JPH01292821A - Optical apparatus - Google Patents
Optical apparatusInfo
- Publication number
- JPH01292821A JPH01292821A JP63122017A JP12201788A JPH01292821A JP H01292821 A JPH01292821 A JP H01292821A JP 63122017 A JP63122017 A JP 63122017A JP 12201788 A JP12201788 A JP 12201788A JP H01292821 A JPH01292821 A JP H01292821A
- Authority
- JP
- Japan
- Prior art keywords
- laser beam
- transmission window
- reflecting surfaces
- reflecting
- laser
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000003287 optical effect Effects 0.000 title claims abstract description 17
- 230000005540 biological transmission Effects 0.000 claims abstract description 36
- 239000012780 transparent material Substances 0.000 abstract description 3
- 238000005286 illumination Methods 0.000 description 6
- 230000004907 flux Effects 0.000 description 5
- 239000004065 semiconductor Substances 0.000 description 5
- 238000000034 method Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 2
- 230000010355 oscillation Effects 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 1
- 230000001427 coherent effect Effects 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/70—Microphotolithographic exposure; Apparatus therefor
- G03F7/70008—Production of exposure light, i.e. light sources
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
- Lasers (AREA)
- Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
Abstract
Description
【発明の詳細な説明】
[産業上の利用分野]
本発明は光学装置に係るものであり、例えばエキシマレ
ーザを用いて半導体ウェハに対するマスクパターンの投
影を行なう露光装置に好適な光学装置に関するものであ
る。[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to an optical device, and relates to an optical device suitable for, for example, an exposure device that projects a mask pattern onto a semiconductor wafer using an excimer laser. be.
[従来の技術]
近年、半導体集積回路の集積度を高めるために、紫外域
で高出力発振するエキシマレーザを露光光源とした半導
体製造用露光装置の研究が盛んである。[Prior Art] In recent years, in order to increase the degree of integration of semiconductor integrated circuits, there has been active research into exposure apparatuses for semiconductor manufacturing that use an excimer laser that oscillates at high output in the ultraviolet region as an exposure light source.
特に、最近では0.5μm以下の解像力を要求するプロ
セスにおける量産型装置として、248.5nmでパル
ス発振するに、Fレーザを露光光源とした縮小投影露光
装置の開発実用化が期待されている。In particular, recently, it is expected that a reduction projection exposure apparatus using an F laser as an exposure light source for pulse oscillation at 248.5 nm will be developed and put into practical use as a mass-produced apparatus for processes requiring a resolution of 0.5 μm or less.
この種の露光光源において、問題となるのは、レーザ光
の可干渉性(コヒーレンス)によって不都合な干渉パタ
ーンが発生し、像に重畳してしまうことである。エキシ
マレーザは本来時間的にも空間的にも比較的コヒーレン
スの低いレーザであるが、完全なインコヒーレントでは
ない故、この不都合は不可避である。A problem with this type of exposure light source is that the coherence of the laser light causes an undesirable interference pattern that is superimposed on the image. Although excimer lasers are originally lasers with relatively low coherence both temporally and spatially, this inconvenience is unavoidable because they are not completely incoherent.
また、投影レンズとしては、比較的広いフィールドのレ
ンズの製作が容易な単色レンズ(石英のみで構成)の使
用が好ましい、しかしながら、単色レンズを使う場合に
は、レーザの発振線幅を0.005nm程度以下に狭帯
化する必要があり、必然的に可干渉性の高いエキシマレ
ーザが必要とされる。それに起因して、上記の不都合の
発生が、より助長される結果となる。In addition, as a projection lens, it is preferable to use a monochromatic lens (consisting only of quartz) because it is easy to manufacture a lens with a relatively wide field. It is necessary to narrow the band to a certain degree, and an excimer laser with high coherence is inevitably required. As a result, the occurrence of the above-mentioned inconveniences is further aggravated.
従来、上記問題点を解決する方法としては、例えばマス
クに対するレーザ光の照明方向を発振パルス毎に偏向さ
せることにより、干渉パターンを少しずつずらして多数
回照射積算し、その結果として干渉パターンを除くこと
が考えられていた。Conventionally, as a method to solve the above problem, for example, by deflecting the illumination direction of the laser light on the mask for each oscillation pulse, the interference pattern is gradually shifted and irradiated multiple times, and as a result, the interference pattern is removed. That was considered.
[発明が解決しようとする課題]
しかしながら、上記のような従来の干渉パターン除去法
においては、スペックルなどの不都合な干渉パターンを
除去しようとすると、1回の露光に要する照射パルス数
が増大し、スルーブツトが著しく低下するという問題点
があった。[Problems to be Solved by the Invention] However, in the conventional interference pattern removal method as described above, when attempting to remove inconvenient interference patterns such as speckles, the number of irradiation pulses required for one exposure increases. However, there was a problem in that the throughput was significantly reduced.
この発明は、係る問題点に鑑みてなされたものであり、
その目的とするところは、レーザ光束の空間的コヒーレ
ンスを低減し、しかも簡単にマスクの照明光学系に適用
できる光学装置を提供することである。This invention was made in view of such problems,
The objective is to provide an optical device that reduces the spatial coherence of the laser beam and can be easily applied to the illumination optical system of a mask.
[課題を解決するための手段]
上記目的を達成するために、本発明の光学装置は、レー
ザ光を出力する光源と、
正対する平面かつ平行な第1と第2の反射面と、
前記光源から出力されたレーザ光が背面側から入射する
ように第2の反射面の一端に設けられた入射窓と、
この入射窓から所定角度で入射したレーザ光が、第1の
反射面を照射して反射した後、第2の反射面で反射し、
再度第1の反射面を照射し、以下第1と第2の反射面で
交互に反射を繰り返すとき、第1の反射面もしくは第2
の反射面の各照射位置における照射レーザ光のうち、一
部の光束を透過するように、第1の反射面もしくは第2
の反射面の各照射位置に対応して各々所定間隔を持って
順次配設された複数の透過窓領域とを備えた光学装置で
あって、
隣り合う前記透過窓領域を透過したレーザ光の位相差が
、レーザ光のコヒーレンス長よりも長くなるように、第
1と第2の反射面間の距離及び第1と第2の反射面間の
レーザ光に対する屈折率を設定したものである。[Means for Solving the Problems] In order to achieve the above object, an optical device of the present invention includes: a light source that outputs a laser beam; first and second reflective surfaces that are directly opposite to each other and are flat and parallel; and the light source. An entrance window is provided at one end of the second reflective surface so that the laser light output from the input window enters from the back side, and the laser light that enters at a predetermined angle from this entrance window irradiates the first reflective surface. After being reflected by the second reflective surface,
When the first reflecting surface is irradiated again and the reflection is repeated alternately on the first and second reflecting surfaces, the first reflecting surface or the second reflecting surface
The first reflecting surface or the second
An optical device comprising a plurality of transmission window regions sequentially arranged at predetermined intervals in correspondence to each irradiation position of a reflective surface, the optical device comprising: The distance between the first and second reflective surfaces and the refractive index for the laser beam between the first and second reflective surfaces are set so that the phase difference is longer than the coherence length of the laser beam.
[作 用]
本発明の作用について、第1図及び第2図を参照して説
明する。[Function] The function of the present invention will be explained with reference to FIGS. 1 and 2.
第1図において、入射窓103から、厚さd屈折率nの
平行平面板1に対して所定角度θ1で入射したレーザ光
束は、
sinθ、=nsinθ2(1)
を満たす角θ2で屈折して第1の反射面101を照射し
て反射した後、第2の反射面102で反射し、再度第1
の反射面101を照射し、以下第1と第2の反射面10
1,102で交互に反射を繰り返す。その際、第1の反
射面101を照射するレーザ光束の一部の光束は、第2
図に示すように第1の反射面101の各照射位置に対応
して各々所定間隔を持って順次配設された複数の透過窓
領域M、〜M、を透過する。次に、この複数の透過窓領
域M I”” M sを透過したレーザ光束の位相差を
考える。In FIG. 1, a laser beam that enters from the entrance window 103 at a predetermined angle θ1 into the plane-parallel plate 1 with a thickness d and a refractive index n is refracted at an angle θ2 that satisfies the following: sin θ,=n sin θ2 (1). After being irradiated and reflected on the first reflecting surface 101, it is reflected on the second reflecting surface 102, and then the first
The first and second reflecting surfaces 10 are irradiated.
1 and 102, the reflection is repeated alternately. At that time, a part of the laser beam irradiating the first reflective surface 101 is
As shown in the figure, the light passes through a plurality of transmission window areas M, .about.M, which are successively arranged at predetermined intervals, corresponding to each irradiation position on the first reflective surface 101. Next, consider the phase difference between the laser beams transmitted through the plurality of transmission window regions M I"" M s.
複数の透過窓領域Mを透過したレーザ光束に垂直な面S
を仮定すると、隣り合う透過窓領域、例えば、M、とM
2を透過したレーザ光束の面Sでの位相差△は
△=2ndcosθ2(2)
となる。A plane S perpendicular to the laser beam transmitted through the plurality of transmission window regions M
Assuming that adjacent transmission window regions, e.g., M and M
The phase difference Δ at the surface S of the laser beam transmitted through the laser beam 2 is Δ=2nd cos θ2 (2).
一方、レーザ光源(図示せず)のスペクトルの半値幅を
△λとするとコヒーレンス長(可干渉距りxcは
Jlc=λ2/Δλ (3)で与えら
れる。故に、 (2)、 (3)により、隣り合う透過
窓領域M、、M、を透過したレーザ光の位相差が、レー
ザ光のコヒーレンス長よりも長くなる条件、
△>ft、C
すなわち
2ndcosθ2〉λ2/Δλ (4)を得る。On the other hand, if the half width of the spectrum of the laser light source (not shown) is Δλ, the coherence length (coherence length xc is given by Jlc=λ2/Δλ (3). Therefore, from (2) and (3), , the condition that the phase difference between the laser beams transmitted through the adjacent transmission window regions M, , M is longer than the coherence length of the laser beams, Δ>ft, C, that is, 2nd cos θ2>λ2/Δλ (4) is obtained.
従って、この条件式(4)を満足するように、平行平面
板2の第1と第2の反射面101,102の間の距sd
及び第1と第2の反射面101,102の間のレーザ光
に対する屈折率nを設定しておけば、初めの入射したレ
ーザ光束が完全に空間的にコヒーレントだとしても、隣
り合う透過窓領域M、、M2を透過した光束同志はイン
コヒーレントとなる。なお、上記説明では、隣り合う透
過窓領域の組合せの一例としてM l + M 2を示
したが、他の組合せを選んでも、同様にインコヒーレン
トな光束が得られる。Therefore, the distance sd between the first and second reflective surfaces 101 and 102 of the parallel plane plate 2 is set so that this conditional expression (4) is satisfied.
By setting the refractive index n for the laser beam between the first and second reflective surfaces 101 and 102, even if the initially incident laser beam is completely spatially coherent, the adjacent transmission window areas The light beams that have passed through M, , M2 become incoherent. In the above description, M l + M 2 was shown as an example of a combination of adjacent transmission window areas, but an incoherent light beam can be obtained similarly even if other combinations are selected.
[実施例]
以下、本発明の実施例に付いて添付図面を参照して説明
する。[Examples] Examples of the present invention will be described below with reference to the accompanying drawings.
第1図は本発明の一実施例を示す構成図である。図にお
いて、透明な材質から形成された平行平面板lの正対す
る二つの内側面101.102は、レーザ光に対する反
射面を成している。そのうち、レーザ光源(図示せず)
側の反射面102(第2の反射面)の端部には、レーザ
光束を入射させる入射窓103が設けられている。FIG. 1 is a block diagram showing an embodiment of the present invention. In the figure, two opposing inner surfaces 101 and 102 of a parallel plane plate l made of a transparent material form reflective surfaces for laser light. Among them, a laser light source (not shown)
At the end of the side reflective surface 102 (second reflective surface), an entrance window 103 through which the laser beam enters is provided.
一方、反射面101(第1の反射面)には、第2図に示
すように透過窓領域M、、M、、 ・パM5がマスク
パターンとして形成されている。第2図上、左側の透過
窓領域Mlは、入射窓103から所定角度θ1で入射し
たレーザ光が第2の反射面102の反射を伴なわずに直
接に第1の反射面101を照射する位置に設けられてい
る。以下、第2の反射面102の反射によるレーザ光の
第1の反射面101に対する照射位置に対応して、M2
.・・M、が各々所定間隔を持って順次配列されている
。On the other hand, on the reflective surface 101 (first reflective surface), as shown in FIG. 2, transmission window regions M, , M, . . . M5 are formed as a mask pattern. In the transmission window region Ml on the left side in FIG. 2, the laser light incident at a predetermined angle θ1 from the entrance window 103 directly irradiates the first reflective surface 101 without being reflected by the second reflective surface 102. located at the location. Hereinafter, M2
.. . . M, are arranged sequentially at predetermined intervals.
上記の構成において、第1と第2の反射面101.10
2間の距Md及び第1と第2の反射面101.102間
のレーザ光に対する屈折率nは、上記作用で説明したよ
うに、隣り合う透過窓領域を透過したレーザ光の位相差
が、レーザ光のコヒーレンス長よりも長くなるように設
定されている。これにより、透過窓領域M1〜MSのう
ち、隣り合う透過窓領域を透過した光束は、互いにイン
コヒーレントとなる。In the above configuration, the first and second reflective surfaces 101.10
As explained in the above operation, the distance Md between the two and the refractive index n for the laser beam between the first and second reflective surfaces 101 and 102 are such that the phase difference between the laser beams transmitted through the adjacent transmission window areas is It is set to be longer than the coherence length of the laser beam. As a result, among the transmission window regions M1 to MS, the light beams that have passed through adjacent transmission window regions become incoherent with each other.
なお、透過窓領域M、〜MSは、照射レーザ光のうち、
一部の光束を透過するように構成されている。次に、こ
の透過窓領域M、〜M5の構成の一例について説明する
。Note that the transmission window areas M, ~MS are the areas where the irradiated laser light is transmitted.
It is configured to transmit a part of the luminous flux. Next, an example of the configuration of the transmission window regions M, to M5 will be described.
入射レーザ光束の幅をす、とすると、第1の反射面10
1の断面でのレーザ光束の幅b2は、b2=b、/co
sθ1
となる。透過窓領域Ml−MSを互いに重ならないよう
にするためには、このレーザ光束の幅b2が、
2dtanθ2〉b2
の関係を満たせばよい。If the width of the incident laser beam is , then the first reflecting surface 10
The width b2 of the laser beam at the cross section of 1 is b2=b,/co
It becomes sθ1. In order to prevent the transmission window regions Ml-MS from overlapping each other, the width b2 of this laser beam should satisfy the relationship: 2dtan θ2>b2.
また、それぞれの透過窓領域M1〜M、内には、各々長
辺a、短辺すの矩形形状の透過窓104が各々3本づつ
設けられている。Further, in each of the transmission window regions M1 to M, three rectangular transmission windows 104 each having a long side a and a short side 2 are provided.
この透過窓104は、ピッチ5bで並んでおり、各透過
窓領域M1〜M、における相違は、順次すづつずらされ
て配置されている点である。各透過窓領域Ml−MSを
重ね合せて考えると、15本の透過窓104は、aX1
5bの単一の窓と等しく、互いに重なり合うことがない
。従って、15 b ”= b 2= b 、 / c
o sθ。The transmission windows 104 are arranged at a pitch of 5b, and the difference between the transmission window regions M1 to M is that they are sequentially shifted from each other. Considering the transmission window regions Ml-MS superimposed, the 15 transmission windows 104 are aX1
5b and do not overlap each other. Therefore, 15 b ”= b 2= b , / c
o sθ.
としておけば光量の損失が生じない。If it is set as , there will be no loss of light quantity.
また、一つの透過窓領域内の透過窓104は、レーザ光
束断面内の部分部分から光束をサンプルする働きを持つ
。従って、入射レーザ光束に光量分布のむらがあったと
しても、各透過窓領域M1〜M5を透過した光束同志の
光量の差は小さい。Furthermore, the transmission window 104 within one transmission window region has the function of sampling the light beam from a partial portion within the cross section of the laser beam. Therefore, even if there is unevenness in the light intensity distribution of the incident laser beam, the difference in the light intensity between the light beams that have passed through each of the transmission window regions M1 to M5 is small.
次に、上記第1図に示した装置を二次元的に拡張した装
置構成例について説明する。Next, a description will be given of an example of a device configuration in which the device shown in FIG. 1 is expanded two-dimensionally.
第3図(a)にはその平面図が、第3図(b)にはその
側面図が示されている。FIG. 3(a) shows its plan view, and FIG. 3(b) shows its side view.
図において、レーザ光源(図示せず)から発したレーザ
光束は、調整系2により適宜径に調整される。なお、調
整系2としては、−例としてシリン、トリカル・エクス
パンダーを図示しである。勿論、これに限定されるもの
ではなく、直交する方向でビーム拡大率の異なる(ある
いは等しい)系であればよい。In the figure, a laser beam emitted from a laser light source (not shown) is adjusted to an appropriate diameter by an adjustment system 2. As the adjustment system 2, a cylinder and a trical expander are shown as examples. Of course, the system is not limited to this, and any system with different (or equal) beam expansion factors in orthogonal directions may be used.
適宜径に調整されたレーザ光束は、平行平面板lに入射
する。平行平面板1は、入射したレーザ光束を、第1図
を参照して説明したと同様に、互いにインコヒーレント
な光束群として射出する。The laser beam whose diameter has been adjusted appropriately is incident on the plane-parallel plate l. The plane-parallel plate 1 emits the incident laser beam as a group of mutually incoherent beams, as described with reference to FIG.
その射出側には、もう一つの平行平面板3が配されてい
る。この平行平面板lは、基本的には平行平面板2と同
様な構造であり、その正対する内側面には第1と第2の
反射面301,302を備えている。Another parallel plane plate 3 is arranged on the exit side. This parallel plane plate 1 basically has the same structure as the parallel plane plate 2, and is provided with first and second reflective surfaces 301 and 302 on its directly opposing inner surfaces.
但し、この平行平面板3は、横方向に広がりた光束を一
括してコヒーレンス低減を図る目的で、平行平面板lに
比してレーザ入射方向に対して幅広くなっている。また
、第2の反射面302の透過窓領域(図示せず)の大き
さも、第2図に示したM1〜M11に比して長手方向を
長くしである。However, this parallel plane plate 3 is wider in the laser incident direction than the parallel plane plate 1 in order to collectively reduce the coherence of the light beams spread in the lateral direction. Further, the size of the transmission window area (not shown) of the second reflective surface 302 is also longer in the longitudinal direction than M1 to M11 shown in FIG.
平行平面板3の入射窓303から入射して各反射面30
1,302で反射される途中で射出したレーザ光束は、
5X5の互いにインコヒーレントな光束群に変換される
。これら光束群は適宜集光レンズで集光して1つの光束
にしても、最早、干渉し合うことはなく、所望の対象物
に干渉パターンを生じることはない。It enters from the entrance window 303 of the parallel plane plate 3 and each reflection surface 30
The laser beam emitted while being reflected by 1,302 is
It is converted into a 5×5 mutually incoherent beam group. Even if these groups of light beams are appropriately condensed by a condenser lens into a single light beam, they no longer interfere with each other, and no interference pattern is generated on the desired object.
結果として、空間的コヒーレンスの比較的高いレーザ光
束が、大域的に一様かつ空間的コヒーレンスの低い光束
群に変換されたことになる。As a result, a laser beam with relatively high spatial coherence is converted into a group of globally uniform beams with low spatial coherence.
但し、局所的には各単位光束内で透過窓パターンによる
強度分布が存在する。そこで、この光学装置を半導体露
光装置のマスクの照明系に適用する場合には、この装置
からの出射光束群を二次光源として、照明均一化を行う
公知の手段、例えばフライアイレンズとコンデンサーレ
ンズ等から構成される装置
なお、上記第1図〜第3図においては、平行平面板1
(3)によりインコヒーレントに変換される光束群の数
は5つとして説明したが、これに限定されるものではな
い.平行平面板1(3)の長さ、透過窓領域の個数の変
更によって、光束群の数を任意に選べることは勿論であ
る.例えば、第3図に示した構成においては、各々の平
行平面板1、3により変換される光束群の数を各々N個
。However, locally, within each unit light beam, there is an intensity distribution due to the transmission window pattern. Therefore, when this optical device is applied to the illumination system of a mask of a semiconductor exposure device, known means for uniformizing illumination by using the group of light beams emitted from this device as a secondary light source, such as a fly-eye lens and a condenser lens, are used. Note that in FIGS. 1 to 3 above, the parallel plane plate 1
Although the number of light flux groups that are converted into incoherent light fluxes according to (3) has been explained as five, it is not limited to this. Of course, the number of light beam groups can be arbitrarily selected by changing the length of the parallel plane plate 1 (3) and the number of transmission window areas. For example, in the configuration shown in FIG. 3, the number of light flux groups converted by each of the parallel plane plates 1 and 3 is N.
M個(Nf−M)としてNXM個の光束群に変換できる
ように構成可能である。It is possible to configure it so that it can be converted into NXM luminous flux groups as M (Nf-M).
また、各透過窓領域を透過したビーム毎に、ビームエク
スパンダ−等の調整系を入れてもよい。Further, an adjustment system such as a beam expander may be installed for each beam transmitted through each transmission window region.
さらに、第1の反射面101 (301)と第2の第2
の反射面102(302)は、屈折率nの透明な材質か
らなる平行平面板1 (3)の内側面として示したが、
平行平面板1(3)に代えて、単に2枚の反射鏡を向い
合わせることにより、第1と第2の反射面を構成しても
よい。Furthermore, the first reflective surface 101 (301) and the second reflective surface 101 (301)
The reflective surface 102 (302) is shown as the inner surface of the parallel plane plate 1 (3) made of a transparent material with a refractive index of n.
Instead of the parallel plane plate 1 (3), the first and second reflecting surfaces may be configured by simply opposing two reflecting mirrors.
また、互いにインコーレントな光束群を取り出す反射面
は第2の反射面102,302にしても全く同様の効果
が得られる。Furthermore, the same effect can be obtained even if the second reflecting surfaces 102 and 302 are used as the reflecting surfaces for extracting mutually incoherent light beam groups.
[発明の効果]
以上説明したように本発明の光学装置によれば、照射レ
ーザ光束を、空間的コヒーレンスが低く、かつ大域的に
は一様な光束に変換できるという効果がある。[Effects of the Invention] As described above, the optical device of the present invention has the effect that the irradiated laser beam can be converted into a globally uniform beam with low spatial coherence.
従りて、この光学装置を半導体製造用露光装置のマスク
の照明系に適用すると、スペックルなどの不都合な干渉
パターンの発生を防ぐことが可能である。更に、この場
合、レーザ光としてエキシマレーザなどのパルスレーザ
を採用すると、パルスごとに空間的コヒーレンスを低減
した光を得ることが可能である。それ故、従来の多数回
の偏向照明などによる干渉パターン防止法に比べ、露光
に要するパルス数が少なくてすみ、スルーブツトを大幅
に向上させることができる。Therefore, when this optical device is applied to a mask illumination system of an exposure apparatus for semiconductor manufacturing, it is possible to prevent the occurrence of undesirable interference patterns such as speckles. Furthermore, in this case, if a pulse laser such as an excimer laser is used as the laser light, it is possible to obtain light with reduced spatial coherence for each pulse. Therefore, compared to the conventional interference pattern prevention method using multiple times of polarized illumination, the number of pulses required for exposure is smaller, and throughput can be significantly improved.
第1図は本発明の実施例に係る光学装置の構成図、第2
図は透過窓領域を示す平面図、第3図(a)は本発明の
実施例に係る光学装置の平面図、第3図(b)は第3図
(a)に対応する側面図である。
[主要部分の符号の説明]
1.3・・・・・・・・・平行平面板
101.301・・・・・・・・・第1の反射面102
.302・・・・・・・・・第2の反射面M、〜M、・
・・・・・・・・透過窓領域103・・・・・・・・・
入射窓
104・・・・・・・・・透過窓
代理人 弁理士 佐 藤 正 年FIG. 1 is a configuration diagram of an optical device according to an embodiment of the present invention, and FIG.
The figure is a plan view showing a transmission window area, FIG. 3(a) is a plan view of an optical device according to an embodiment of the present invention, and FIG. 3(b) is a side view corresponding to FIG. 3(a). . [Explanation of symbols of main parts] 1.3...Parallel plane plate 101.301...First reflecting surface 102
.. 302...Second reflective surface M, ~M,...
......Transparent window area 103...
Entrance window 104...Transmission window Agent Patent attorney Masatoshi Sato
Claims (1)
ように第2の反射面の一端に設けられた入射窓と、 この入射窓から所定角度で入射したレーザ光が、第1の
反射面を照射して反射した後、第2の反射面で反射し、
再度第1の反射面を照射し、以下第1と第2の反射面で
交互に反射を繰り返すとき、第1の反射面もしくは第2
の反射面の各照射位置における照射レーザ光のうち、一
部の光束を透過するように、第1の反射面もしくは第2
の反射面の各照射位置に対応して各々所定間隔を持って
順次配設された複数の透過窓領域とを備えた光学装置で
あって、 隣り合う前記透過窓領域を透過したレーザ光の位相差が
、レーザ光のコヒーレンス長よりも長くなるように、第
1と第2の反射面間の距離及び第1と第2の反射面間の
レーザ光に対する屈折率を設定したことを特徴とする光
学装置。[Scope of Claims] A light source that outputs a laser beam; first and second reflecting surfaces that are directly opposite to each other and parallel to each other; and a second reflecting surface that allows the laser beam output from the light source to enter from the back side. an entrance window provided at one end of the surface, and a laser beam that enters at a predetermined angle from the entrance window, irradiates and reflects the first reflective surface, and then reflects at the second reflective surface,
When the first reflecting surface is irradiated again and the reflection is repeated alternately on the first and second reflecting surfaces, the first reflecting surface or the second reflecting surface
The first reflective surface or the second
An optical device comprising a plurality of transmission window regions sequentially arranged at predetermined intervals in correspondence to each irradiation position of a reflective surface, the optical device comprising: The distance between the first and second reflecting surfaces and the refractive index for the laser beam between the first and second reflecting surfaces are set so that the phase difference is longer than the coherence length of the laser beam. optical equipment.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63122017A JP2590530B2 (en) | 1988-05-20 | 1988-05-20 | Optical device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63122017A JP2590530B2 (en) | 1988-05-20 | 1988-05-20 | Optical device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH01292821A true JPH01292821A (en) | 1989-11-27 |
JP2590530B2 JP2590530B2 (en) | 1997-03-12 |
Family
ID=14825514
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63122017A Expired - Fee Related JP2590530B2 (en) | 1988-05-20 | 1988-05-20 | Optical device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2590530B2 (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7432517B2 (en) | 2004-11-19 | 2008-10-07 | Asml Netherlands B.V. | Pulse modifier, lithographic apparatus, and device manufacturing method |
US7441422B2 (en) * | 2000-11-17 | 2008-10-28 | Lg Electronics Inc. | Drum type washing machine with rotatable baffle |
JP2009512883A (en) * | 2005-09-21 | 2009-03-26 | アブ−アジール、ナイェフ・エム | Method and apparatus for reducing laser speckle |
JP2011203430A (en) * | 2010-03-25 | 2011-10-13 | Casio Computer Co Ltd | Laser light source device, light source unit and projector |
US8870383B2 (en) | 2011-04-12 | 2014-10-28 | Panasonic Corporation | Incoherence device and optical apparatus using same |
JP2016507075A (en) * | 2013-01-21 | 2016-03-07 | インテル・コーポレーション | Methods for reducing speckle |
CN112130336A (en) * | 2020-09-27 | 2020-12-25 | 欧菲微电子技术有限公司 | Optical assembly, 3D sensing assembly and electronic equipment |
CN113900268A (en) * | 2021-10-19 | 2022-01-07 | 山西大学 | Speckle suppression device and manufacturing method |
WO2024038526A1 (en) * | 2022-08-17 | 2024-02-22 | 株式会社 ジャパンセル | Prescribed light generation method, optical characteristics modification unit, light source, prescribed light usage method, detection method, imaging method, display method, optical measurement unit, optical apparatus, service provision method, and service provision system |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63211624A (en) * | 1987-02-26 | 1988-09-02 | Komatsu Ltd | Optical device for illumination |
JPS63216338A (en) * | 1987-03-05 | 1988-09-08 | Komatsu Ltd | Optical device for illumination |
-
1988
- 1988-05-20 JP JP63122017A patent/JP2590530B2/en not_active Expired - Fee Related
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63211624A (en) * | 1987-02-26 | 1988-09-02 | Komatsu Ltd | Optical device for illumination |
JPS63216338A (en) * | 1987-03-05 | 1988-09-08 | Komatsu Ltd | Optical device for illumination |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7441422B2 (en) * | 2000-11-17 | 2008-10-28 | Lg Electronics Inc. | Drum type washing machine with rotatable baffle |
US7432517B2 (en) | 2004-11-19 | 2008-10-07 | Asml Netherlands B.V. | Pulse modifier, lithographic apparatus, and device manufacturing method |
JP2009512883A (en) * | 2005-09-21 | 2009-03-26 | アブ−アジール、ナイェフ・エム | Method and apparatus for reducing laser speckle |
JP2011203430A (en) * | 2010-03-25 | 2011-10-13 | Casio Computer Co Ltd | Laser light source device, light source unit and projector |
US8870383B2 (en) | 2011-04-12 | 2014-10-28 | Panasonic Corporation | Incoherence device and optical apparatus using same |
JP2016507075A (en) * | 2013-01-21 | 2016-03-07 | インテル・コーポレーション | Methods for reducing speckle |
CN112130336A (en) * | 2020-09-27 | 2020-12-25 | 欧菲微电子技术有限公司 | Optical assembly, 3D sensing assembly and electronic equipment |
CN113900268A (en) * | 2021-10-19 | 2022-01-07 | 山西大学 | Speckle suppression device and manufacturing method |
WO2024038526A1 (en) * | 2022-08-17 | 2024-02-22 | 株式会社 ジャパンセル | Prescribed light generation method, optical characteristics modification unit, light source, prescribed light usage method, detection method, imaging method, display method, optical measurement unit, optical apparatus, service provision method, and service provision system |
Also Published As
Publication number | Publication date |
---|---|
JP2590530B2 (en) | 1997-03-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2536023B2 (en) | Exposure apparatus and exposure method | |
JP2732498B2 (en) | Reduction projection type exposure method and apparatus | |
JP3627762B2 (en) | Irradiation light source and irradiation method for microlithography | |
US5581348A (en) | Surface inspecting device using bisected multi-mode laser beam and system having the same | |
JP2979667B2 (en) | Reflective X-ray exposure mask | |
JPH01292821A (en) | Optical apparatus | |
JPS61169815A (en) | Lighting optical device | |
JP2004012757A (en) | Laser irradiation device | |
US5198837A (en) | Laser beam harmonics generator and light exposing device | |
US5745221A (en) | Exposure equipment | |
JP2565134B2 (en) | Lighting optics | |
JP3452057B2 (en) | Laser beam harmonic generation apparatus, exposure apparatus using the same, laser beam harmonic generation method, exposure method using the same, and device manufacturing method using the same | |
JPH11174365A (en) | Illumination optical device, exposure device provided therewith and exposure method | |
JPH1062710A (en) | Illumination optical system | |
JP2770984B2 (en) | Illumination apparatus, projection exposure apparatus, and element manufacturing method | |
JPH0666246B2 (en) | Illumination optics | |
JPS63211624A (en) | Optical device for illumination | |
JPS63216338A (en) | Optical device for illumination | |
JP2679337B2 (en) | Illumination optical device, exposure apparatus including the same, and exposure method | |
JPS60168133A (en) | Illuminating optical device | |
JPH0783950B2 (en) | Light processing equipment | |
JPS61177422A (en) | Optical device reducing coherence of rays of light | |
JPS639186A (en) | Illuminating optical device | |
JP3111476B2 (en) | Illumination optics | |
JP2000223405A (en) | Illuminating optical device and projection aligner provided therewith |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |