[go: up one dir, main page]

JPS63210043A - High thermal conductivity glass-ceramic composite - Google Patents

High thermal conductivity glass-ceramic composite

Info

Publication number
JPS63210043A
JPS63210043A JP4116687A JP4116687A JPS63210043A JP S63210043 A JPS63210043 A JP S63210043A JP 4116687 A JP4116687 A JP 4116687A JP 4116687 A JP4116687 A JP 4116687A JP S63210043 A JPS63210043 A JP S63210043A
Authority
JP
Japan
Prior art keywords
glass
ceramic
powder
thermal conductivity
ceramic composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4116687A
Other languages
Japanese (ja)
Inventor
Shoichi Iwai
岩井 昇一
Shigeji Muramatsu
茂次 村松
Takashi Kurihara
孝 栗原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinko Electric Industries Co Ltd
Original Assignee
Shinko Electric Industries Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinko Electric Industries Co Ltd filed Critical Shinko Electric Industries Co Ltd
Priority to JP4116687A priority Critical patent/JPS63210043A/en
Publication of JPS63210043A publication Critical patent/JPS63210043A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/06Other methods of shaping glass by sintering, e.g. by cold isostatic pressing of powders and subsequent sintering, by hot pressing of powders, by sintering slurries or dispersions not undergoing a liquid phase reaction
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C14/00Glass compositions containing a non-glass component, e.g. compositions containing fibres, filaments, whiskers, platelets, or the like, dispersed in a glass matrix
    • C03C14/004Glass compositions containing a non-glass component, e.g. compositions containing fibres, filaments, whiskers, platelets, or the like, dispersed in a glass matrix the non-glass component being in the form of particles or flakes
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2214/00Nature of the non-vitreous component
    • C03C2214/04Particles; Flakes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Dispersion Chemistry (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Glass Compositions (AREA)

Abstract

PURPOSE:To obtain the title high-thermal conductivity glass-ceramic composite useful to the package for a semiconductor device, etc., by baking a composition contg. glass powder and specified ceramic powder at a specified temp. CONSTITUTION:From 30 to 70wt.% powder of borosilicate glass and/or alumina- borosilicate glass having 650-850 deg.C softening temp. and 4-6 dielectric constant and 70-30wt.% ceramic powder of a mixture of >=1 kind among AlN, BN, SiC, and BeO having higher thermal conductivity than alumina and also having a high heat insulating property are mixed, and a mixture of previously calcined CrO and Fe2O3 is added, if necessary, as a colorant to obtain a glass-ceramic composition. The composition is then baked at <=1,000 deg.C in the atmosphere of N2, etc.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、高熱伝導性ガラス−セラミック複合体に関す
る。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to high thermal conductivity glass-ceramic composites.

(背景技術) 半導体素子等を搭載するための電子部品パッケージとし
てセラミックパッケージが用いられている。
(Background Art) Ceramic packages are used as electronic component packages for mounting semiconductor elements and the like.

これらセラミックパッケージは、特に近年半導体素子が
高密度化、高速化していることから、これら半導体素子
の高信頬性を確保するために、高熱伝導性(高熱放散性
)、高絶縁性を有することが要求されている。
These ceramic packages must have high thermal conductivity (high heat dissipation) and high insulation properties to ensure high reliability of these semiconductor devices, especially as semiconductor devices have become denser and faster in recent years. is required.

ところで、半導体素子の高密度化に伴って、パフケージ
側の回路配線パターンも必然的に高密度化し、細線化し
ている。このため、細線化による回路抵抗の上昇を抑さ
えて低抵抗化を図るべく、回路配線は導電性に優れる金
、銀、銅等の金属により形成されるようになってきてい
る。これらの金属は、アルミナセラミック等の高温焼成
セラミックの焼成温度である約1600℃の高温には耐
えられないので、パッケージのセラミック組成物として
は、アルミナにガラスを混入して、1000℃以下で焼
成可能な低温焼成セラミック組成物が用いられている。
By the way, as the density of semiconductor devices increases, the circuit wiring patterns on the puff cage side inevitably become denser and thinner. Therefore, in order to reduce the resistance by suppressing the increase in circuit resistance due to wire thinning, circuit wiring has come to be formed of metals with excellent conductivity, such as gold, silver, and copper. These metals cannot withstand the high temperature of approximately 1,600°C, which is the firing temperature of high-temperature firing ceramics such as alumina ceramics, so the ceramic composition for the package is made by mixing alumina with glass and firing it at a temperature below 1,000°C. Low temperature firing ceramic compositions are used.

(発明が解決しようとする問題点) しかしながら、従来のガラス−アルミナ系の低温焼成セ
ラミックには次のような問題点がある。
(Problems to be Solved by the Invention) However, conventional glass-alumina-based low-temperature fired ceramics have the following problems.

すなわち、ガラスは熱伝導性に劣っている。このため、
ガラス−アルミナから成る低温焼成セラミックの熱伝導
性は、アルミナセラミック等の高温焼成セラミックの熱
伝導性の10〜20χしかない。
That is, glass has poor thermal conductivity. For this reason,
The thermal conductivity of a low-temperature fired ceramic made of glass-alumina is only 10 to 20x higher than that of a high-temperature fired ceramic such as alumina ceramic.

このため半導体装置用パッケージに用いた際は熱放散性
に劣り、半導体装置の信頼性向上の障害となるという問
題点がある。
Therefore, when used in a package for a semiconductor device, there is a problem that the heat dissipation property is poor and this becomes an obstacle to improving the reliability of the semiconductor device.

本発明は上記問題点を解消すべくなされたものであり、
その目的とするところは、熱伝導性に優れる高熱伝導性
ガラスーセラミック複合体を提供するにある。
The present invention has been made to solve the above problems,
The purpose is to provide a highly thermally conductive glass-ceramic composite with excellent thermal conductivity.

(発明の概要) 上記目的による本発明においては、ガラス粉末と、少な
くともアルミナよりも高い熱伝導性を有し、かつ高絶縁
性を有するセラミック粉末とを含むガラス−セラミック
組成物を1000℃以下の温度で焼成して成ることを特
徴としている。
(Summary of the Invention) In the present invention for the above-mentioned purpose, a glass-ceramic composition containing a glass powder and a ceramic powder having a thermal conductivity higher than at least alumina and a high insulation property is prepared at a temperature of 1000°C or less. It is characterized by being baked at a high temperature.

本発明においては、複合体としての熱伝導性を増すため
に、セラミック粉末としてアルミナよりも熱伝導性に優
れるものを用いる。当初、セラミック粉末としてこのよ
うな高熱伝導性を有するものを用いても、併用するガラ
スの低熱伝導性に支配されて、複合体とした際の熱伝導
性に劣ると考えられた。しかし実際に複合体を形成して
みると、複合体の熱伝導率はガラスと高熱伝導性セラミ
ック粉末との配合比に応じて、従来のガラス−アルミナ
系のセラミックより熱伝導性に優れた高熱伝導性のガラ
ス−セラミック複合体を得ることができた。
In the present invention, in order to increase the thermal conductivity of the composite, ceramic powder having higher thermal conductivity than alumina is used. Initially, it was thought that even if ceramic powder with such high thermal conductivity was used, it would be dominated by the low thermal conductivity of the glass used in combination, and the thermal conductivity would be poor when made into a composite. However, when a composite is actually formed, the thermal conductivity of the composite varies depending on the blending ratio of glass and high thermal conductivity ceramic powder. A conductive glass-ceramic composite could be obtained.

高熱伝導性セラミック粉末としては、窒化アルミニウム
、窒化ホウ素、炭化ケイ素、酸化ベリリウム等が好適で
ある。これらはアルミナに比べて、アルミナの10倍以
上の高熱伝導性を有している。
Suitable examples of the highly thermally conductive ceramic powder include aluminum nitride, boron nitride, silicon carbide, beryllium oxide, and the like. These have higher thermal conductivity than alumina, which is 10 times or more higher than that of alumina.

ガラス粉末としては、軟化点650℃〜850℃のホウ
ケイ酸ガラス、アルミナホウケイ酸ガラスが好適である
。これらは誘電率が4〜6であり、高絶縁性を有してい
る。
As the glass powder, borosilicate glass and alumina borosilicate glass having a softening point of 650°C to 850°C are suitable. These have a dielectric constant of 4 to 6 and have high insulation properties.

ガラス粉末と高熱伝導性セラミック粉末の配合比は、1
000℃程度の低温焼成が行える限りは特に限定されな
いが、1ooo℃以下の焼成温度となるためには、大略
ガラス粉末30〜70重量パーセント、高熱伝導性セラ
ミック粉末70〜30重量パーセントの範囲の配合比と
なる。
The blending ratio of glass powder and highly thermally conductive ceramic powder is 1
There is no particular limitation as long as low temperature firing of about 1,000°C can be achieved, but in order to achieve a firing temperature of 100°C or less, the composition should be approximately 30-70% by weight of glass powder and 70-30% by weight of highly thermally conductive ceramic powder. It becomes a ratio.

なお、ガラスが混入する複合体は遮光性が問題となるこ
とがある。すなわち、紫外線等を透過し、半導体素子の
誤動作を招くなど、信乾性が問題となる。この問題を解
消するために、必要に応じてガラス−セラミック組成物
に着色剤を添加して焼成する。着色剤としては黒色系の
ものが遮光性に優れるが、黒色系着色剤として、酸化ク
ロムと酸化鉄との混合物を、ガラス−セラミック複合体
の焼成温度よりも高温、例えば1200℃、酸化性雰囲
気中で仮焼したものを用いる。ガラス−セラミック複合
体の焼成温度よりも高温であらかじめ仮焼することで、
酸化クロムと酸化鉄は反応して安定化し、以後のガラス
−セラミック組成物の焼成時にさらに反応するなど不安
定な反応を起こすことがない。したがって黒色に着色さ
れた緻密な組織のガラス−セラミック複合体が得られる
。なお酸化性雰囲気中で仮焼するのは、ガラス−セラミ
ック複合体が弱還元性雰囲気あるいは窒素などの中性雰
囲気中で焼成されるものであるため、仮焼しておくこと
によって、ガラス−セラミック複合体の焼成時に安定な
のである。
It should be noted that composites containing glass may have a problem with light-shielding properties. That is, it transmits ultraviolet rays and the like, leading to malfunction of semiconductor devices, resulting in reliability problems. To overcome this problem, a colorant is optionally added to the glass-ceramic composition and fired. As a coloring agent, a black colorant has excellent light blocking properties, but as a black colorant, a mixture of chromium oxide and iron oxide is used at a temperature higher than the firing temperature of the glass-ceramic composite, for example 1200°C, in an oxidizing atmosphere. Use the one that has been calcined inside. By pre-calcining at a higher temperature than the firing temperature of the glass-ceramic composite,
The chromium oxide and the iron oxide react and stabilize, and no unstable reaction such as further reaction occurs during subsequent firing of the glass-ceramic composition. Therefore, a glass-ceramic composite body colored black and having a dense structure is obtained. Calcining in an oxidizing atmosphere is because the glass-ceramic composite is fired in a weakly reducing atmosphere or a neutral atmosphere such as nitrogen. It is stable during firing of the composite.

以下には具体的な実施例を示す。Specific examples are shown below.

(実施例) 実施例1 ホウケイ酸ガラス粉末60g 、窒化アルミニウム粉末
140g、有機バインダー等を混合し、粉末成形あるい
は適宜溶剤等を加えてスラリー状にしたものをテープ状
に成形した。得られた成形体を弱還元性雰囲気、窒素等
の中性雰囲気中で850℃〜1000℃で焼成した。
(Examples) Example 1 60 g of borosilicate glass powder, 140 g of aluminum nitride powder, an organic binder, etc. were mixed, and the mixture was powder-molded or a slurry was formed by adding an appropriate solvent and the like, and the slurry was formed into a tape. The obtained molded body was fired at 850°C to 1000°C in a weakly reducing atmosphere or a neutral atmosphere such as nitrogen.

得られたガラス−セラミック複合体は、誘電率5〜7の
高い絶縁性を有し、体積固有抵抗が1013Ω・cm以
上で、熱伝導率がアルミナセラミックと同程度の20w
/mkの高熱伝導性を示した。
The obtained glass-ceramic composite has high insulation properties with a dielectric constant of 5 to 7, a volume resistivity of 1013 Ω·cm or more, and a thermal conductivity of 20 W, which is comparable to that of alumina ceramic.
/mk.

実施例2 ホウケイ酸ガラス粉末100g、窒化アルミニウム粉末
100gを混合して、実施例1と同様にガラス−セラミ
ック組成物とし、焼成してガラス−セラミック複合体を
得た。このガラス−セラミック複合体も実施例1で得た
ガラス−セラミック複合体とほぼ同様の物理的性質を示
した。
Example 2 100 g of borosilicate glass powder and 100 g of aluminum nitride powder were mixed to prepare a glass-ceramic composition in the same manner as in Example 1, and fired to obtain a glass-ceramic composite. This glass-ceramic composite also exhibited almost the same physical properties as the glass-ceramic composite obtained in Example 1.

実施例3 ホウケイ酸ガラス粉末60g、窒化アルミニウム粉末1
40g、有機バインダー等と、重量比l:lに混合した
酸化クロム(Crt(h)と酸化鉄(Fetus)との
混合物を空気中、1200℃、1時間仮焼して得た粉末
5gとを混合し、粉末成形あるいはスラリー状にしてテ
ープ状に成形した。
Example 3 borosilicate glass powder 60g, aluminum nitride powder 1
40g of organic binder, etc., and 5g of powder obtained by calcining a mixture of chromium oxide (Crt(h) and iron oxide (Fetus) in a weight ratio of 1:1 in air at 1200°C for 1 hour). The mixture was mixed and formed into a powder or slurry and formed into a tape.

この成形体を弱還元性雰囲気あるいは窒素等の中性雰囲
気中で850℃〜1000℃で焼成した。
This molded body was fired at 850°C to 1000°C in a weakly reducing atmosphere or a neutral atmosphere such as nitrogen.

得られたガラス−セラミック複合体は遮光性の優れた黒
色を呈し、また実施例1とほぼ同等の良好な物理的性質
を示した。
The obtained glass-ceramic composite exhibited a black color with excellent light-shielding properties, and also exhibited good physical properties almost equivalent to those of Example 1.

実施例4 ホウケイ酸ガラス粉末の代わりにアルミナホウケイ酸ガ
ラスを、窒化アルミニウム粉末の代わりに窒化ホウ素、
炭化ケイ素あるいは酸化へリリウムを用いてガラス−セ
ラミック組成物とし、実施例1あるいは実施例2と同様
の条件で焼成したところ、得られたガラス−セラミック
複合体は上記各実施例で得たガラス−セラミック複合体
とほぼ同等の高熱伝導性、高い絶縁性を示した。
Example 4 Alumina borosilicate glass was used instead of borosilicate glass powder, boron nitride was used instead of aluminum nitride powder,
A glass-ceramic composition was made using silicon carbide or helium oxide and fired under the same conditions as in Example 1 or Example 2. It showed high thermal conductivity and high insulation properties almost equivalent to ceramic composites.

以上本発明につき好適な実施例を挙げて種々説明したが
、本発明はこの実施例に限定されるものではなく、発明
の精神を逸脱しない範囲内で多くの改変を施し得るのは
もちろんのことである。
Although the present invention has been variously explained above with reference to preferred embodiments, the present invention is not limited to these embodiments, and it goes without saying that many modifications can be made without departing from the spirit of the invention. It is.

(発明の効果) 以上のように本発明によれば、1000℃以下の温度で
焼成できるガラス−セラミック複合体であって、優れた
熱伝導性を有するものが提供でき、半導体装置用パッケ
ージとして用いた場合に優れた熱放散性を有し、半導体
装置の信頼性を向上させることができる。
(Effects of the Invention) As described above, according to the present invention, it is possible to provide a glass-ceramic composite that can be fired at a temperature of 1000°C or less and has excellent thermal conductivity, and can be used as a package for semiconductor devices. When used, it has excellent heat dissipation properties and can improve the reliability of semiconductor devices.

また、酸化クロムと酸化鉄を仮焼して得た着色剤を添加
したものにあっては、黒色を呈し、優れた遮光性を有す
る着色セラミックが得られる。
Furthermore, when a coloring agent obtained by calcining chromium oxide and iron oxide is added, a colored ceramic that exhibits a black color and has excellent light-shielding properties can be obtained.

手続補正書 1、事件の表示 昭和62年  特許願第41166号 2、発明の名称 高熱伝導性ガラス−セラミック複合体 3、補正をする者 事件との関係  特許出願人 4、代理人 6、補正により増加する発明の数 7、補正の対象               −一一
一8、補正の内容 1)明細書第7頁第12行目〜第13行目の「5〜7の
高い絶縁性を有し、体積固有抵抗が10I3Ω・値以上
で、」を「5〜7で体積固有抵抗が1013Ω・値以上
の高い絶縁性を有し、」と補正する。
Procedural amendment 1, Indication of the case 1988 Patent application No. 41166 2, Title of the invention High thermal conductive glass-ceramic composite 3, Person making the amendment Relationship to the case Patent applicant 4, Agent 6, By amendment Increasing number of inventions 7, subject of amendment -1118, content of amendment 1) "High insulation properties of 5 to 7, volume-specific "Resistance is 10I3 Ω.value or more," is corrected to "5 to 7, volume resistivity is 1013 Ω.value or more and has high insulation properties."

Claims (1)

【特許請求の範囲】 1、ガラス粉末と、少なくともアルミナよりも高い熱伝
導性を有し、かつ高絶縁性を有するセラミック粉末とを
含むガラス−セラミック組成物を1000℃以下の温度
で焼成して成る高熱伝導性ガラス−セラミック複合体。 2、セラミック粉末として、窒化アルミニウム、窒化ホ
ウ素、炭化ケイ素、酸化ベリリウムを単独もしくは複数
種混合して用いたことを特徴とする特許請求の範囲第1
項記載の高熱伝導性ガラス−セラミック複合体。 3、ガラス粉末として、誘電率4〜6の、ホウケイ酸ガ
ラス、アルミナホウケイ酸ガラスを単独もしくは混合し
て用いたことを特徴とする特許請求の範囲第1項または
第2項記載の高熱伝導性ガラス−セラミック複合体。 4、ガラス粉末とセラミック粉末との組成比が、ガラス
粉末30〜70重量パーセントであり、セラミック粉末
70〜30重量パーセントである特許請求の範囲第1項
、第2項または第3項記載の高熱伝導性ガラス−セラミ
ック複合体。 5、着色剤として、酸化クロムと酸化鉄との混合物をあ
らかじめ仮焼したものを添加して成る特許請求の範囲第
1項、第2項、第3項または第4項記載の高熱伝導性ガ
ラス−セラミック複合体。
[Claims] 1. A glass-ceramic composition containing a glass powder and a ceramic powder having a thermal conductivity higher than that of alumina and having high insulation properties is fired at a temperature of 1000°C or less. A highly thermally conductive glass-ceramic composite. 2. Claim 1, characterized in that aluminum nitride, boron nitride, silicon carbide, and beryllium oxide are used alone or in combination as a ceramic powder.
High thermal conductivity glass-ceramic composite as described in . 3. High thermal conductivity according to claim 1 or 2, characterized in that borosilicate glass or alumina borosilicate glass having a dielectric constant of 4 to 6 is used alone or in combination as the glass powder. Glass-ceramic composite. 4. High heat according to claim 1, 2 or 3, wherein the composition ratio of glass powder and ceramic powder is 30 to 70 weight percent of glass powder and 70 to 30 weight percent of ceramic powder. Conductive glass-ceramic composite. 5. High thermal conductivity glass according to claim 1, 2, 3 or 4, which is made by adding a pre-calcined mixture of chromium oxide and iron oxide as a coloring agent. - Ceramic composite.
JP4116687A 1987-02-24 1987-02-24 High thermal conductivity glass-ceramic composite Pending JPS63210043A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4116687A JPS63210043A (en) 1987-02-24 1987-02-24 High thermal conductivity glass-ceramic composite

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4116687A JPS63210043A (en) 1987-02-24 1987-02-24 High thermal conductivity glass-ceramic composite

Publications (1)

Publication Number Publication Date
JPS63210043A true JPS63210043A (en) 1988-08-31

Family

ID=12600838

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4116687A Pending JPS63210043A (en) 1987-02-24 1987-02-24 High thermal conductivity glass-ceramic composite

Country Status (1)

Country Link
JP (1) JPS63210043A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01242442A (en) * 1988-03-24 1989-09-27 Toyo Alum Kk Grained inorganic composite material and production thereof
JPH02279536A (en) * 1989-04-19 1990-11-15 Tokuyama Soda Co Ltd Inorganic powdery composition
JPH0378307A (en) * 1989-08-22 1991-04-03 Seiko Electronic Components Ltd Vessel for surface mounted type piezoelectric vibrator
US5102749A (en) * 1988-01-27 1992-04-07 W. R. Grace & Co.-Conn. Electronic package comprising aluminum nitride and aluminum nitride-borosilicate glass composite
US5214005A (en) * 1991-02-04 1993-05-25 Sumitomo Electric Industries, Ltd. Glass-aluminum nitride composite material
JP2002053369A (en) * 2000-05-30 2002-02-19 Kyocera Corp Ceramic sintered compact and wiring board using the same
WO2014038230A1 (en) * 2012-09-10 2014-03-13 日本碍子株式会社 Glass-ceramic composite material
CN104045221A (en) * 2013-03-12 2014-09-17 中国科学院宁波材料技术与工程研究所 Preparation method of flexible ultrathin glass
WO2014155758A1 (en) * 2013-03-26 2014-10-02 日本碍子株式会社 Glass-ceramic composite material
US9212087B2 (en) 2013-03-26 2015-12-15 Ngk Insulators, Ltd. Glass-ceramics composite material

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5964545A (en) * 1982-10-04 1984-04-12 Ngk Spark Plug Co Ltd Glass-ceramic composite material
JPS61146735A (en) * 1984-12-19 1986-07-04 Fujitsu Ltd Glass/ceramic manufacturing method
JPS62124799A (en) * 1985-11-25 1987-06-06 富士通株式会社 Glass ceramic multilayer substrate

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5964545A (en) * 1982-10-04 1984-04-12 Ngk Spark Plug Co Ltd Glass-ceramic composite material
JPS61146735A (en) * 1984-12-19 1986-07-04 Fujitsu Ltd Glass/ceramic manufacturing method
JPS62124799A (en) * 1985-11-25 1987-06-06 富士通株式会社 Glass ceramic multilayer substrate

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5102749A (en) * 1988-01-27 1992-04-07 W. R. Grace & Co.-Conn. Electronic package comprising aluminum nitride and aluminum nitride-borosilicate glass composite
JPH01242442A (en) * 1988-03-24 1989-09-27 Toyo Alum Kk Grained inorganic composite material and production thereof
JPH02279536A (en) * 1989-04-19 1990-11-15 Tokuyama Soda Co Ltd Inorganic powdery composition
JPH0378307A (en) * 1989-08-22 1991-04-03 Seiko Electronic Components Ltd Vessel for surface mounted type piezoelectric vibrator
US5214005A (en) * 1991-02-04 1993-05-25 Sumitomo Electric Industries, Ltd. Glass-aluminum nitride composite material
JP2002053369A (en) * 2000-05-30 2002-02-19 Kyocera Corp Ceramic sintered compact and wiring board using the same
WO2014038230A1 (en) * 2012-09-10 2014-03-13 日本碍子株式会社 Glass-ceramic composite material
US9212085B2 (en) 2012-09-10 2015-12-15 Ngk Insulators, Ltd. Glass-ceramics composite material
JP5857121B2 (en) * 2012-09-10 2016-02-10 日本碍子株式会社 Glass-ceramic composite material
CN104045221A (en) * 2013-03-12 2014-09-17 中国科学院宁波材料技术与工程研究所 Preparation method of flexible ultrathin glass
WO2014155758A1 (en) * 2013-03-26 2014-10-02 日本碍子株式会社 Glass-ceramic composite material
US9212087B2 (en) 2013-03-26 2015-12-15 Ngk Insulators, Ltd. Glass-ceramics composite material
JP5926369B2 (en) * 2013-03-26 2016-05-25 日本碍子株式会社 Glass-ceramic composite fired material

Similar Documents

Publication Publication Date Title
CA2060239C (en) Glass-aluminum nitride composite material
JPH0442349B2 (en)
JP5857121B2 (en) Glass-ceramic composite material
JPS63210043A (en) High thermal conductivity glass-ceramic composite
JP2512474B2 (en) Colored mullite ceramic composition
US5087509A (en) Substrate used for fabrication of thick film circuit
JPH0725570B2 (en) Colored crystallized glass body and its manufacturing method
JPS636503B2 (en)
JPS617647A (en) Circuit substrate
Horiuchi et al. New mullite ceramic packages and substrates
JPS6331434B2 (en)
CN106631046A (en) Composite sintering aid for producing aluminum nitride ceramic substrate
JPH0414504B2 (en)
EP0655426B1 (en) Glass-ceramic composite and process for producing the same
US5292552A (en) Method for forming metallized layer on an aluminum nitride sintered body
JP2532429B2 (en) Glaze resistance material
SU1435573A1 (en) Composition for metal-coating of earthenware
JPS63265858A (en) Low-temperature sintered ceramics composition for multi-layered substrate
JP2710311B2 (en) Ceramic insulation material
JPH0482059B2 (en)
JPS60151279A (en) Aluminum nitride powder composition
JPS63210059A (en) Coloring agent for ceramic and manufacture
JPS61146766A (en) Aluminum nitride sintered body and manufacture
JPH021111B2 (en)
JPH069320B2 (en) Low temperature firing ceramic multilayer wiring board