JPS63214397A - Treatment of high-concentration organic waste water - Google Patents
Treatment of high-concentration organic waste waterInfo
- Publication number
- JPS63214397A JPS63214397A JP62266214A JP26621487A JPS63214397A JP S63214397 A JPS63214397 A JP S63214397A JP 62266214 A JP62266214 A JP 62266214A JP 26621487 A JP26621487 A JP 26621487A JP S63214397 A JPS63214397 A JP S63214397A
- Authority
- JP
- Japan
- Prior art keywords
- membrane
- activated sludge
- liquid
- treatment
- denitrification
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 title abstract description 12
- 239000010815 organic waste Substances 0.000 title abstract 3
- 239000012528 membrane Substances 0.000 claims abstract description 43
- 239000007788 liquid Substances 0.000 claims abstract description 28
- 239000010802 sludge Substances 0.000 claims abstract description 25
- 239000002002 slurry Substances 0.000 claims abstract description 12
- 238000000926 separation method Methods 0.000 claims abstract description 11
- 238000000108 ultra-filtration Methods 0.000 claims abstract description 11
- 238000000034 method Methods 0.000 claims abstract description 10
- 239000012982 microporous membrane Substances 0.000 claims abstract description 7
- 238000000354 decomposition reaction Methods 0.000 claims abstract 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical group [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 15
- 239000002351 wastewater Substances 0.000 claims description 14
- 238000001179 sorption measurement Methods 0.000 claims description 13
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical group [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 4
- -1 aluminum compound Chemical class 0.000 claims description 2
- 229910052742 iron Inorganic materials 0.000 claims description 2
- 229910052782 aluminium Inorganic materials 0.000 claims 1
- 238000006243 chemical reaction Methods 0.000 abstract description 13
- 239000008394 flocculating agent Substances 0.000 abstract description 3
- 239000012141 concentrate Substances 0.000 abstract description 2
- 238000009434 installation Methods 0.000 abstract 3
- 238000010521 absorption reaction Methods 0.000 abstract 1
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 18
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 10
- 229910052698 phosphorus Inorganic materials 0.000 description 10
- 239000011574 phosphorus Substances 0.000 description 10
- 229910052757 nitrogen Inorganic materials 0.000 description 9
- 239000012466 permeate Substances 0.000 description 6
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 4
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 4
- 239000007787 solid Substances 0.000 description 4
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 239000002734 clay mineral Substances 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 229910021536 Zeolite Inorganic materials 0.000 description 2
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 239000003054 catalyst Substances 0.000 description 2
- 238000005119 centrifugation Methods 0.000 description 2
- 238000010790 dilution Methods 0.000 description 2
- 239000012895 dilution Substances 0.000 description 2
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 description 2
- 238000001914 filtration Methods 0.000 description 2
- 239000010800 human waste Substances 0.000 description 2
- 239000007800 oxidant agent Substances 0.000 description 2
- 230000001590 oxidative effect Effects 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 239000011148 porous material Substances 0.000 description 2
- 238000003672 processing method Methods 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 239000010457 zeolite Substances 0.000 description 2
- 239000005909 Kieselgur Substances 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- AZDRQVAHHNSJOQ-UHFFFAOYSA-N alumane Chemical class [AlH3] AZDRQVAHHNSJOQ-UHFFFAOYSA-N 0.000 description 1
- DIZPMCHEQGEION-UHFFFAOYSA-H aluminium sulfate (anhydrous) Chemical compound [Al+3].[Al+3].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O DIZPMCHEQGEION-UHFFFAOYSA-H 0.000 description 1
- 238000011001 backwashing Methods 0.000 description 1
- 239000000440 bentonite Substances 0.000 description 1
- 229910000278 bentonite Inorganic materials 0.000 description 1
- SVPXDRXYRYOSEX-UHFFFAOYSA-N bentoquatam Chemical compound O.O=[Si]=O.O=[Al]O[Al]=O SVPXDRXYRYOSEX-UHFFFAOYSA-N 0.000 description 1
- 239000004927 clay Substances 0.000 description 1
- 238000005345 coagulation Methods 0.000 description 1
- 230000015271 coagulation Effects 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000007865 diluting Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005188 flotation Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- CDBRNDSHEYLDJV-FVGYRXGTSA-M naproxen sodium Chemical compound [Na+].C1=C([C@H](C)C([O-])=O)C=CC2=CC(OC)=CC=C21 CDBRNDSHEYLDJV-FVGYRXGTSA-M 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 235000015097 nutrients Nutrition 0.000 description 1
- 239000011368 organic material Substances 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 239000002957 persistent organic pollutant Substances 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 230000035484 reaction time Effects 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 238000004062 sedimentation Methods 0.000 description 1
- 238000000638 solvent extraction Methods 0.000 description 1
- 210000002700 urine Anatomy 0.000 description 1
- 238000004065 wastewater treatment Methods 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W10/00—Technologies for wastewater treatment
- Y02W10/10—Biological treatment of water, waste water, or sewage
Landscapes
- Separation Of Suspended Particles By Flocculating Agents (AREA)
- Activated Sludge Processes (AREA)
- Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
- Separation Using Semi-Permeable Membranes (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
本発明は、し尿あるいは水産加工廃水、食品廃水、農産
物加工廃水などにおける窒素や燐を含む高濃度に有機性
物質を含有する廃水に関する極めて高効率な処理方法に
関するものであり、更にその高度な処理に関するもので
ある。DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to wastewater containing highly concentrated organic substances, including nitrogen and phosphorus, such as human waste, fishery processing wastewater, food wastewater, agricultural product processing wastewater, etc. It relates to efficient processing methods and more advanced processing thereof.
(従来の技術及びその問題点)
従来、高濃度に有機性汚染物を含む廃水処理法は、BO
Dとして3.000〜1.000■/Il程度に稀釈し
て、活性汚泥法にって処理するのが主流であったが、最
近、稀釈用水確保の困難性、製造規模の問題などから、
できる限り稀釈度を下げて処理する方法に関する提案が
行なわれている。また放流を可とする処理水々質の規制
をきびしく、CODとして3011g/ I!、以下、
窒素として10■/2以下、燐として1■/2以下であ
る。(Prior art and its problems) Conventionally, wastewater treatment methods containing high concentrations of organic pollutants have been
The mainstream was to dilute D to about 3.000 to 1.000 μ/Il and treat it using the activated sludge method, but recently, due to difficulties in securing water for dilution and production scale issues,
Proposals have been made regarding processing methods that reduce the degree of dilution as much as possible. In addition, the quality of treated water that can be discharged has been strictly regulated, with a COD of 3011g/I! ,below,
The nitrogen content is 10/2 or less, and the phosphorus content is 1/2 or less.
(問題点を解決するための手段)
このような問題点を解決すべく、幾多の検討を重ねたと
ころ、生物処理における反応を促進し、かつam度を上
げることが困難とされる生物処理時に発生する汚泥の濃
縮を十分可能にしてBO[l 。(Means for solving the problems) In order to solve these problems, we have conducted numerous studies and found that it is difficult to accelerate the reaction in biological treatment and increase the am content. It is possible to sufficiently thicken the generated sludge and reduce BO[l.
窒素を除去すべく、生物処理系に透過膜プロセスを設け
、その透過膜の特性として、汚泥やコロイド性物質など
の固形物のilI縮が可能でありながら、溶解性COD
を膜透過させるようなマイクロポーラス膜乃至限外濾過
膜を利用して凝集剤を添加して膜処理を行ない、濃縮液
を生物反応処理系に返送し、系内の栄養源及び生物群の
濃縮を高めると共に、その膜透過液を吸着処理に通すこ
とを特徴とする、高濃度有機性廃水の高度処理方法を提
案するものである。In order to remove nitrogen, a permeable membrane process is installed in the biological treatment system, and the characteristics of the permeable membrane are that it is possible to reduce solids such as sludge and colloidal substances, but it also eliminates soluble COD.
A flocculant is added to perform membrane treatment using a microporous membrane or ultrafiltration membrane that allows water to permeate through the membrane, and the concentrated liquid is returned to the biological reaction treatment system to concentrate the nutrient sources and organisms within the system. This paper proposes an advanced treatment method for highly concentrated organic wastewater, which is characterized by increasing the membrane permeation and passing the membrane permeate through adsorption treatment.
本発明においては生物処理に直結させる透過膜としてポ
アサイズの大きな溶解性COD、BOD @縮特性の低
いマイクロポーラス膜乃至限外濾過膜を利用し、生物反
応系統へ常に高濃度の活性汚泥を送り、系内の汚泥濃度
を高度に保ち、被処理水をあらかじめ希釈せず、そのR
OD、COD 9度が高くても十分生物反応が進行でき
るような状態に維持し得る。即ち、ここで利用する透過
膜は、生物反応における活性汚泥濃度の上昇と被分解処
理物の濃度を上昇させ得る目的を有しており、塩分、溶
解性COD、 BODの濃度上昇能力はほとんどない透
過膜を利用するわけである。その目的に合致する膜とし
ては数μ〜0.4μ程度のマイクロポーラス膜がよ(利
用できるが、分画分子量致方乃至数10万程度の限外濾
過膜も有利に利用することができる。即ち本発明におい
ては、生物処理系に対しては、系内の活性汚泥濃度を高
めるに十分な透過膜を直結せしめて、生物反応系内の反
応を促進せしめ、しかも従来管理が容易でなかった汚泥
濃度の制御を透過膜を利用して強制的に実施するととも
に生物処理系で処理困難な溶解性成分を凝集によってで
きるだけ不溶化分離し、膜透過液中へリークする溶解成
分については、吸着処理によって除去しようとするもの
である。生物反応系とマイクロポーラス膜乃至限外濾過
膜とを組み合せ、生物反応系内のスラリ濃度を高濃度に
維持するという方法は公知の事実であるが、し尿等の窒
素、燐を含有する高濃度有機性廃水をできるだけ希釈せ
ずに処理しようとする場合には生物化学的硝化脱窒素処
理に透過膜を組合わせたとしても、窒素やBO[lは効
率よく低減できてもなお溶解性の燐、COD 、色度成
分が残留し、選択性の高い膜を採用することによって膜
透過水質の向上は期待できるが、なお十分でなく、かつ
溶解性成分が生物処理系に蓄積さ濃度を高めるための透
過膜として、溶解性COD、 BODをi4縮し得ない
程度の細孔を有する透過膜を利用して、生物反応系の反
応を促進し、かつ、膜透過液中にリークするCOD、
BOD成分を更に吸着処理に導いて高度に処理するとこ
ろに特徴がある。In the present invention, a microporous membrane or an ultrafiltration membrane with large pore size and low shrinkage characteristics of soluble COD and BOD is used as a permeable membrane directly connected to biological treatment, and activated sludge of high concentration is constantly sent to the biological reaction system. The sludge concentration in the system is maintained at a high level, and the water to be treated is not diluted in advance.
Even if the OD and COD are high (9 degrees), it can be maintained in a state where biological reactions can proceed sufficiently. In other words, the permeable membrane used here has the purpose of increasing the concentration of activated sludge and the concentration of substances to be decomposed in biological reactions, and has almost no ability to increase the concentration of salt, soluble COD, and BOD. A permeable membrane is used. Microporous membranes of several microns to 0.4 microns can be used as membranes that meet this purpose, but ultrafiltration membranes with molecular weight cut-offs of about 100,000 to several 100,000 can also be advantageously used. That is, in the present invention, a permeable membrane sufficient to increase the activated sludge concentration within the system is directly connected to the biological treatment system, thereby promoting the reaction within the biological reaction system, which was not easy to manage in the past. Sludge concentration is forcibly controlled using a permeable membrane, and soluble components that are difficult to treat in biological treatment systems are insolubilized and separated as much as possible through coagulation, and dissolved components that leak into the membrane permeate are treated by adsorption treatment. It is a well-known fact that the slurry concentration in the biological reaction system is maintained at a high concentration by combining a biological reaction system with a microporous membrane or an ultrafiltration membrane. When trying to treat highly concentrated organic wastewater containing nitrogen and phosphorus without diluting it as much as possible, even if a permeable membrane is combined with biochemical nitrification and denitrification treatment, nitrogen and BO[l can be efficiently reduced. Even if it is possible, soluble phosphorus, COD, and chromaticity components will remain, and although it is possible to improve the quality of water permeated through the membrane by using a membrane with high selectivity, it is still not sufficient, and the soluble components will be removed by biological treatment. As a permeable membrane to increase the concentration accumulated in the system, a permeable membrane with pores large enough to prevent soluble COD and BOD from being condensed is used to promote the reaction of the biological reaction system and to increase membrane permeation. COD leaking into liquid,
The feature is that the BOD component is further guided to adsorption treatment and treated to a high degree.
透過膜利用に当っては、凝集剤を添加し、生物化学的硝
化説窒素処理で除去できなかった溶解性残留成分をでき
るだけ不溶化する。系内を酸化雰囲気に制御すると膜透
過性が改善できるから、酸化剤の添加、酸化反応促進効
果を与える触媒の添加も有効である。When using a permeable membrane, a flocculant is added to insolubilize as much of the soluble residual components that could not be removed by biochemical nitrification as nitrogen treatment. Since membrane permeability can be improved by controlling the inside of the system to an oxidizing atmosphere, it is also effective to add an oxidizing agent or a catalyst that promotes the oxidation reaction.
次に本発明の一実施態様について図面を参照しながら説
明する。Next, one embodiment of the present invention will be described with reference to the drawings.
高濃度の有機性廃水1は生物化学的硝化脱窒素槽Aに流
入する。生物化学的硝化脱窒素槽Aには酸素又は空気2
を送給して曝気処理し、好気性硝化を行なうとともに嫌
気性下で脱窒素を起こさせる。この反応は楢を仕切って
連続的に行なわせても1槽で回分式に行なわせてもよい
、生物化学的硝化脱窒素槽Aにおいて所定の反応時間経
過後、活性汚泥スラリ3は加圧された後、マイクロポー
ラス膜乃至限外濾過膜装着セルBに流入する。膜分離装
置へ流入する活性汚泥スラリ3に無機および/または有
機性凝集剤12を注入する。凝集条件としては、pH5
〜9、好ましくは生物処理にできるだけ影響を及ぼさな
いように中性がよい、凝集剤としては鉄やアルミニウム
化合物が燐や溶解性COD成分等の不溶化に効果的であ
る。系内を酸化雰囲気となす酸化剤、触媒12を注入し
て゛もよい。The highly concentrated organic wastewater 1 flows into the biochemical nitrification and denitrification tank A. Biochemical nitrification and denitrification tank A contains oxygen or air 2
Aerobic nitrification is carried out through aerobic treatment, and denitrification occurs under anaerobic conditions. This reaction may be carried out continuously by partitioning the oak or batchwise in one tank. After a predetermined reaction time has elapsed in the biochemical nitrification and denitrification tank A, the activated sludge slurry 3 is pressurized. After that, it flows into cell B equipped with a microporous membrane or an ultrafiltration membrane. An inorganic and/or organic flocculant 12 is injected into the activated sludge slurry 3 flowing into the membrane separator. The aggregation conditions are pH 5
~9. Preferably, it is neutral so as not to affect biological treatment as much as possible. Iron or aluminum compounds are effective as flocculants for insolubilizing phosphorus and soluble COD components. An oxidizing agent and catalyst 12 may be injected to create an oxidizing atmosphere in the system.
圧力は通常0.5にgF/c−乃至数にgF/c+jで
十分である。A pressure of 0.5 gF/c- to several gF/c+j is usually sufficient.
装着セルBにおいて濃縮された活性汚泥4は排出され、
その大部分は生物化学的硝化脱窒素槽Aへ返送される。The activated sludge 4 concentrated in the mounting cell B is discharged,
Most of it is returned to biochemical nitrification and denitrification tank A.
残部の活性汚泥8は固液分離袋[Dに至り、ここで固−
液分離をおこなう、なお要すれば分離助剤9を添加する
ことができる。固−液分離装置りとしては濾過、遠心分
離、沈降分離、浮上分離などの公知の手段の内、適宜一
つ又は二つ以上選定して組み合わせ利用することができ
る。The remaining activated sludge 8 reaches the solid-liquid separation bag [D, where the solid-liquid
Liquid separation is carried out, and if necessary, a separation aid 9 can be added. As the solid-liquid separator, one or more of known means such as filtration, centrifugation, sedimentation, flotation, etc. can be appropriately selected and used in combination.
固液分離装置りからは分離液10とスラッジ又はケーキ
11が排出される。一方装着セルBの膜透過液5は吸着
処理装置Cに至り、ここで残留するCOD。Separated liquid 10 and sludge or cake 11 are discharged from the solid-liquid separator. On the other hand, the membrane-permeated liquid 5 from the mounting cell B reaches the adsorption treatment device C, where the COD remains.
BOD、色度が除去される。ここでは活性炭が有効に利
用できるが、その他吸着樹脂、天然あるいは合成粘土鉱
物をも利用しうる。かくして清澄に処理された液6は排
出される。BOD, chromaticity is removed. Activated carbon can be effectively used here, but other adsorption resins and natural or synthetic clay minerals can also be used. The liquid 6 thus clarified is discharged.
なお、吸着処理における吸着媒体としては、無機性のも
のとして、ゼオライト、珪藻土、酸性白土、ベントナイ
トなどの天然粘土鉱物、あるいは合成ゼオライトのごと
き合成粘土鉱物が例としてあげられる。有機性のものと
して、吸着樹脂がその好例である。また、活性炭や骨炭
なども利用できる。Examples of inorganic adsorption media in the adsorption treatment include natural clay minerals such as zeolite, diatomaceous earth, acid clay, and bentonite, and synthetic clay minerals such as synthetic zeolite. A good example of an organic material is adsorption resin. Activated charcoal and bone charcoal can also be used.
次に本願発明の実施例を示す。Next, examples of the present invention will be shown.
実施例
C00区分として、s、 ooo■/l含有する生し尿
に空気を導入して生物化学的硝化脱窒素処理を行ない、
懸濁固形物濃度として15,000■/2の活性汚泥ス
ラリに硫酸アルミニウムをAIとして300 u/乏添
加し、NaOHでp117に調整して分画分子量として
20万の限外濾過膜装置に圧力2KgF/cjの条件下
に通液して膜分離をおこなった。この膜分離においては
溶解性CODの濃縮はあまりおこらず、膜の透過側と濃
縮側との溶解性COOの濃度は大差なかった。腹側残留
側のスラリ濃度は懸濁固形物濃度として25.000■
/lで、その50%を生物化学的硝化脱窒素糸へ返送し
、他部を固−液分離に服する。固−液分離に当っては高
分子凝集剤を固形物に対して1〜1.2%添加し3,2
00〜3,500rpmで遠心分離に服した。その分離
液は前記限外濾過膜装置の供給側へ回送した。As Example C00 category, biochemical nitrification and denitrification treatment was performed by introducing air into raw urine containing s, ooo■/l,
Aluminum sulfate was added to activated sludge slurry with a suspended solids concentration of 15,000 μ/2 as AI, adjusted to p117 with NaOH, and then subjected to pressure in an ultrafiltration membrane device with a molecular weight cut-off of 200,000. Membrane separation was performed by passing liquid under the condition of 2 KgF/cj. In this membrane separation, concentration of soluble COD did not occur much, and the concentration of soluble COO between the permeation side and the concentration side of the membrane was not significantly different. The slurry concentration on the ventral residual side is 25,000■ as suspended solids concentration.
/l, 50% of it is returned to the biochemical nitrification and denitrification thread, and the other part is subjected to solid-liquid separation. For solid-liquid separation, a polymer flocculant is added at 1 to 1.2% based on the solid matter.
The cells were subjected to centrifugation at 00-3,500 rpm. The separated liquid was sent to the supply side of the ultrafiltration membrane device.
一方膜透過液の溶解性燐酸は、(PO4)として2■/
l〜3■/2、COOは170〜200■/2、ROD
は6〜8■/fl、窒素は7〜9■/2である0次に過
酸化水素10■/lを添加し、活性炭充填層に導入し、
5V−1で吸着処理したところ、CODとして20〜2
5■/lの処理水を得た。活性炭は破過するまで濾過抵
抗が上がらず、逆洗する必要がなかった。On the other hand, the soluble phosphoric acid in the membrane permeate is 2 /
l~3■/2, COO is 170~200■/2, ROD
is 6 to 8 ■/fl, and nitrogen is 7 to 9 ■/2. Next, 10 ■/l of hydrogen peroxide is added and introduced into an activated carbon packed bed.
When adsorbed at 5V-1, the COD was 20-2.
5 .mu./l of treated water was obtained. Activated carbon did not increase its filtration resistance until it broke through, so there was no need for backwashing.
比較例1
実施例において、活性汚泥スラリに凝集剤を添加せずに
限外濾過膜装置に通液したところ、膜透過液のCODは
約450〜520■/2、燐酸はpo、とじて720〜
740■/2であった0次に過酸化水素lO■/j2添
加し、活性炭充填層に導入し、5V−1で吸着処理した
ところ、CODとして25〜30■/lの処理水を得た
。なお燐はほとんどリークし、活性炭が破過するまでの
通液時は1/4程度に減少した。Comparative Example 1 In the example, when the activated sludge slurry was passed through an ultrafiltration membrane device without adding a flocculant, the COD of the membrane permeate was about 450 to 520 /2, and the phosphoric acid was po, and the total COD was 720. ~
740■/2 Next, hydrogen peroxide lO■/j2 was added, introduced into an activated carbon packed bed, and adsorbed at 5V-1 to obtain treated water with a COD of 25 to 30■/l. . In addition, most of the phosphorus leaked out, and the amount decreased to about 1/4 when the liquid was passed through the activated carbon.
(発明の効果)
本発明によれば、し尿等の窒素、燐を含有する高濃度有
機性廃水からCOD値が低く、かつ窒素及び燐の含有量
が著しく減少した処理水が得られる。(Effects of the Invention) According to the present invention, treated water with a low COD value and significantly reduced nitrogen and phosphorus contents can be obtained from highly concentrated organic wastewater containing nitrogen and phosphorus such as human waste.
本発明においては活性汚泥スラリを膜に通すに先立って
活性汚泥スラリに凝集剤を添加するために生物化学的硝
化脱窒素処理で除去できなかった溶解性燐などの成分を
できるだけ不溶化することができ、膜を通すさいに溶解
性の燐、COD、色度成分を十分除去することができる
。そして、そこでもなお残ったものについては吸着処理
で除去するから高度に精製された処理水が得られる。In the present invention, since a flocculant is added to the activated sludge slurry before passing it through the membrane, components such as soluble phosphorus that could not be removed by biochemical nitrification and denitrification treatment can be insolubilized as much as possible. , soluble phosphorus, COD, and chromaticity components can be sufficiently removed when passing through the membrane. What remains is then removed through adsorption treatment, resulting in highly purified treated water.
第1図は、本発明の一実施態様を示す系統説明図である
。
A:生物化学的硝化脱窒素槽。
B:マイクロポーラス膜乃至限外濾過膜装着セル。
C:吸着装置、 D:固液分離装置。
1:有機性廃水、 2:酸素又は空気。
3:活性汚泥スラリ、 4:活性汚泥。
5:膜透過液、 6:処理液。
8:活性汚泥、 9:分離助剤。
10:分離液、11:スラッジ又はケーキ。
12:凝集剤等。
第1図FIG. 1 is a system explanatory diagram showing one embodiment of the present invention. A: Biochemical nitrification and denitrification tank. B: Cell equipped with microporous membrane or ultrafiltration membrane. C: Adsorption device, D: Solid-liquid separation device. 1: Organic wastewater, 2: Oxygen or air. 3: Activated sludge slurry, 4: Activated sludge. 5: Membrane permeate liquid, 6: Processing liquid. 8: Activated sludge, 9: Separation aid. 10: Separated liquid, 11: Sludge or cake. 12: Flocculant, etc. Figure 1
Claims (4)
で処理すると共に該生物化学的分解反応処理工程の活性
汚泥スラリに凝集剤をあらかじめ添加した後マイクロポ
ーラス膜乃至限外濾過膜によって膜透過液と濃縮液とに
分離し、前記濃縮液の一部を生物化学的分解反応処理工
程へ返送すると共に前記膜透過液を吸着処理することを
特徴とする高濃度有機性廃水の処理方法。(1) Highly concentrated organic wastewater is treated in a biochemical decomposition reaction treatment process, and a flocculant is added in advance to the activated sludge slurry in the biochemical decomposition reaction treatment process, and then a microporous membrane or an ultrafiltration membrane is used. A method for treating highly concentrated organic wastewater, which comprises separating the permeated liquid and the concentrated liquid, returning a portion of the concentrated liquid to a biochemical decomposition reaction treatment step, and subjecting the membrane permeated liquid to an adsorption treatment.
とを特徴とする特許請求の範囲第1項記載の高濃度有機
性廃水の処理方法。(2) The method for treating highly concentrated organic wastewater according to claim 1, wherein the flocculant is an iron or aluminum compound.
とする特許請求の範囲第1項又は第2項記載の高濃度有
機性廃水の処理方法。(3) The method for treating highly concentrated organic wastewater according to claim 1 or 2, wherein the adsorption treatment is activated carbon adsorption treatment.
を特徴とする特許請求の範囲第1〜3項のいずれか1項
に記載の高濃度有機性廃水の処理方法。(4) The method for treating highly concentrated organic wastewater according to any one of claims 1 to 3, characterized in that the other part of the concentrated liquid is led to a solid-liquid separation step.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62266214A JPS63214397A (en) | 1987-10-23 | 1987-10-23 | Treatment of high-concentration organic waste water |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62266214A JPS63214397A (en) | 1987-10-23 | 1987-10-23 | Treatment of high-concentration organic waste water |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP8488380A Division JPS5710393A (en) | 1980-06-23 | 1980-06-23 | Treatment of high concentration organic waste water |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS63214397A true JPS63214397A (en) | 1988-09-07 |
JPS6366600B2 JPS6366600B2 (en) | 1988-12-21 |
Family
ID=17427845
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP62266214A Granted JPS63214397A (en) | 1987-10-23 | 1987-10-23 | Treatment of high-concentration organic waste water |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS63214397A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04215892A (en) * | 1990-09-03 | 1992-08-06 | Kubota Corp | Sewage purifying tank |
WO2004106240A1 (en) * | 2003-05-27 | 2004-12-09 | Asahi Organic Chemicals Industry Co., Ltd. | Method of treating organic waste water and organic sludge and treatment equipment therefor |
JP2005279447A (en) * | 2004-03-30 | 2005-10-13 | Kubota Corp | Water treatment method and apparatus |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS52104355A (en) * | 1976-02-28 | 1977-09-01 | Unitika Ltd | Method of and apparatus for oxidizing and filtering waste water |
JPS52138364A (en) * | 1976-05-12 | 1977-11-18 | Rhone Poulenc Ind | Treatment of waste liquor of pulp factory |
JPS5382047A (en) * | 1976-11-17 | 1978-07-20 | Nitto Chem Ind Co Ltd | Method of dewatering treatment of sludge |
JPS5477457A (en) * | 1977-11-11 | 1979-06-20 | Thetford Corp | Closed loop sludge treatment* and method of and device for recirculating water |
JPS54162845A (en) * | 1978-06-15 | 1979-12-24 | Nisshin Spinning | Drainage disposal method |
-
1987
- 1987-10-23 JP JP62266214A patent/JPS63214397A/en active Granted
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS52104355A (en) * | 1976-02-28 | 1977-09-01 | Unitika Ltd | Method of and apparatus for oxidizing and filtering waste water |
JPS52138364A (en) * | 1976-05-12 | 1977-11-18 | Rhone Poulenc Ind | Treatment of waste liquor of pulp factory |
JPS5382047A (en) * | 1976-11-17 | 1978-07-20 | Nitto Chem Ind Co Ltd | Method of dewatering treatment of sludge |
JPS5477457A (en) * | 1977-11-11 | 1979-06-20 | Thetford Corp | Closed loop sludge treatment* and method of and device for recirculating water |
JPS54162845A (en) * | 1978-06-15 | 1979-12-24 | Nisshin Spinning | Drainage disposal method |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04215892A (en) * | 1990-09-03 | 1992-08-06 | Kubota Corp | Sewage purifying tank |
WO2004106240A1 (en) * | 2003-05-27 | 2004-12-09 | Asahi Organic Chemicals Industry Co., Ltd. | Method of treating organic waste water and organic sludge and treatment equipment therefor |
JP2005279447A (en) * | 2004-03-30 | 2005-10-13 | Kubota Corp | Water treatment method and apparatus |
JP4508694B2 (en) * | 2004-03-30 | 2010-07-21 | 株式会社クボタ | Water treatment method and apparatus |
Also Published As
Publication number | Publication date |
---|---|
JPS6366600B2 (en) | 1988-12-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7867397B2 (en) | Method for purifying waste water with added oxidizing agent | |
KR101373881B1 (en) | Apparatus and method for treatment of organic substance-containing wastewater | |
JPS63302996A (en) | Treatment of organic sewage | |
JPS6369598A (en) | Treatment of organic sewage containing phosphorus | |
JPH07155784A (en) | Treatment of organic waste water | |
JPH0366036B2 (en) | ||
JPH11253940A (en) | Water treatment method | |
JPS63214397A (en) | Treatment of high-concentration organic waste water | |
CN106565050A (en) | Folic acid wastewater treatment process | |
JPH03270800A (en) | Treatment of organic sewage | |
KR100673841B1 (en) | Treatment method of high concentration organic suspended solids containing ceramic flocculant | |
JP4467897B2 (en) | Phosphorus-containing organic sewage treatment equipment | |
JPH0966292A (en) | Treatment of water containing organic substance | |
JPH0651199B2 (en) | Organic wastewater treatment method | |
JP3843540B2 (en) | Biological treatment method of effluent containing organic solids | |
JPS6328000B2 (en) | ||
JPH03275197A (en) | Treatment of night soil type sewage | |
JPH0567359B2 (en) | ||
JP3759055B2 (en) | Organic wastewater treatment apparatus and method | |
JPH04322799A (en) | Method and device for treating oil-containing waste water | |
JPH10156398A (en) | Water treatment method and water treatment device | |
JPH0433518B2 (en) | ||
JPS6265795A (en) | Treatment of high concentration waste water | |
JPH0471700A (en) | Sludge treating device | |
JP2514676B2 (en) | Treatment method of organic waste liquid |