure position (b) will be explained. The exposure equipment installed at this exposure position includes a contact type exposure equipment that exposes the photomask and the substrate in close contact with each other, and a contact type exposure equipment that exposes the photomask and the substrate in close contact with each other. There is an apparatus that exposes a pattern by irradiating exposure means such as X-rays. Another exposure apparatus is a projection type exposure apparatus shown in FIG.
By imaging the pattern 5 on the substrate 4
A pattern is exposed on top.

コマの形状は第7図a〜fに示す如く、格子状
分割41、放射状分割42、同心円状分割43、
多重同心区状分割44、平行状分割45、同心円
状と放射状分割の組合せ46、などのように、
様々な方式が考えられる。
The shape of the top is as shown in FIGS.
Multiple concentric segmental divisions 44, parallel divisions 45, combinations of concentric and radial divisions 46, etc.
Various methods are possible.

次に本発明に係る基板平坦化装置の一実施例を
説明する。即ち、第8図のように、これ迄に述べ
て来た複数個に分割された変位発生装置36のコ
マ上及びチヤツク本体38の周囲上面に薄板(可
撓性の板)47が貼付けられている。その他の変
位発生手段15として、複数の室に分割された各
室の真空圧力を調整することにより、チヤツク本
体38の周囲上面に周囲を貼付けて保持固定され
た基板(可撓性の板)47をダイヤフラム状に変
形させることもできる。なお48は、基板4を薄
板(可撓性の板)47に吸着保持するための穴で
ある。このように薄板47の周囲は、チヤツク本
体38の上面の周囲に保持固定され、各変位発生
手段36が駆動されて薄板47の局部に力が作用
して変形する際、薄板47全体はチヤツク本体3
8に対して特に水平方向に動かず、アライメント
状態が保持され、高精度の回路パターンの露光が
実現することができる。
Next, an embodiment of the substrate flattening apparatus according to the present invention will be described. That is, as shown in FIG. 8, a thin plate (flexible plate) 47 is pasted on the top of the displacement generator 36 that has been divided into a plurality of pieces and on the upper surface of the periphery of the chuck body 38. There is. As other displacement generating means 15, a substrate (flexible plate) 47 whose periphery is attached and fixed to the upper surface of the periphery of the chuck body 38 by adjusting the vacuum pressure of each chamber divided into a plurality of chambers. It is also possible to transform it into a diaphragm shape. Note that 48 is a hole for holding the substrate 4 on the thin plate (flexible plate) 47 by suction. In this way, the periphery of the thin plate 47 is held and fixed around the upper surface of the chuck body 38, and when each displacement generating means 36 is driven and a force is applied to a local part of the thin plate 47 to deform it, the entire thin plate 47 is held and fixed around the upper surface of the chuck body 38. 3
8, the alignment state is maintained, and exposure of a circuit pattern with high precision can be realized.

また基板表面の平坦度測定装置17には接触式
と非接触式がある。接触式にはダイヤルゲージな
どがあり、非接触式には空気マイクロメータ、電
磁気型測定器、静電容量型測定器、光学的測定器
などのように様々な手段が考えられる。
Further, the substrate surface flatness measuring device 17 includes a contact type and a non-contact type. Contact types include dial gauges, and non-contact types include air micrometers, electromagnetic measuring instruments, capacitance measuring instruments, optical measuring instruments, and various other means.

このように本実施例によれば、例えば種々の熱
処理を受け、通常100μm程度の「そり」「うねり」
を有しているLSI用ウエハを従来±15〜20μm程
度にしか平坦化できなかつたものを±1μm程度に
低減することが出来る。
As described above, according to the present embodiment, after being subjected to various heat treatments, for example, "warpage" and "waviness" of about 100 μm usually occur.
The flattening of LSI wafers, which conventionally could only be about ±15 to 20 μm, can be reduced to about ±1 μm.

このように平坦化され、且つ水平になつた基板
にパターンを露光すれば、全面に亘つて均一に、
1〜2μmの微細パターンを形成することが出来、
例えば基板がウエハの場合LSIの歩留りを大幅に
向上することが出来る。
If a pattern is exposed to light on a substrate that has been flattened and made horizontal in this way, it will be uniformly exposed over the entire surface.
It is possible to form fine patterns of 1 to 2 μm,
For example, if the substrate is a wafer, the yield of LSI can be greatly improved.

以上説明したように本発明によれば、複数箇所
において各々独立して上下に変位を発生すべく設
置された複数の上下変位発生手段の各々を駆動し
て、基板の裏面をほぼ全面に亘つて吸着保持させ
るべく形成した可撓性の板を変形させると共にこ
の可撓性の板にほぼ全面に亘つて吸着保持された
基板を可撓性の板の変形に倣わせて変形させて基
板の露光面を結像面に位置付けるようにしたの
で、基板が反つていても、チヤツク本体に対して
水平方向に静止された状態、即ちアライメントが
保たれた状態で基板を破壊することなく、滑らか
に変形させて基板の露光面を高精度に結像面に一
致させることができ、微細回路パターンを高解像
度でもつて露光焼付けが実現でき、製品の歩留ま
りを大幅に向上させることができる実用的な作用
効果を奏する。
As explained above, according to the present invention, each of the plurality of vertical displacement generating means installed to independently generate vertical displacement at a plurality of locations is driven, and the back surface of the substrate is covered almost entirely. Exposure of the substrate by deforming a flexible plate formed to be held by suction and deforming the substrate, which is held by suction over almost the entire surface of the flexible plate, following the deformation of the flexible plate. Since the surface is positioned at the image formation plane, even if the substrate is warped, it can be moved smoothly without damaging the substrate while it remains horizontally stationary with respect to the chuck body, that is, the alignment is maintained. Practical effects that allow the exposed surface of the substrate to match the imaging surface with high precision by deforming, allowing exposure printing of fine circuit patterns with high resolution and greatly improving product yield. be effective.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、従来の露光装置の一例である投影式
露光装置を示す概略構成図、第2図a,bはウエ
ハの平坦度と結像との関係を説明する図、第3図
は分割露光を説明するための図、第4図は本発明
に係る露光装置の一実施例を示す概略構成図、第
5図a,b,c,dは第4図に示す基板平坦化チ
ヤツクによつて基板を平坦にする原理を説明する
ための図、第6図aは基板平坦化位置で基板を変
形させる装置1部断面に示した図、第6図bは第
6図aの正面一部断面図、第7図a,b,c,
d,e,fは各々第6図に示すコマ及び上下変位
発生装置の配列を示した図、第8図aは第6図a
と異なる他の基板平坦化チヤツクを示した平面
図、第8図bは第8図aのC−C矢視断面図、第
9図は露光位置に設けられた露光装置の一実施例
である投影式を示した概略図である。 符号の説明 4…基板(ウエハ)、6…キヤリ
ツジ、16…基板平坦化チヤツク、17…平坦度
測定装置、18…コントローラ、19…カートリ
ツジ、20…搬送機構、21…露光光学系(露光
装置)、36…上下変位発生装置。
Figure 1 is a schematic configuration diagram showing a projection exposure apparatus, which is an example of a conventional exposure apparatus, Figures 2a and b are diagrams illustrating the relationship between wafer flatness and image formation, and Figure 3 is a diagram illustrating the relationship between wafer flatness and image formation. FIG. 4 is a schematic configuration diagram showing an embodiment of the exposure apparatus according to the present invention, and FIG. 5 a, b, c, and d are diagrams for explaining exposure. Figure 6a is a cross-sectional view of a part of the device for deforming the substrate at the substrate flattening position, and Figure 6b is a front view of Figure 6a. Cross-sectional view, Figure 7 a, b, c,
d, e, and f are diagrams showing the arrangement of the top and vertical displacement generator shown in Figure 6, respectively, and Figure 8a is the same as Figure 6a.
FIG. 8b is a sectional view taken along the line C--C in FIG. 8a, and FIG. 9 is an embodiment of the exposure device installed at the exposure position. It is a schematic diagram showing a projection type. Explanation of symbols 4... Substrate (wafer), 6... Carriage, 16... Substrate flattening chuck, 17... Flatness measuring device, 18... Controller, 19... Cartridge, 20... Transport mechanism, 21... Exposure optical system (exposure device) , 36...Vertical displacement generator.

Claims (1)

【特許請求の範囲】 1 基板の露光面の変形量を測定する測定工程
と、上記基板の露光面と反対側の基板の裏面をほ
ぼ全面に亘つて吸着保持させるべく形成した可撓
性の板を複数箇所において各々独立して上下に変
位を発生すべく設置された複数の上下変位発生手
段の各々を上記測定工程により測定された基板の
露光面の変形量に基いて駆動して可撓性の板に裏
側から力を付与して可撓性の板を変形させると共
にこの可撓性の板にほぼ全面に亘つて吸着保持さ
れた基板を可撓性の板の変形に倣わせて変形させ
て基板の露光面を結像面に位置付ける制御工程
と、該制御工程によつて露光面を変形させた基板
上に所定のパターンを露光焼付する露光工程とを
備えたことを特徴とする露光方法。 2 基板の露光面の変形量を測定する測定工程
と、上記基板の露光面と反対側の基板の裏面をほ
ぼ全面に亘つて吸着保持させるべく形成し、且つ
チヤツク本体の周囲に周囲を保持固定した可撓性
の板を複数箇所において各々独立して上下に変位
を発生すべく設置された複数の上下変位発生手段
の各々を上記測定工程により測定された基板の露
光面の変形量に基いて駆動して上記チヤツク本体
に保持固定された周囲を基準にして可撓性の板に
裏側から力を付与して可撓性の板を変形させると
共にこの可撓性の板にほぼ全面に亘つて吸着保持
された基板を可撓性の板の変形に倣わせて変形さ
せて基板の露光面を結像面に位置付ける制御工程
と、該制御工程によつて露光面を変形させた基板
上に所定のパターンを露光焼付する露光工程とを
備えたことを特徴とする露光方法。 3 基板の露光面の変形量を測定する測定手段
と、上記基板の露光面と反対側の基板の裏面をほ
ぼ全面に亘つて吸着保持させるべく形成した可撓
性の板と複数箇所において各々独立して上記可撓
性の板の裏面に係合して上下方向に微動させて可
撓性の板を部分的に変形させる複数の上下変位発
生手段とを有するチヤツクと、上記測定手段によ
つて測定された基板の露光面の変形量に基いて、
上記チヤツクの各上下変位発生手段を駆動して可
撓性の板に裏側から力を付与して可撓性の板を変
形させると共にこの可撓性の板にほぼ全面に亘つ
て吸着保持された基板を可撓性の板の変形に倣わ
せて変形させ、基板の露光面を結像面に位置付け
る制御手段と、該制御手段により露光面を変形さ
せた基板上に所定の回路パターンを露光焼付する
露光手段とを備えたことを特徴とする露光装置。 4 基板の露光面の変形量を測定する測定手段
と、上記基板の露光面と反対側の基板の裏面をほ
ぼ全面に亘つて吸着保持させるべく形成した可撓
性の板と該可撓性の板の周囲を保持固定するチヤ
ツク本体と該チヤツク本体内に設けられ、複数箇
所において各々独立して上記可撓性の板の裏面に
係合して上下方向に微動させて可撓性の板を部分
的に変形させる複数の上下変位発生手段とを有す
るチヤツクと、上記測定手段によつて測定された
基板の露光面の変形量に基いて、上記チヤツクの
各上下変位発生手段を駆動してチヤツク本体に周
囲が保持固定された可撓性の板に裏側から力を付
与して可撓性の板を変形させると共にこの可撓性
の板にほぼ全面に亘つて吸着保持された基板を可
撓性の板の変形に倣わせて変形させ、基板の露光
面を結像面に位置付ける制御手段と、該制御手段
により露光面を変形させた基板上に所定の回路パ
ターンを露光焼付する露光手段とを備えたことを
特徴とする露光装置。
[Claims] 1. A measuring step for measuring the amount of deformation of the exposed surface of the substrate, and a flexible plate formed to suction and hold almost the entire back surface of the substrate opposite to the exposed surface of the substrate. The flexibility is achieved by driving each of the plurality of vertical displacement generating means installed to independently generate vertical displacement at a plurality of locations based on the amount of deformation of the exposed surface of the substrate measured in the above measurement process. A force is applied to the plate from the back side to deform the flexible plate, and the substrate, which is suctioned and held on almost the entire surface of the flexible plate, is deformed to follow the deformation of the flexible plate. An exposure method comprising: a control step of positioning the exposed surface of the substrate on an image forming surface; and an exposure step of exposing and printing a predetermined pattern on the substrate whose exposed surface has been deformed by the controlling step. . 2. A measurement process of measuring the amount of deformation of the exposed surface of the substrate, and forming the back surface of the substrate opposite to the exposed surface of the substrate to be suctioned and held over almost the entire surface, and holding and fixing the periphery around the chuck body. Each of the plurality of vertical displacement generating means installed to independently generate vertical displacement of the flexible plate at a plurality of locations is determined based on the amount of deformation of the exposed surface of the substrate measured in the above measurement process. A force is applied to the flexible plate from the back side based on the periphery held and fixed to the chuck main body by driving to deform the flexible plate and to apply force to the flexible plate over almost the entire surface thereof. a control step in which the substrate held by suction is deformed to follow the deformation of the flexible plate, and the exposed surface of the substrate is positioned on the imaging plane; 1. An exposure method comprising: an exposure step of exposing and printing a predetermined pattern. 3 A measuring means for measuring the amount of deformation of the exposed surface of the substrate, a flexible plate formed to suction and hold almost the entire back surface of the substrate opposite to the exposed surface of the substrate, and each independently at multiple locations. a chuck having a plurality of vertical displacement generating means that partially deforms the flexible plate by engaging with the back surface of the flexible plate and slightly moving the flexible plate in the vertical direction; Based on the measured amount of deformation of the exposed surface of the substrate,
Each vertical displacement generating means of the chuck is driven to apply force to the flexible plate from the back side to deform the flexible plate, and the chuck is held by suction over almost the entire surface of the flexible plate. A control means for deforming the substrate to follow the deformation of the flexible plate and positioning the exposed surface of the substrate on the imaging plane, and exposing and printing a predetermined circuit pattern on the substrate whose exposed surface has been deformed by the control means. 1. An exposure apparatus comprising an exposure means. 4. A measuring means for measuring the amount of deformation of the exposed surface of the substrate, a flexible plate formed to suction and hold almost the entire back surface of the substrate opposite to the exposed surface of the substrate, and the flexible plate. A chuck body for holding and fixing the periphery of the plate; and a chuck body provided within the chuck body, each of which independently engages the back surface of the flexible plate at a plurality of locations and moves the flexible plate slightly in the vertical direction. A chuck having a plurality of vertical displacement generating means for partially deforming the chuck, and driving each vertical displacement generating means of the chuck based on the amount of deformation of the exposed surface of the substrate measured by the measuring means to generate the chuck. A force is applied from the back side to a flexible plate whose periphery is held and fixed to the main body to deform the flexible plate and flex the substrate which is suctioned and held by this flexible plate over almost the entire surface. a control means for deforming the substrate to imitate the deformation of the magnetic plate, and positioning the exposed surface of the substrate on an imaging plane; and an exposure means for exposing and printing a predetermined circuit pattern on the substrate whose exposed surface has been deformed by the control means. An exposure device characterized by comprising:
JP3388280A 1980-03-19 1980-03-19 Method and device for exposure Granted JPS56130738A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP3388280A JPS56130738A (en) 1980-03-19 1980-03-19 Method and device for exposure
DE3110341A DE3110341C2 (en) 1980-03-19 1981-03-17 Method and apparatus for aligning a thin substrate in the image plane of a copier
US06/245,193 US4391511A (en) 1980-03-19 1981-03-18 Light exposure device and method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3388280A JPS56130738A (en) 1980-03-19 1980-03-19 Method and device for exposure

Publications (2)

Publication Number Publication Date
JPS56130738A JPS56130738A (en) 1981-10-13
JPH0147007B2 true JPH0147007B2 (en) 1989-10-12

Family

ID=12398887

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3388280A Granted JPS56130738A (en) 1980-03-19 1980-03-19 Method and device for exposure

Country Status (1)

Country Link
JP (1) JPS56130738A (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4344160A (en) * 1980-05-02 1982-08-10 The Perkin-Elmer Corporation Automatic wafer focusing and flattening system
JPS5815237A (en) * 1981-07-21 1983-01-28 Seiko Epson Corp Apparatus for manufacturing semiconductor
JPS5867026A (en) * 1981-10-19 1983-04-21 Hitachi Ltd Thin plate metamorphosis device
JPS59106118A (en) * 1982-12-10 1984-06-19 Hitachi Ltd Thin plate deforming apparatus
JPS61112121A (en) * 1984-10-24 1986-05-30 Ushio Inc Exposing device
JPS6336526A (en) * 1986-07-30 1988-02-17 Oki Electric Ind Co Ltd Wafer exposure equipment
US20050035514A1 (en) * 2003-08-11 2005-02-17 Supercritical Systems, Inc. Vacuum chuck apparatus and method for holding a wafer during high pressure processing
NL2006565A (en) 2010-06-30 2012-01-02 Asml Holding Nv Reticle clamping system.

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4888871A (en) * 1972-02-02 1973-11-21
JPS50152670A (en) * 1974-05-28 1975-12-08
JPS5314425A (en) * 1976-07-27 1978-02-09 Sharp Corp Liquid fuel combustion device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4888871A (en) * 1972-02-02 1973-11-21
JPS50152670A (en) * 1974-05-28 1975-12-08
JPS5314425A (en) * 1976-07-27 1978-02-09 Sharp Corp Liquid fuel combustion device

Also Published As

Publication number Publication date
JPS56130738A (en) 1981-10-13

Similar Documents

Publication Publication Date Title
US6426790B1 (en) Stage apparatus and holder, and scanning exposure apparatus and exposure apparatus
US6654096B1 (en) Exposure apparatus, and device manufacturing method
JPH0257333B2 (en)
JPH0147007B2 (en)
US6628391B2 (en) Method for aligning two objects
JPH10321515A (en) Semiconductor exposure device
CN115857281A (en) Proximity contact type exposure device
JP2001127144A (en) Method and device for holding substrate with suction and exposing device and device manufacturing method using the device
JPH07105323B2 (en) Exposure method
KR19990045161A (en) Positioning and Projection Exposure Equipment
JPH0642508B2 (en) Thin plate deforming device and proximity exposure device
JP2003156322A (en) Method and apparatus for position measurement, positioning method, aligner as well as method of manufacturing microdevice
US4669868A (en) Step and repeat exposure apparatus and method
JP3408118B2 (en) Projection exposure method and apparatus
JPH0145217B2 (en)
JPH08236419A (en) Positioning method
JP2001015422A (en) Projection exposing method, projection aligner and manufacture of device using the same
JP3526174B2 (en) Semiconductor exposure apparatus and device manufacturing method
JPH09306832A (en) Mask support structure and aligner using it
JP3624057B2 (en) Exposure equipment
JPH10209030A (en) Method and apparatus for projection exposure
JPS6386430A (en) Pattern transferring method
JP3068398B2 (en) Reticle manufacturing method and reticle manufacturing apparatus
JP2006261418A (en) Projection aligner and process for fabricating device
USH1463H (en) Method for detecting positions of photomask and substrate