[go: up one dir, main page]

JPS61146735A - Glass/ceramic manufacturing method - Google Patents

Glass/ceramic manufacturing method

Info

Publication number
JPS61146735A
JPS61146735A JP26625784A JP26625784A JPS61146735A JP S61146735 A JPS61146735 A JP S61146735A JP 26625784 A JP26625784 A JP 26625784A JP 26625784 A JP26625784 A JP 26625784A JP S61146735 A JPS61146735 A JP S61146735A
Authority
JP
Japan
Prior art keywords
glass
particles
silicon carbide
compacted
carbide particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26625784A
Other languages
Japanese (ja)
Inventor
Kazuaki Kurihara
和明 栗原
Etsuro Udagawa
悦郎 宇田川
Nobuo Kamehara
亀原 伸男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP26625784A priority Critical patent/JPS61146735A/en
Publication of JPS61146735A publication Critical patent/JPS61146735A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C14/00Glass compositions containing a non-glass component, e.g. compositions containing fibres, filaments, whiskers, platelets, or the like, dispersed in a glass matrix
    • C03C14/004Glass compositions containing a non-glass component, e.g. compositions containing fibres, filaments, whiskers, platelets, or the like, dispersed in a glass matrix the non-glass component being in the form of particles or flakes
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2214/00Nature of the non-vitreous component
    • C03C2214/04Particles; Flakes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Compositions (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 使用分野 本発明は、ガラスにセラミック粒子を均一に分散させて
強度を高めたガラス・セラミックの製法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Use The present invention relates to a process for producing glass-ceramics in which ceramic particles are uniformly dispersed in the glass to increase its strength.

従来技術 特開昭59−11700号は低融点ガラスにアルミナ粒
子を分散させた材料が熱伝導率が高く曲げ強度が200
 kg /−であることを開示する。
Conventional technology JP-A-59-11700 discloses that a material in which alumina particles are dispersed in low-melting glass has high thermal conductivity and bending strength of 200.
kg/-.

問題点 アルミナは、ヤング率が4 X 10 &kg/dであ
り、これよりヤング率の高いセラミック粒子をガラスに
分散させれば、強度を高める効果がさらに大きいことが
期待される。rR化けい素はヤング率が6 X 10’
kg/−であり、この目的に適しているが、ガラスとの
ぬれ性が悪いので、ガラスをはじき、炭化けい素粒子が
互いに凝集してガラス中に均一に分散しない欠点がある
Problem: Alumina has a Young's modulus of 4×10 &kg/d, and if ceramic particles having a higher Young's modulus than this are dispersed in glass, it is expected that the effect of increasing the strength will be even greater. rR silicon has a Young's modulus of 6 x 10'
kg/- and is suitable for this purpose, but has the disadvantage that it has poor wettability with glass, so it repels the glass, and the silicon carbide particles aggregate with each other and are not uniformly dispersed in the glass.

解決手段 上記欠点は、平均粒形108m以下の炭化けい素粒子を
酸化性雰囲気中で温度1200℃以上に加熱して表面に
酸化物膜を形成した後、この粒子とガラス粉末とを混合
して圧粉した成形体をガラス粉末の軟化点以上に加熱し
て焼成体とすることを特徴とする、ガラスマトリックス
に炭化けい素粒子を均一に分散させたガラス・セラミッ
クの製法によって解決することができる。
Solution The above disadvantages can be solved by heating silicon carbide particles with an average particle size of 108 m or less to a temperature of 1200°C or higher in an oxidizing atmosphere to form an oxide film on the surface, and then mixing the particles with glass powder. This problem can be solved by a glass-ceramic manufacturing method in which silicon carbide particles are uniformly dispersed in a glass matrix, which is characterized by heating a compacted compact to a temperature above the softening point of the glass powder to produce a fired product. .

このガラスは軟化点が1200℃以下のほうけい酸ガラ
ス、リチウムガラスまたはアルミノけい酸ガラスを使用
することが便宜である。
As this glass, it is convenient to use borosilicate glass, lithium glass, or aluminosilicate glass having a softening point of 1200° C. or less.

また圧粉した成形体の焼成は、常圧焼成した後に、この
常圧焼成温度より低い温度で熱間静水加圧して緻密化す
ることが有利である。
Furthermore, it is advantageous for the compacted compact to be densified by hot isostatic pressing at a temperature lower than the normal pressure sintering temperature after normal pressure sintering.

実施例 平均粒径1μm1純度98%の炭化けい素粒子をアルミ
するつぼに入れ、大気中で1200℃に3時間加熱した
。この粒子の表面が白色に変わり二酸化けい素薄膜層が
形成された。
Example Silicon carbide particles having an average particle size of 1 μm and a purity of 98% were placed in an aluminum crucible and heated to 1200° C. for 3 hours in the atmosphere. The surface of the particles turned white and a silicon dioxide thin film layer was formed.

この酸化粒子500gを平均粒径5μmのほうけい酸ガ
ラス500g、 P V B系樹脂バインダ5g、溶剤
アセトン150gとともにボールミルで混練し、溶剤を
追出しに後、プレス成形して焼成用の成形体とした。
500 g of these oxidized particles were kneaded in a ball mill with 500 g of borosilicate glass with an average particle size of 5 μm, 5 g of a P V B resin binder, and 150 g of acetone as a solvent, and after driving off the solvent, press molding was performed to obtain a molded body for firing. .

この成形体を大気中で1000℃に2時間焼成し、さら
に1000kg/cd加圧下で950℃に30分間加熱
して、HIP処理した。
This molded body was fired at 1000° C. for 2 hours in the air, and then heated at 950° C. for 30 minutes under a pressure of 1000 kg/cd to perform HIP treatment.

こうして得られたガラス・セラミックは曲げ強度が30
00 kg / cdであり、はうけい酸ガラスの曲げ
強度700kg/aJより大幅に向上した。また熱伝導
率ははうけい酸ガラスの3W/儀、により10W/s+
、kに向上した。
The glass/ceramic thus obtained has a bending strength of 30
00 kg/cd, which is significantly higher than the bending strength of silicate glass, which is 700 kg/aJ. In addition, the thermal conductivity is 10W/s+ due to the 3W/meter of silicate glass.
, improved to k.

発明の効果 本発明の方法によれば、通常では均一に分散しない炭化
けい素粒子をガラスマトリックスに均一に分散させるこ
とができ、得られたガラス・セラミックは機械的強度お
よび熱伝導率が大きい利点を有する。
Effects of the Invention According to the method of the present invention, silicon carbide particles, which are normally not uniformly dispersed, can be uniformly dispersed in a glass matrix, and the obtained glass/ceramic has the advantage of high mechanical strength and thermal conductivity. has.

Claims (1)

【特許請求の範囲】 1、平均粒径10μm以下の炭化けい素粒子を酸化性雰
囲気中で温度1200℃以上に加熱して表面に酸化物膜
を形成した後に、この粒子とガラス粉末とを混合して圧
粉した成形体をガラス粉末の軟化点以上に加熱して焼成
体とすることを特徴とする、ガラスマトリックスに炭化
けい素粒子を均一に分散させたガラス・セラミックの製
法。 2、ガラスは軟化点が1200℃以下のほうけい酸ガラ
ス、リチウムガラスまたはアルミノけい酸ガラスである
、特許請求の範囲第1項記載の製法。 3、圧粉した成形体の焼成において、常圧で焼成した後
に、この常圧焼成温度より低い温度で熱間静水加圧(H
IP処理)して緻密化する、特許請求の範囲第1または
2項記載の製法。
[Claims] 1. After heating silicon carbide particles with an average particle size of 10 μm or less to a temperature of 1200° C. or higher in an oxidizing atmosphere to form an oxide film on the surface, the particles are mixed with glass powder. A method for producing glass/ceramics in which silicon carbide particles are uniformly dispersed in a glass matrix, which is characterized by heating the compacted compacted body to a temperature above the softening point of the glass powder to produce a fired body. 2. The manufacturing method according to claim 1, wherein the glass is borosilicate glass, lithium glass, or aluminosilicate glass having a softening point of 1200° C. or less. 3. In firing the compacted compact, after firing at normal pressure, hot isostatic pressing (H
3. The manufacturing method according to claim 1 or 2, wherein the method is densified by IP treatment.
JP26625784A 1984-12-19 1984-12-19 Glass/ceramic manufacturing method Pending JPS61146735A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26625784A JPS61146735A (en) 1984-12-19 1984-12-19 Glass/ceramic manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26625784A JPS61146735A (en) 1984-12-19 1984-12-19 Glass/ceramic manufacturing method

Publications (1)

Publication Number Publication Date
JPS61146735A true JPS61146735A (en) 1986-07-04

Family

ID=17428462

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26625784A Pending JPS61146735A (en) 1984-12-19 1984-12-19 Glass/ceramic manufacturing method

Country Status (1)

Country Link
JP (1) JPS61146735A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63210043A (en) * 1987-02-24 1988-08-31 Shinko Electric Ind Co Ltd High thermal conductivity glass-ceramic composite
EP0343301A2 (en) * 1988-05-23 1989-11-29 Corning Glass Works Hybrid ceramic matrix composite articles comprising particulate additives and method
FR2968299A1 (en) * 2010-12-02 2012-06-08 Commissariat Energie Atomique PROCESS FOR THE PREPARATION OF A GLASS-SILICON CARBIDE COMPOSITE MATERIAL
JP2012111665A (en) * 2010-11-25 2012-06-14 Tokyo Univ Of Science Heat conductive glass, and method for manufacturing the same
CN108503230A (en) * 2018-04-24 2018-09-07 佛山市奥耶克思机械设备有限公司 A kind of package substrate composite material and preparation method
CN109320074A (en) * 2018-10-31 2019-02-12 濮阳市鲁蒙玻璃制品有限公司 A kind of neutral boron silica glass material and preparation method thereof

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63210043A (en) * 1987-02-24 1988-08-31 Shinko Electric Ind Co Ltd High thermal conductivity glass-ceramic composite
EP0343301A2 (en) * 1988-05-23 1989-11-29 Corning Glass Works Hybrid ceramic matrix composite articles comprising particulate additives and method
JP2012111665A (en) * 2010-11-25 2012-06-14 Tokyo Univ Of Science Heat conductive glass, and method for manufacturing the same
FR2968299A1 (en) * 2010-12-02 2012-06-08 Commissariat Energie Atomique PROCESS FOR THE PREPARATION OF A GLASS-SILICON CARBIDE COMPOSITE MATERIAL
WO2012072700A3 (en) * 2010-12-02 2012-08-16 Commissariat à l'énergie atomique et aux énergies alternatives Method for preparing a glass/silicon-carbide composite material
CN108503230A (en) * 2018-04-24 2018-09-07 佛山市奥耶克思机械设备有限公司 A kind of package substrate composite material and preparation method
CN109320074A (en) * 2018-10-31 2019-02-12 濮阳市鲁蒙玻璃制品有限公司 A kind of neutral boron silica glass material and preparation method thereof

Similar Documents

Publication Publication Date Title
EP0030851B1 (en) Shrink-free ceramic dental appliance and method for the manufacture thereof
JPS59162146A (en) Glass-ceramic containing orsmilite
JPS61146735A (en) Glass/ceramic manufacturing method
US3804650A (en) Silicate binders
JP2002226285A (en) Lightweight ceramic member and method of manufacturing the same
JPH0455368A (en) Production of sintered body of oxide of rare earth element
JP3094147B2 (en) Firing jig
JPS60161368A (en) Manufacture of high strength calcium phosphate sintered body
JPS6374978A (en) Ceramic composite body
JPH01111772A (en) Production of sintered body of glass bonded fluorine-containing mica ceramic
JPS63162568A (en) Glass-ceramic composite body
JPH0674178B2 (en) Porous refractory
JPS6374976A (en) Ceramic composite body
JPH0354163A (en) Ceramic material composition and use thereof
JPS59107983A (en) Heat-resistant inorganic molded body
JPH01197355A (en) Inorganic sintered body and production thereof
JPS6121959A (en) Manufacture of composite sintered body
JPH01122962A (en) Hydration-resistant high strength sintered magnesia and production thereof
JPH0413309B2 (en)
JPS61198502A (en) Making of inorganic insulator
JPS6241754A (en) Manufacture of low temperature sinterable heat-resistant material
JPS6217068A (en) Manufacture of fused silica sintered body
JPH0383852A (en) Mullite-based sintered compact and its production
JPH01203264A (en) Low thermal expansion ceramics and manufacturing method thereof
JPS62202867A (en) Manufacture of aluminum nitride sintered body