[go: up one dir, main page]

JPS63211624A - Optical device for illumination - Google Patents

Optical device for illumination

Info

Publication number
JPS63211624A
JPS63211624A JP62043688A JP4368887A JPS63211624A JP S63211624 A JPS63211624 A JP S63211624A JP 62043688 A JP62043688 A JP 62043688A JP 4368887 A JP4368887 A JP 4368887A JP S63211624 A JPS63211624 A JP S63211624A
Authority
JP
Japan
Prior art keywords
light source
reflection mirror
beams
mirror surface
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62043688A
Other languages
Japanese (ja)
Inventor
Yasuhiro Nozue
野末 康博
Noritoshi Itou
伊藤 仙聡
Osamu Wakabayashi
理 若林
Junichi Fujimoto
准一 藤本
Masahiko Kowaka
雅彦 小若
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Komatsu Ltd
Original Assignee
Komatsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Komatsu Ltd filed Critical Komatsu Ltd
Priority to JP62043688A priority Critical patent/JPS63211624A/en
Publication of JPS63211624A publication Critical patent/JPS63211624A/en
Pending legal-status Critical Current

Links

Landscapes

  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Lasers (AREA)

Abstract

PURPOSE:To facilitate high brightness illumination having simple structure and excellent uniformity by repeating the reflection of laser beams and forming a plurality of bundles of rays, generating optical path difference. CONSTITUTION:Beams from a coherent light source are inclined and projected, multiple reflection is generated between two mirror surfaces, emitting one part as transmitted beams by a partial reflecting mirror surface, and a plurality of luminous flux having predetermined optical path difference are generated. A mirror such as a multiple reflection mirror 2 is disposed so that a normal is tilted at theta=15 deg. in the incident direction of laser beams L, the incident position of laser beams at one end does not constitute a total reflection mirror surface, and the mirror 2 is antireflection-coated and an incident port I is shaped. On the other hand, the partial reflecting mirror surface on the other end side is also antireflection-coated locally, a transmitting port O is shaped, reflecting beams are reflected by reflecting mirror surfaces C, and branched into transmitted beams and reflected beams by partial reflecting mirror surfaces R again, and incoherent luminous flux is formed. Accordingly, luminous flux from a secondary light source does not interfere mutually on the surface of a body to be irradiated.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、照明光学装置に係り、特に、微細パターン形
成のための露光用光源等として可干渉性の光(コヒーレ
ント光)を用いる際の干渉による悪影響を軽減する構造
に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an illumination optical device, and in particular, to an illumination optical device when coherent light is used as an exposure light source for forming fine patterns. This invention relates to a structure that reduces the negative effects of interference.

〔従来技術およびその問題点〕[Prior art and its problems]

半導体技術の進歩と共に超LSIをはじめ、半導体装置
の高集積化が進められてきている。半導体装置の高集積
化は素子の微細化によって実現されるため、微細かつ高
精度のパターン形成技術への要求が高まっている。
2. Description of the Related Art As semiconductor technology advances, semiconductor devices, including ultra-LSIs, are becoming more highly integrated. Since higher integration of semiconductor devices is achieved by miniaturizing elements, there is an increasing demand for fine and highly accurate pattern forming technology.

通常、微細パターンの形成には、フォトリソグラフィー
技術が用いられる。
Usually, photolithography technology is used to form fine patterns.

近年、フォトリソグラフィーの使用波長である紫外域の
光を高出力で発振するエキシマレーザ等のレーザの開発
により、レーザ光が半導体露光装置の新しい光源として
注目されてきている。
In recent years, with the development of lasers such as excimer lasers that emit light at high output in the ultraviolet region, which is the wavelength used in photolithography, laser light has been attracting attention as a new light source for semiconductor exposure equipment.

一般にレーザ光は高い輝度と指向性を有することから、
露光用光源として用いる場合、極めて有効であるが、レ
ーザ光特有の強い干渉性によって、マスク面および像面
においてスペックルが発生し、これが解像度の向上をは
ばむ問題となっている。
Laser light generally has high brightness and directivity, so
When used as an exposure light source, it is extremely effective, but due to the strong coherence characteristic of laser light, speckles occur on the mask surface and image plane, which poses a problem that hinders improvement in resolution.

そこで、マスク面および像面におけるスペックルを軽減
するため、段数のオプチカルファイバを用いて可干渉距
離分だけの光路差をもたせたのち複数の光線束に分岐し
、再び結合する方法(特開昭6O−247643) 、
段差プリズムを用いて可干渉距離分だけの光路差を与え
る方法(特開昭6l−169815) 、あるいは、レ
ーザ光束からの光源像を形成させるレンズへの入射角度
を変化させることにより光源像を移動せしめるスキャン
ミラ一方式(ソリッドステートテクノロジー、夏80’
 、115〜121)等が提案されている。
Therefore, in order to reduce speckles on the mask surface and image surface, a method (Japanese Patent Application Laid-Open No. 2003-120000) of using optical fibers to create an optical path difference equal to the coherence length, and then branching into multiple beams and recombining them. 6O-247643),
A method of providing an optical path difference equal to the coherence length using a step prism (Japanese Unexamined Patent Publication No. 61-169815), or a method of moving the light source image by changing the incident angle of the laser beam to the lens that forms the light source image. One type of scan mirror (solid state technology, summer 80's)
, 115-121), etc. have been proposed.

ところで、従来の自然発振のエキシマレーザのレーザ光
は半値全幅が0.3mm程度、可干渉距離が200μm
程度と短いため、オプチカルファイバーまたは段差ブリ
ズマで生起せしめる光路差は小さいためオプチカルファ
イバや段差プリズムの製作は容品である。
By the way, the laser beam of a conventional spontaneous oscillation excimer laser has a full width at half maximum of about 0.3 mm and a coherence distance of 200 μm.
Since the optical fiber or step prism is relatively short, the optical path difference caused by the optical fiber or step prism is small, so it is easy to manufacture the optical fiber or step prism.

しかしながら、石英のみのレンズ素材による縮小レンズ
を用いて縮小投影露光を行なう場合は、光源として狭帯
域発振のエキシマレーザを用いざるをえない。この場合
、半値全幅は0.O05nm程度であり、可干渉距離は
12.5m+s程度であるため、オプチカルファイバの
1本1本あるいは段差プリズムの1段1段の長さの差が
12.5m+s程度必要となるため製造が困難である。
However, when performing reduction projection exposure using a reduction lens made of only quartz lens material, a narrow band oscillation excimer laser must be used as a light source. In this case, the full width at half maximum is 0. Since the wavelength is about 05 nm and the coherence distance is about 12.5 m+s, manufacturing is difficult because the length difference between each optical fiber or each step of the step prism is about 12.5 m+s. be.

また、エキシマレーザはパルスレーザであるため、スキ
ャンミラ一方式では、パルス数1000以上で露光しな
いと干渉性をなくすことができず、繰り返し数500H
zとして露光時間が2秒以上必要となり、スルーブツト
が極めて悪くなるという問題があった。
In addition, since the excimer laser is a pulsed laser, with one scan mirror type, interference cannot be eliminated unless exposure is performed with a number of pulses of 1000 or more, and the number of repetitions is 500H.
z requires an exposure time of 2 seconds or more, which poses a problem in that the throughput becomes extremely poor.

本発明は、前記実情に鑑みてなされたもので、コヒーレ
ント光源から複数の2次光源を形成するに際し、構造が
簡単でこれらの2次光源からの光束が被照明物体面上で
互いに干渉しないようにした照明光学装置を提供するこ
とを目的とする。
The present invention has been made in view of the above-mentioned circumstances, and when a plurality of secondary light sources are formed from a coherent light source, the structure is simple and the light beams from these secondary light sources do not interfere with each other on the surface of the object to be illuminated. An object of the present invention is to provide an illumination optical device that has the following features.

〔問題点を解決するための手段〕[Means for solving problems]

そこで本発明では、コヒーレント光源と、該コヒーレン
ト光源から供給される光束から複数の2次光源を形成す
るための2次光源形成部材を具えた照明光学装置におい
て、 該コヒーレント光源と該2次光源形成部との間に、互い
に平行となるように相対向して配設された全反射ミラー
と部分反射ミラーとからなる光路差生起手段を配設し、
これら全反射ミラー又は部分反射ミラーの1部に形成さ
れたレーザ光入射口から該コヒーレント光源からの光が
これらの反射ミラーの法線方向に対して傾斜して入射し
繰り返し反射しながら部分反射ミラー側に射出せしめら
れるようにしている。
Therefore, in the present invention, in an illumination optical device including a coherent light source and a secondary light source forming member for forming a plurality of secondary light sources from a luminous flux supplied from the coherent light source, the coherent light source and the secondary light source forming member are provided. An optical path difference generating means consisting of a total reflection mirror and a partial reflection mirror arranged parallel to each other and facing each other is disposed between the part and the part,
The light from the coherent light source is incident from a laser beam entrance formed in a part of these total reflection mirrors or partial reflection mirrors at an angle to the normal direction of these reflection mirrors, and is repeatedly reflected to the partial reflection mirror. It is designed so that it can be ejected to the side.

〔作用〕[Effect]

すなわち、例えば、第5図にこの繰り返し反射ミラーの
原理を示すように、全反射ミラー面Cと部分反射ミラー
面Rとが距離dだけ離間するように相対向し゛ζ平行に
配設されており、全反射ミラー面Cの一端に幅Wのレー
ザ光入射口■が配設されると共に、部分反射ミラー面R
の他端にも幅Wのレーザ光出射口Oが配設された繰り返
し反射ミラーの構造を考えてみる。まずレーザ光りがこ
れらの反射ミラー面の法線に対して角θをなすようにレ
ーザ光入射口から入射せしめられるとする。
That is, for example, as shown in FIG. 5, the principle of this repeating reflection mirror is such that a total reflection mirror surface C and a partial reflection mirror surface R are arranged parallel to each other and face each other so as to be separated by a distance d. , a laser beam entrance opening (2) with a width W is provided at one end of the total reflection mirror surface C, and a partial reflection mirror surface R
Consider the structure of a repeating reflection mirror in which a laser beam exit opening O with a width W is also provided at the other end. First, it is assumed that laser light is made to enter from the laser light entrance so as to form an angle θ with respect to the normal line of these reflecting mirror surfaces.

このとき、レーザ光入射口から入ったレーザ光りは部分
反射ミラーの領域R1に当たり、1部は透過光T1とし
て出射すると共に、残りは前記領域R1で反射せしめら
れ、全反射ミラー面の領域C1に当たる。
At this time, the laser light entering from the laser beam entrance hits the region R1 of the partial reflection mirror, and part of it is emitted as transmitted light T1, and the rest is reflected by the region R1 and hits the region C1 of the total reflection mirror surface. .

この領域C1に当った光は全反射せしめられ、部分反射
ミラーの領域R2を照射する。そしてこの領域R2を照
射した光の1部は透過光T2として出射すると共に、残
りは前記領域R2で反射せしめられ、全反射ミラーの領
域C2を照射する。
The light hitting this region C1 is totally reflected and illuminates the region R2 of the partially reflecting mirror. A part of the light irradiating this region R2 is emitted as transmitted light T2, and the rest is reflected by the region R2, and irradiates the region C2 of the total reflection mirror.

このようにして順次、透過および反射をn回繰り返して
いくと、最後にレーザ光出射口Oに当たった光は全て透
過光Tnとして出射せしめられ、n個の互いに光路差を
もつ光線からなる光束を生起することができる。
When transmission and reflection are repeated n times in this manner, all the light that finally hits the laser beam exit O is emitted as transmitted light Tn, and a luminous flux consisting of n rays with optical path differences between each other. can occur.

ここで、繰り返し反射ミラーの法線方向に対して入射レ
ーザ光のなす角をθ、全反射ミラー面Cと部分反射ミラ
ー面の間隔をdミラー間の媒質の屈折率をnとすると X m 2 n d cosθ         (1
)なお、可干渉距離の詳細についてはマックスホルンお
よびエミルウルフの共著“光学原理(Principl
es  of  0ptics)の第4版″に記載され
ており、コヒーレント光源から供給される光束の中心波
長をλ、波長幅をΔλとするとき、可干渉距離 は 一λ2/Δλ     ・・・・・・・・・    (
2)で与えられる。
Here, if the angle formed by the incident laser beam with respect to the normal direction of the repeating reflection mirror is θ, the interval between the total reflection mirror surface C and the partial reflection mirror surface is d, and the refractive index of the medium between the mirrors is n, then X m 2 n d cos θ (1
) For details on the coherence length, please refer to Max Horn and Emil Wolff's ``Principles of Optics''.
If the center wavelength of the light beam supplied from a coherent light source is λ and the wavelength width is Δλ, then the coherence length is -λ2/Δλ... ... (
2) is given by

従って、X〉 となるように、繰り返し反射ミラーを設
計することにより互いに干渉しない光束を得ることがで
きる。
Therefore, by designing the repeating reflection mirror so that X>, it is possible to obtain light beams that do not interfere with each other.

〔実施例〕〔Example〕

以下、本発明の実施例について図面を参照しつつ詳細に
説明する。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

この照明光学装置は、第1図に示す如く、半値全幅0.
005na+のコヒーレントなレーザ光を出力する狭帯
域発振エキシマレーザ光源1と、該レーザ光から、互い
に光路差をもつ光線束を生起せしめる繰り返し反射ミラ
ー2と、射出面近傍に複数の2次光源3を形成するイン
テグレータ(フライアイレンズ)4と、該2次光源から
の光を集光させるコンデンサレンズ5とから構成されて
おり、レチクル6の面上にレーザ光が照射せしめられる
ようになっている。
As shown in FIG. 1, this illumination optical device has a full width at half maximum of 0.
A narrow band oscillation excimer laser light source 1 that outputs a coherent laser beam of 005na+, a repeating reflection mirror 2 that generates a beam of light with an optical path difference from the laser beam, and a plurality of secondary light sources 3 near the exit surface. It is composed of an integrator (fly's eye lens) 4 to form the reticle, and a condenser lens 5 to condense the light from the secondary light source, so that the surface of the reticle 6 is irradiated with laser light.

そして、この繰り返し反射ミラー2は、第2図に部分拡
大図を示すように、屈折率n−1,50838厚さd=
4.5mmの石英基板2Sの両面に夫々全反射ミラー面
2Cおよび部分反射ミラー面2Rをコーティングしてな
るもので、レーザ光りの入射方向に対して法線がθ−1
5@傾斜するように配設され、一端にあるレーザ光の入
射位置は全反射ミラー面を構成せず、反射防止コートを
施されて入射口Iを形成している。一方、他端側の部分
反射ミラー面にも1部反射防止コートが施され、透過口
Oを形成しており、前述の繰り返し反射ミラーと同様に
部分反射ミラー面Rにあたった光は1部透過光と反射光
とに分岐され、反射光は更に反射ミラー面Cで反射され
、再び部分反射ミラー面Rで透過光と反射光とに分岐さ
れる・・・というふうに光路差 2 n d cosθ
を生起しつつ繰り返し反射を続け、非可渉光束を形成す
るように構成されている。
As shown in a partially enlarged view in FIG. 2, this repeating reflection mirror 2 has a refractive index of n-1, a thickness of d=
It is made by coating both sides of a 4.5 mm quartz substrate 2S with a total reflection mirror surface 2C and a partial reflection mirror surface 2R, respectively, and the normal to the direction of incidence of laser light is θ-1.
5@ It is arranged so as to be inclined, and the laser beam incident position at one end does not constitute a total reflection mirror surface, but is coated with an antireflection coating to form an entrance port I. On the other hand, a portion of the partially reflecting mirror surface on the other end side is also coated with an anti-reflection coating to form a transmission aperture O, and like the above-mentioned repeating mirror, only one portion of the light hits the partially reflecting mirror surface R. The light is branched into transmitted light and reflected light, the reflected light is further reflected by the reflective mirror surface C, and is again branched into transmitted light and reflected light by the partially reflective mirror surface R...thus, the optical path difference 2 n d cos θ
The light beam is configured to continue to be reflected repeatedly while causing the light beam to form a non-wavelength light beam.

ここで用いた狭帯域発振エキシマレーザの半値全幅は0
.005n−である丈、可干渉距離は12゜511I1
1程度である。
The full width at half maximum of the narrowband oscillation excimer laser used here is 0.
.. The length is 005n-, and the coherence distance is 12°511I1
It is about 1.

これに対し、繰り返し反射ミラーで生起される光路差は
前記(1)式から 2  n  d cos  θ −2X1. 5083
8X4. 5mIIXcos15” 舞 13.4mm となり可干渉距離12.5龍より大となっている。
On the other hand, the optical path difference caused by the repeating reflection mirror is 2 n d cos θ −2X1. 5083
8X4. 5mII

従って、この照明光学装置をフォトリソグラフィーにお
ける露光に用いた場合、スペックルもなく極めて高精度
の微細パターンの形成が可能となる。
Therefore, when this illumination optical device is used for exposure in photolithography, it is possible to form extremely precise fine patterns without speckles.

また、ここで用いている繰り返し反射ミラーは構造が簡
単で安価で製作し易い。
Furthermore, the repeating reflection mirror used here has a simple structure, is inexpensive, and is easy to manufacture.

更に、この繰り返し反射ミラーは光の利用効率が100
%であり、光路差生起手段としてオプチカルファイバを
用いた従来の方法に比べ、光の利用効率が大幅に高めら
れる。
Furthermore, this repeating reflection mirror has a light utilization efficiency of 100
%, and compared to the conventional method using an optical fiber as the optical path difference generating means, the light utilization efficiency is significantly increased.

また、容易に無数の光路差を有する光束を発生せしめた
ることができる。
Further, it is possible to easily generate a light beam having an infinite number of optical path differences.

加えて、従来のスキャンミラ一方式に比べ、低いパルス
数で干渉性のない露光を行なうことができるため、露光
時間の低減をはかることができ、スルーブツトが向上す
る。
In addition, since it is possible to perform exposure without interference with a lower number of pulses than in the conventional single scan mirror type, exposure time can be reduced and throughput can be improved.

なお、実施例では部分反射ミラーの反射率を全面にわた
って一定となるようにしたが、実際は各ミラー領域R1
・・・Rnからの透過光線は、強度が多少不均一となる
In addition, in the embodiment, the reflectance of the partial reflection mirror was set to be constant over the entire surface, but in reality, each mirror region R1
...The intensity of the transmitted light from Rn is somewhat non-uniform.

従って部分反射ミラーの反射等を各領域毎に変えること
によって、強度の均一化をはかることも可能である。
Therefore, it is possible to make the intensity uniform by changing the reflection of the partial reflection mirror for each region.

すなわち、第5図において部分反射ミラーRをR1・・
・Rnの領域に分けn個の光束に分けるとし、入射光強
度を1としたときの各領域からの透過光の強度T 1−
T nがT 1 m T 2− T 3 ・= −−T
 n−1/nの関係を満たすようにする。各領域R1・
・・Rnにおける反射率をR1・・・Rnで表わすと、
TI−(1−R1) T2− (1−R1−TI)(1−R2)−(1−R1
−1/n)(1−R2) Tk−(1−に/n)(1−Rk) T n −(1−n / n )  (1−Rn )上
記n個の式を満たすように各領域の反射率R1・・・R
nを決定すれば全面にわたって均一な光強度を有する光
照射を行なうことが可能となる。
That is, in FIG. 5, the partial reflection mirror R is R1...
- Suppose that it is divided into Rn regions and divided into n luminous fluxes, and when the incident light intensity is 1, the intensity of transmitted light from each region T 1-
T n is T 1 m T 2- T 3 ・= −−T
The relationship n-1/n should be satisfied. Each area R1・
...If the reflectance at Rn is expressed as R1...Rn,
TI-(1-R1) T2- (1-R1-TI)(1-R2)-(1-R1
-1/n) (1-R2) Tk-(1-ni/n) (1-Rk) Tn-(1-n/n) (1-Rn) Each area is set so that the above n formulas are satisfied. Reflectance R1...R
By determining n, it becomes possible to irradiate light with uniform light intensity over the entire surface.

また、実施例では、繰り返し反射ミラーを石英基板2S
の両面に夫々全反射ミラー面および部分反射ミラー面を
形成したものを用いたが、基板は石英基板に限定される
ことなく、使用レーザ光の可干渉距離、レーザ光の入射
角を考慮してその屈折率に応じて厚さを考慮すれば、他
の材料を用いても良く、また、2枚のミラーを所定の間
隔で相対向して配置したものすなわちエアギャップを形
成するようにしたものもを効である。例えば、実施例と
同一半値全幅のレーザ光が同一方向から入射するように
した場合、屈折率n−1であるから(1)式に代入して
エアギャップd′は、2d’ cos 15” <12
.5 d’  >6.47m+s となるようにすればよい。
In addition, in the embodiment, the repeating reflection mirror is formed on the quartz substrate 2S.
A total reflection mirror surface and a partial reflection mirror surface were formed on both sides of the substrate, but the substrate is not limited to a quartz substrate. Other materials may be used as long as the thickness is taken into consideration according to the refractive index, and two mirrors are arranged facing each other at a predetermined interval, that is, an air gap is formed. It is also effective. For example, if laser light with the same full width at half maximum as in the example is made to enter from the same direction, the refractive index is n-1, so by substituting it into equation (1), the air gap d' is 2d' cos 15''< 12
.. 5 d'> 6.47 m+s.

更にまた、第3図に示す如く、第1の繰り返し反射ミラ
ー20と第2の繰り返し反射ミラー30と2つの繰り返
し反射ミラーを組合わせることによって格子状に非干渉
性の光線からなる光束を発生させるようにしてもよい。
Furthermore, as shown in FIG. 3, by combining two repeating reflection mirrors, the first repeating reflection mirror 20 and the second repeating reflection mirror 30, a light beam consisting of incoherent light rays is generated in a lattice pattern. You can do it like this.

すなわち第1の繰り返し反射ミラー20で縦方向に光束
を発生させ、第2の繰り返し反射ミラー30で横方向に
光束を発生させ、格子状に光束を発生せしめることがで
きる。
That is, the first repeating reflection mirror 20 generates a light beam in the vertical direction, the second repeating reflection mirror 30 generates a light beam in the horizontal direction, and the light beams can be generated in a lattice pattern.

また、第4図に示す如く、部分反射ミラー2R′に入射
口!および射出口Oを形成し部分反射ミラー側からレー
ザ光を入射させ、繰り返し反射させるようにした繰り返
し反射ミラーも有効である。
In addition, as shown in FIG. 4, there is an entrance to the partial reflection mirror 2R'! Also effective is a repeating reflection mirror in which an exit opening O is formed and the laser beam is incident from the partial reflection mirror side and is repeatedly reflected.

〔発明の効果〕〔Effect of the invention〕

以上説明してきたように、本発明の照明光学装置によれ
ば、レーザ光のコヒーレント光源を用いながらも光路差
を生起手段として、全反射ミラー面と部分反射ミラー面
とを所定の距離だけ離間するように相対向して配置する
と共に、2つのミラー而のうちのいずれかに光入射口を
設けたものを光入射方向に対して傾斜して光路上に配置
し、光入射口から入射したレーザ光が反射を繰り返し、
光路差を生起しながら複数の光線束を形成するようにし
ているため、構造が簡単で極めて均一性に優れた高輝度
照明を行なうことが可能となり、フォトリソグラフィー
における露光用に用いる場合、スループットが向上する
上より短波長(レーザ)の光を用いることができるため
、極めて高精度の微細パターンを得ることができる。
As described above, according to the illumination optical device of the present invention, a total reflection mirror surface and a partial reflection mirror surface are separated by a predetermined distance by using an optical path difference as a means for generating an optical path difference while using a coherent light source of laser light. The two mirrors are placed facing each other, and one of the two mirrors is provided with a light entrance, and one of the two mirrors is arranged on the optical path at an angle with respect to the direction of light incidence. Light reflects repeatedly,
Since multiple beams of light are formed while creating an optical path difference, it is possible to perform high-intensity illumination with a simple structure and extremely excellent uniformity, and when used for exposure in photolithography, the throughput is reduced. Since it is possible to use light with a shorter wavelength (laser), it is possible to obtain a fine pattern with extremely high precision.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明実施例の照明光学装置の説明図、第2
図は同装置で用いられている繰り返し反射ミラーを示す
図、第3図および第4図は、繰り返し反射ミラーの変形
例、第5図は、本発明の繰り返し反射ミラーの原理説明
図である。 C・・・全反射ミラー面、 R・・・部分反射ミラー而、 L・・・レーザ光、 1・・・エキシマレーザ光源、2・・・繰り返し反射ミ
ラー、2S・・・石英基板、2C・・・全反射ミラー面
、2R,2R’・・・部分反射ミラー面、3・・・2次
光源、4・・・インテグレータ、5・・・コンデンサレ
ンズ、6・・・レチクル、20・・・第1の繰り返し反
射ミラー、30・・・第2の繰り返し反射ミラー、■・
・・入射口、0・・・射出口。 第1図 S 第2図 手続?■正書(自発) 昭和62年4月1日 2、発明の名称 照明光学装置 3、補正をする名 事件との関係   特許出願人 (123)株式会社小松製作所 4、代理人 (〒104)東京都中央区銀座2丁目11番2号銀座大
作ビル6階 電話03−545−3508 (代表)5
、補正の対象 明wUmの発明の詳細な説明の欄及び図面の簡単な説明
の欄6、補正の内容 (1)本願の明IiI@の第4ページ第7行目の「プリ
ズマ」を「プリズム」に訂正する。 (2)同第8ページ第2行目の「X〉」を「X〉l」に
訂正する。 (3)同13ページ第19行目の「光路差を」を「光路
差」に訂正する。 (4)同14ページ第11行目の「できる。4゜図面の
節」を「できる。」に訂正する。 (5)同第−ジ第2行目の「単な説明」を「4、図面の
簡単な説明」に訂正する。
FIG. 1 is an explanatory diagram of an illumination optical device according to an embodiment of the present invention, and FIG.
The figure shows a repeating reflection mirror used in the same device, FIGS. 3 and 4 show modified examples of the repeating reflection mirror, and FIG. 5 is a diagram illustrating the principle of the repeating reflection mirror of the present invention. C... Total reflection mirror surface, R... Partial reflection mirror, L... Laser light, 1... Excimer laser light source, 2... Repeated reflection mirror, 2S... Quartz substrate, 2C... ... Total reflection mirror surface, 2R, 2R' ... Partial reflection mirror surface, 3 ... Secondary light source, 4 ... Integrator, 5 ... Condenser lens, 6 ... Reticle, 20 ... First repeating reflection mirror, 30...Second repeating reflection mirror, ■.
... Inlet port, 0... Input port. Figure 1 S Figure 2 Procedure? ■Authentic (spontaneous) April 1, 1986 2, Name of the invention Illumination optical device 3, Relationship to the famous case for amendment Patent applicant (123) Komatsu Ltd. 4, Agent (104) Tokyo 6th floor, Ginza Daisaku Building, 2-11-2 Ginza, Chuo-ku, Tokyo Tel: 03-545-3508 (Representative) 5
, Detailed Description of the Invention column and Brief Description of Drawings column 6 of the object of the amendment ” is corrected. (2) Correct "X>" in the second line of page 8 to "X>l". (3) Correct "optical path difference" on the 19th line of page 13 to "optical path difference." (4) On page 14, line 11, "Can be done. 4゜Drawing section" should be corrected to "Can be done." (5) "Simple explanation" in the second line of the same page is corrected to "4. Brief explanation of the drawings."

Claims (2)

【特許請求の範囲】[Claims] (1)コヒーレント光源と、 該コヒーレント光源から供給される光束から複数の2次
光源を形成するための2次光源形成部材と、 該コヒーレント光源と2次光源形成部材との間に介在せ
しめられた光路差生起手段とを具備してなる照明光学装
置において、 前記光路差生起手段が、 所定の間隔だけ離間して互いに平行となるように相対向
して配設された全反射ミラー面と部分反射ミラー面とを
具え、 前記コヒーレント光源からの光が前記2つのミラー面の
うちいずれか一方の一端に配設された入射口に対して傾
斜して入射せしめられ、部分反射ミラー面では透過光と
して一部を射出しながら、2つのミラー面の間で繰り返
し反射を生ぜしめ所定の光路差を有する複数の光束を生
起せしめるように構成されていることを特徴とする照明
光学装置。
(1) A coherent light source, a secondary light source forming member for forming a plurality of secondary light sources from a luminous flux supplied from the coherent light source, and a secondary light source forming member interposed between the coherent light source and the secondary light source forming member. An illumination optical device comprising an optical path difference generating means, wherein the optical path difference generating means has a total reflection mirror surface and a partial reflection mirror surface arranged facing each other so as to be parallel to each other and spaced apart by a predetermined interval. a mirror surface, the light from the coherent light source is incident at an angle to an entrance provided at one end of one of the two mirror surfaces, and is transmitted as transmitted light on the partially reflecting mirror surface. What is claimed is: 1. An illumination optical device characterized in that it is configured to cause a plurality of light beams having a predetermined optical path difference by repeatedly reflecting between two mirror surfaces while emitting a portion of the light beams.
(2)前記部分反射ミラー面は、複数の領域に分割せし
められ、各領域の反射率が順次段階的に変化するように
構成されていることを特徴とする特許請求の範囲第(1
)項記載の照明光学装置。
(2) The partially reflecting mirror surface is configured to be divided into a plurality of regions, and the reflectance of each region is successively changed stepwise.
) The illumination optical device described in item 1.
JP62043688A 1987-02-26 1987-02-26 Optical device for illumination Pending JPS63211624A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62043688A JPS63211624A (en) 1987-02-26 1987-02-26 Optical device for illumination

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62043688A JPS63211624A (en) 1987-02-26 1987-02-26 Optical device for illumination

Publications (1)

Publication Number Publication Date
JPS63211624A true JPS63211624A (en) 1988-09-02

Family

ID=12670778

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62043688A Pending JPS63211624A (en) 1987-02-26 1987-02-26 Optical device for illumination

Country Status (1)

Country Link
JP (1) JPS63211624A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01290276A (en) * 1988-05-18 1989-11-22 Nikon Corp Lighting device
JPH01292821A (en) * 1988-05-20 1989-11-27 Nikon Corp Optical apparatus
JPH04134868U (en) * 1991-06-06 1992-12-15 三菱重工業株式会社 Pulsed laser light generator
WO2004008225A1 (en) * 2002-07-11 2004-01-22 Sony Corporation Lluminating optical device in image display device andimage display device
JP2009512883A (en) * 2005-09-21 2009-03-26 アブ−アジール、ナイェフ・エム Method and apparatus for reducing laser speckle
US8870383B2 (en) 2011-04-12 2014-10-28 Panasonic Corporation Incoherence device and optical apparatus using same

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01290276A (en) * 1988-05-18 1989-11-22 Nikon Corp Lighting device
JPH01292821A (en) * 1988-05-20 1989-11-27 Nikon Corp Optical apparatus
JPH04134868U (en) * 1991-06-06 1992-12-15 三菱重工業株式会社 Pulsed laser light generator
WO2004008225A1 (en) * 2002-07-11 2004-01-22 Sony Corporation Lluminating optical device in image display device andimage display device
CN100374903C (en) * 2002-07-11 2008-03-12 索尼株式会社 Illumination optical device in image display device and image display device
US7433126B2 (en) 2002-07-11 2008-10-07 Sony Corporation Illuminating optical device in image display device and image display device
JP2009512883A (en) * 2005-09-21 2009-03-26 アブ−アジール、ナイェフ・エム Method and apparatus for reducing laser speckle
US8870383B2 (en) 2011-04-12 2014-10-28 Panasonic Corporation Incoherence device and optical apparatus using same

Similar Documents

Publication Publication Date Title
JP3627762B2 (en) Irradiation light source and irradiation method for microlithography
US6535531B1 (en) Gas discharge laser with pulse multiplier
KR100634918B1 (en) System and method for laser beam expansion without expanding spatial coherence
JP2004040067A (en) Method of detecting focus and imaging system having focus detecting system
KR20090013746A (en) Illumination optics, exposure apparatus and device manufacturing method
JPH09288251A (en) Pulse width lengthening optical system and exposure device provided therewith
JP2590510B2 (en) Lighting equipment
TWI430046B (en) Exposure charting device
US7672550B2 (en) Illumination light source and image display apparatus
US5218660A (en) Illumination device
JPH01259533A (en) Illuminating optic device
JPS63211624A (en) Optical device for illumination
JP3734105B2 (en) Illumination device for semiconductor exposure apparatus
JP2590530B2 (en) Optical device
JP2565134B2 (en) Lighting optics
WO2021186488A1 (en) Light transmitting unit, laser device, and manufacturing method for electronic device
JPS63216338A (en) Optical device for illumination
KR102149579B1 (en) Exposure system using optical interference
JPS6332555A (en) Exposing device
JP2770984B2 (en) Illumination apparatus, projection exposure apparatus, and element manufacturing method
JPH02166783A (en) Homogenizer for excimer laser
CN115485937A (en) Pulse width expanding device, laser device, and method for manufacturing electronic device
JP2005504357A (en) Device for reducing the coherence of a coherent beam
JPS60168133A (en) Illuminating optical device
JPS6358827A (en) Exposure device