JPS63207053A - Fuel cell power generation plant - Google Patents
Fuel cell power generation plantInfo
- Publication number
- JPS63207053A JPS63207053A JP62037880A JP3788087A JPS63207053A JP S63207053 A JPS63207053 A JP S63207053A JP 62037880 A JP62037880 A JP 62037880A JP 3788087 A JP3788087 A JP 3788087A JP S63207053 A JPS63207053 A JP S63207053A
- Authority
- JP
- Japan
- Prior art keywords
- fuel
- air
- oxygen
- electrode
- fuel cell
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000446 fuel Substances 0.000 title claims abstract description 84
- 238000010248 power generation Methods 0.000 title claims description 15
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims abstract description 37
- 239000001301 oxygen Substances 0.000 claims abstract description 37
- 229910052760 oxygen Inorganic materials 0.000 claims abstract description 37
- 239000007800 oxidant agent Substances 0.000 claims abstract description 34
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims abstract description 22
- 239000002737 fuel gas Substances 0.000 claims abstract description 15
- 229910052757 nitrogen Inorganic materials 0.000 claims abstract description 10
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 14
- 238000006243 chemical reaction Methods 0.000 claims description 12
- 239000001257 hydrogen Substances 0.000 claims description 11
- 229910052739 hydrogen Inorganic materials 0.000 claims description 11
- 238000000926 separation method Methods 0.000 claims description 8
- 238000002407 reforming Methods 0.000 claims description 5
- 229940110728 nitrogen / oxygen Drugs 0.000 claims 1
- 230000010287 polarization Effects 0.000 abstract description 12
- 238000003487 electrochemical reaction Methods 0.000 abstract description 3
- DOTMOQHOJINYBL-UHFFFAOYSA-N molecular nitrogen;molecular oxygen Chemical compound N#N.O=O DOTMOQHOJINYBL-UHFFFAOYSA-N 0.000 abstract 2
- 239000003607 modifier Substances 0.000 abstract 1
- 239000007789 gas Substances 0.000 description 29
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 19
- 239000003054 catalyst Substances 0.000 description 13
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 10
- 229910052697 platinum Inorganic materials 0.000 description 10
- 229910001882 dioxygen Inorganic materials 0.000 description 9
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 9
- 239000012495 reaction gas Substances 0.000 description 8
- 230000001590 oxidative effect Effects 0.000 description 6
- 238000010586 diagram Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000006722 reduction reaction Methods 0.000 description 3
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- 238000006555 catalytic reaction Methods 0.000 description 2
- 229910001873 dinitrogen Inorganic materials 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 230000036647 reaction Effects 0.000 description 2
- 239000002699 waste material Substances 0.000 description 2
- 229910000967 As alloy Inorganic materials 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 1
- 241000257465 Echinoidea Species 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 229910002091 carbon monoxide Inorganic materials 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000003034 coal gas Substances 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 239000003792 electrolyte Substances 0.000 description 1
- 239000002803 fossil fuel Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- 230000002427 irreversible effect Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 239000003345 natural gas Substances 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 231100000572 poisoning Toxicity 0.000 description 1
- 230000000607 poisoning effect Effects 0.000 description 1
- 239000000376 reactant Substances 0.000 description 1
- 238000006057 reforming reaction Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 239000004575 stone Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04082—Arrangements for control of reactant parameters, e.g. pressure or concentration
- H01M8/04089—Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/06—Combination of fuel cells with means for production of reactants or for treatment of residues
- H01M8/0606—Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
- H01M8/0612—Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04082—Arrangements for control of reactant parameters, e.g. pressure or concentration
- H01M8/04089—Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
- H01M8/04097—Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with recycling of the reactants
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Fuel Cell (AREA)
Abstract
Description
【発明の詳細な説明】
[発明の目的]
(産業上の利用分野)
本発明は燃料電池発電プラントに係り、特に燃料電池の
酸化剤極に供給される空気供給系を改良した燃1i1電
池発電プラン1〜に関する。Detailed Description of the Invention [Objective of the Invention] (Industrial Application Field) The present invention relates to a fuel cell power generation plant, and in particular to a fuel cell power generation plant with an improved air supply system supplied to the oxidizer electrode of the fuel cell. Regarding plan 1~.
(発明が解決しようとする問題点)
近年、燃料の有しているエネルギーを直接電気的エネル
ギーに変換するものとして燃料電池発電プラントが知ら
れている。この燃料電池発電プラントは、通常、電解質
を挟んで一対の多孔質電極を配置して燃料電池を構成す
ると共に、一方の電極の背面に水素などの燃料を接触さ
せ、また他方の電極の背面に酸素などの酸化剤を接触さ
せ、このとき起こる電気化学的反応を利用して、上記両
電極間から電気エネルギーを取り出すようにしたもので
あり、上記燃料と酸化剤が供給されている限り高い変換
効率で電気エネルギーを取り出すことができる。(Problems to be Solved by the Invention) In recent years, fuel cell power generation plants have been known as plants that directly convert energy contained in fuel into electrical energy. In this fuel cell power generation plant, a fuel cell is usually constructed by arranging a pair of porous electrodes with an electrolyte sandwiched between them, and a fuel such as hydrogen is brought into contact with the back of one electrode, and a fuel such as hydrogen is brought into contact with the back of the other electrode. Electrical energy is extracted from between the two electrodes by bringing an oxidizing agent such as oxygen into contact and utilizing the electrochemical reaction that occurs. As long as the fuel and oxidizing agent are supplied, high conversion can be achieved. Electrical energy can be extracted efficiently.
第3図は、この種の代表的な燃料電池発電プラン1〜の
基本的構成を示したものである。図において、天然ガス
または石炭ガス等の化石燃料J:りなる燃料1とスチー
ム供給器2かうのスチームが、夫々燃料流量調節弁3と
スチーム流量調節弁4とにより、スチームとカーボンの
混合モル比が3〜5程度となるように制御されて燃料改
質装置5内の改質接触チューブ6に導入される。ここで
、スチームと燃料1は500〜600 ’C程度まで加
熱されて改質反応を行ない、次に変成器7を経て水素含
有率の高い燃料ガスとなる。この水素含有率が高くなっ
た燃料カスは、燃料カス気水分離器8に送られて改質で
余剰になったスチームを除去した後、補助バーナ9へは
補助バーナ燃料流量調節弁10により、また燃料電池1
1の燃料極11Aへは燃料ガス流量調節弁12により、
夫々流量が制御されて送られる。FIG. 3 shows the basic configuration of typical fuel cell power generation plans 1 to 1 of this type. In the figure, steam from a fossil fuel J such as natural gas or coal gas, a fuel 1 and a steam supply device 2 is controlled by a fuel flow rate control valve 3 and a steam flow rate control valve 4, respectively, at a mixing molar ratio of steam and carbon. The fuel is introduced into the reforming contact tube 6 in the fuel reformer 5 while being controlled so that it is about 3 to 5. Here, the steam and fuel 1 are heated to about 500 to 600'C to undergo a reforming reaction, and then pass through the shift converter 7 to become fuel gas with a high hydrogen content. This fuel scum with a high hydrogen content is sent to a fuel scum steam/water separator 8 to remove surplus steam from reforming, and then sent to an auxiliary burner 9 by an auxiliary burner fuel flow control valve 10. Also, fuel cell 1
A fuel gas flow rate control valve 12 connects the fuel electrode 11A to the fuel electrode 1A.
The respective flow rates are controlled and sent.
燃料電池11の燃料極11Aへ流入した燃料ガス中の水
素は、酸化剤極113に流入している空気中の酸素と触
媒反応を行ない、その結果燃料の一部が消費されて電気
エネルギーと反応生成水とが19られる。この燃料電池
11内で生成した反応生成水の一部を含んで燃′#I極
11Aを出た燃料排ガスは、前述の燃料改質装置5のメ
インバーナ13の燃料として送られるが、この途中にお
いてガス中水分の回収を行なうため燃料排ガス気水分離
器16を通過する。Hydrogen in the fuel gas that has flowed into the fuel electrode 11A of the fuel cell 11 undergoes a catalytic reaction with oxygen in the air that has flowed into the oxidizer electrode 113, and as a result, a portion of the fuel is consumed and reacts with electrical energy. 19 of the produced water is removed. The fuel exhaust gas that exits the combustion electrode 11A and contains a part of the reaction product water generated in the fuel cell 11 is sent as fuel to the main burner 13 of the fuel reformer 5, but during this process, In order to recover moisture in the gas, the fuel exhaust gas passes through a steam/water separator 16.
そして、メインバーナ13へ送られた燃料排カスは燃料
改質装置5内で燃焼し、改質触媒チューブ6を加熱した
後に高温排ガス17として排出される。The fuel waste sent to the main burner 13 is burned in the fuel reformer 5 and is discharged as high-temperature exhaust gas 17 after heating the reforming catalyst tube 6.
さらに、この高温排ガス17は、燃料電池11の酸化剤
極113から送られる空気排ガスと合流した後、混合器
18へ送られて空気供給装置(ターボコンプレツリ)1
9の駆動用エネルギーの一部として使われる。一方、補
助バーナ9へ送られた燃料ガスは補助バーナ9内で燃焼
し、その燃料ガスが混合器18を通過して空気供給装置
(ターボコンプレツリ→19のタービン19Aを駆動す
る。Further, this high-temperature exhaust gas 17 is combined with the air exhaust gas sent from the oxidizer electrode 113 of the fuel cell 11, and then sent to the mixer 18, where it is sent to the air supply device (turbo compressor) 1.
It is used as part of the driving energy of 9. On the other hand, the fuel gas sent to the auxiliary burner 9 is combusted within the auxiliary burner 9, and the fuel gas passes through the mixer 18 to drive the turbine 19A of the air supply device (turbo compressor 19).
一方、上記タービン19Aに連結して駆動されるコンプ
レッサ19Bの吐出空気は、補助バーナ9、メインバー
ナ13へ夫々補助バーナ空気流量調節弁20、メインバ
ーナ空気流量調節弁21により空燃比を調節して送られ
ると共に、空気流■調節弁22により燃料電池11の酸
化剤極11Bへ送られ、余剰分は空気供給装置(ターボ
コンプレツナ)19の駆動用エネルギーの一部として混
合器18へ送られる。On the other hand, the air discharged from the compressor 19B connected to and driven by the turbine 19A is sent to the auxiliary burner 9 and the main burner 13 with the air-fuel ratio adjusted by the auxiliary burner air flow control valve 20 and the main burner air flow control valve 21, respectively. At the same time, it is sent to the oxidizer electrode 11B of the fuel cell 11 by the air flow control valve 22, and the surplus is sent to the mixer 18 as part of the energy for driving the air supply device (turbo compressor) 19.
酸化剤極1iBに送られた空気の一部は、上記燃料(画
11Aの水素と反応して消費された後、酸化剤極11B
内で生成した水分を含んで排出される。この排出された
空気排ガスは燃料排ガスと同様に空気排カス気水分離器
25により空気排ガス中のスチーム分を一部腹水した後
に上記燃料改質装置5からの高温排ガス17と合流する
。A part of the air sent to the oxidizer electrode 1iB is consumed by reacting with the above fuel (hydrogen in the image 11A), and then the air is transferred to the oxidizer electrode 11B.
It is discharged containing the water produced inside. Similar to the fuel exhaust gas, this discharged air exhaust gas is partially removed from the steam component in the air exhaust gas by the air exhaust gas separator 25, and then merges with the high temperature exhaust gas 17 from the fuel reformer 5.
燃A′4電池11は上述した様に、燃料極11A内の水
素と酸化剤極11B内の酸素との触媒反応によって酸化
剤極11Bが正極、燃料極11Aか負極となるように、
電気エネルギーを発生する。その両電極11A、1iB
間に接続された電気負荷26により吸収された電流値に
略比例して、両電極11A、118人口に供給された水
素と1!2素が反応して反応生成水が1qられ、このス
チーム分を含んだ未反応ガス分が両電極11A、IIB
の出口より排出されることになる。As mentioned above, in the fuel A'4 battery 11, the oxidizer electrode 11B becomes the positive electrode and the fuel electrode 11A becomes the negative electrode due to the catalytic reaction between the hydrogen in the fuel electrode 11A and the oxygen in the oxidizer electrode 11B.
Generate electrical energy. Both electrodes 11A, 1iB
The hydrogen supplied to both electrodes 11A and 118 reacts with the 1!2 element approximately in proportion to the current value absorbed by the electric load 26 connected between them, and 1q of water produced by the reaction is produced, and this steam is The unreacted gas containing
will be discharged from the outlet.
一方、燃料極11A出口からは燃料再循環装置に連なる
リサイクル配管14が分岐され燃料排ガスの一部は燃料
再循環ファン15を経て燃料極11Aの人口に戻される
。あるいは酸化剤極11Bの出口からは空気再循環装置
に連なる空気リサイクル配管23が分岐され空気排ガス
の一部は、空気再循環ファン24を経て酸化剤極11B
の入口に戻される。これらの両極と再循環装置は、燃料
排ガスの水素温度および空気排ガスの酸素濃度を調節し
、燃料電池の温度分離作用により電池発生電圧を調整す
るとともに、電池反応後の未反応ガスを再利用すること
により電池に対してより多くの反応ガスが供給できるこ
とから、より高い負荷で運転でき燃わ1電池プラントの
効率増大の効果が得られる。On the other hand, a recycle pipe 14 connected to a fuel recirculation device is branched from the outlet of the fuel electrode 11A, and a portion of the fuel exhaust gas is returned to the fuel electrode 11A via a fuel recirculation fan 15. Alternatively, an air recycle pipe 23 connected to an air recirculation device is branched from the outlet of the oxidizer electrode 11B, and a part of the air exhaust gas is passed through an air recirculation fan 24 to the oxidizer electrode 11B.
returned to the entrance. These poles and the recirculation device adjust the hydrogen temperature of the fuel exhaust gas and the oxygen concentration of the air exhaust gas, adjust the cell generated voltage through the temperature separation effect of the fuel cell, and reuse the unreacted gas after the cell reaction. As a result, more reaction gas can be supplied to the battery, which allows operation at a higher load and increases the efficiency of the single-fuel cell plant.
このような燃料電池発電プラントの運転状態において、
燃料電池11が安定な出力電圧を保らなから負荷指令に
応じた負荷電力を出力しつづ(プるためには、燃料極1
1A入口に供給される燃料ガス中に含まれる水素ガス量
と、酸化剤極11[3人口に供給される空気中に含まれ
る酸素ガス量が、適正な墨に調整されている必要かおる
。ここで、適正な量とは、電池反応で消費される反応ガ
ス量にある程度の余剰の未反応カスωを加えた値であり
、−般的にこの余剰分は水素ガスの場合反応ガス量(こ
対し20%程度以上、酸素ガスの場合反応ガス量に対し
40%程度以上でおることが望ましい。Under such operating conditions of a fuel cell power generation plant,
Since the fuel cell 11 does not maintain a stable output voltage, in order to continue outputting load power according to the load command, the fuel electrode 1
It is necessary that the amount of hydrogen gas contained in the fuel gas supplied to the inlet 1A and the amount of oxygen gas contained in the air supplied to the oxidizer electrode 11 [3] are adjusted to appropriate levels. Here, the appropriate amount is the amount of reaction gas consumed in the cell reaction plus a certain amount of surplus unreacted waste ω, and in general, in the case of hydrogen gas, this surplus is the amount of reaction gas ( In contrast, it is desirable that the amount be about 20% or more, and in the case of oxygen gas, about 40% or more based on the amount of reaction gas.
また、燃料ガス中に含まれる一酸化炭素(Co)爪も許
容値以下に調節する必要がある。これは、COにより触
媒面での反応である電離作用が低下し、電池の発生電圧
が下がることで、一般的に触媒毒作用という。ここで、
このCO許容値は、一般的にリン酸燃料電池の場合、運
転温度が、200°Cで濃度が1〜2%前後であり燃料
改質装置5によって改質された燃料ガスは変成器7を通
過することにより許容値以下に調整される。Furthermore, carbon monoxide (Co) contained in the fuel gas must also be adjusted to below a permissible value. This is generally referred to as catalyst poisoning because CO reduces the ionization effect, which is a reaction on the catalyst surface, and lowers the voltage generated by the battery. here,
Generally, in the case of a phosphoric acid fuel cell, this CO allowable value is approximately 1 to 2% at an operating temperature of 200°C, and the fuel gas reformed by the fuel reformer 5 is passed through the shift converter 7. By passing through it, it is adjusted to below the allowable value.
(発明が解決しようとする問題点)
このJ:うに燃料電池に供給される水素ガスmおよび酸
素カス伍または水素ガスと混合するCOが適正な値に保
たれなければ燃料電池の過電圧または異常低下をぎたし
て安定な発電運転の継続が困難となる。(Problem to be solved by the invention) This J: Sea urchin If the hydrogen gas m supplied to the fuel cell and the oxygen scum or CO mixed with the hydrogen gas are not maintained at appropriate values, the fuel cell will overvoltage or abnormally drop. This makes it difficult to continue stable power generation operation.
電池から負荷電流を取り出す場合、両極における分極(
電圧損)の割合は酸化剤極(カソード)1113の方が
燃料極(アノード)11Aにりもはるかに大ぎい。これ
は空気(酸素)の還元反応が水素の酸化反応に比べて著
しく不可逆でおり、反応が円滑に起こり1qないためで
ある。When extracting load current from a battery, polarization at both poles (
The rate of voltage loss) is much larger at the oxidizer electrode (cathode) 1113 than at the fuel electrode (anode) 11A. This is because the reduction reaction of air (oxygen) is significantly more irreversible than the oxidation reaction of hydrogen, and the reaction occurs smoothly in less than 1q.
このため、通常の電池においてはカソード11[3の電
極触媒として用いられるカーボン担持白金触媒の白金担
持量をアノード11Aの3〜5割増しの星を用いて反応
の円滑化を図っている。For this reason, in a normal battery, the platinum supported amount of the carbon-supported platinum catalyst used as the electrode catalyst of the cathode 11[3 is 3 to 50 times higher than that of the anode 11A to facilitate the reaction.
このJ:うなカソード11Aにおける分極低減のため、
合金触媒等の高活性な電極触媒の開発が行われてきたが
、ざらに改良を施すべく努力がなされている。In order to reduce polarization in this J: eel cathode 11A,
Highly active electrode catalysts such as alloy catalysts have been developed, but efforts are being made to make further improvements.
カソード11Bの分極低減化を計ることを目的に半電池
を組みその分極特性を電極石ts層中の白金含有量を変
えて調べたところ次のような結果か得られた。In order to reduce the polarization of the cathode 11B, a half cell was assembled and its polarization characteristics were investigated by varying the platinum content in the electrode stone ts layer, and the following results were obtained.
第2図において、白金の母が増加するにつれて、酸素ゲ
イン(酸化剤ガスとして純酸素を用いた場合と空気を用
いた場合の電圧値の差)は減少する、ことが分かる。こ
のことは触ts層中の白金の量がすくない電極における
カソード反応(酸素還元反応>、1−vvJ性は反応ガ
スが酸素の場合と空気の場合とで、一定電流値における
電圧の差が大きいことを意味する。In FIG. 2, it can be seen that as the platinum base increases, the oxygen gain (the difference in voltage value when pure oxygen is used as the oxidant gas and when air is used as the oxidant gas) decreases. This indicates that the cathode reaction (oxygen reduction reaction) at an electrode with a small amount of platinum in the ts layer shows that the difference in voltage at a constant current value is large between when the reaction gas is oxygen and when the reaction gas is air. It means that.
しかし、白金の但がある一定値以上になると、この差は
ほとんど無税できる程度になることを意味する。そして
通常カソードに用いられる触媒の白金の□(約10重量
%Pt)の場合、一定電流値例えば17.5m^/cm
を流した時、この差は20mVもある。実際の発電プラ
ントにおいては、酸化剤ガスとして空気が用いられるの
で、この!Iii′I!酸素の場合と空気を用いた場合
の電圧損の差をできるだけ小ざくする工夫が必要である
。However, when the price of platinum exceeds a certain value, this difference means that it can almost be tax-free. In the case of platinum □ (approximately 10% Pt by weight) as a catalyst normally used for the cathode, the constant current value is, for example, 17.5 m^/cm.
When flowing, this difference is as much as 20 mV. In actual power plants, air is used as the oxidant gas, so this! Iiii'I! It is necessary to take measures to minimize the difference in voltage loss between oxygen and air.
反応ガスとして空気を用いた場合、電気化学的に活性な
酸素ガスが反応により消費されるにともない触媒層中に
電気化学的に不活性な窒素ガスが蓄積していき、これが
触媒層中における未反応の空気の拡散及び生成水の拡散
を阻害するため、いわゆる濃度分極が起こり、電圧損が
生じることが考えられる。When air is used as the reaction gas, as electrochemically active oxygen gas is consumed by the reaction, electrochemically inactive nitrogen gas accumulates in the catalyst layer, and this causes unused gas in the catalyst layer. Since diffusion of reaction air and produced water is inhibited, so-called concentration polarization may occur, resulting in voltage loss.
従ってカソード触媒層の厚さを低減することは、触tS
量の面約と同時に高性能電池を17るための重要な方策
である。しかし電池の寿命特性の点から考えると触rs
層をあまり薄くすることにも問題があり、酸化剤ガスの
濃度分極を低減するということはむずかしい問題であっ
た。Therefore, reducing the thickness of the cathode catalyst layer
This is an important measure to reduce volume and at the same time increase high performance batteries. However, from the viewpoint of battery life characteristics, it is
There is also a problem in making the layer too thin, and it is difficult to reduce the concentration polarization of the oxidant gas.
本発明の目的は、上述のように酸化剤ガスとして空気を
用いた場合の濃度分極を低減し、カソード性能ひいては
電池性能を向上させるようにした燃料電池発電プラン1
−を提供することにある。The object of the present invention is to reduce concentration polarization when air is used as an oxidant gas as described above, and to improve cathode performance and eventually battery performance.
- to provide.
[発明の構成]
(問題点を解決するための手段)
上記目的を達成するために、本発明は、燃料電池の酸化
剤極(カソード)入口に酸素/窒素分離装置をおき、空
気中の酸素)農度を50〜80%程に高めこれを反応ガ
スとして供給するようにし、さらにカソード入口には酸
素ガスセンナ−を取(おり、カソード入口にお(〕る酸
Mm度を常にチェックし、上流の酸素/窒素分離装置に
フィードバックをかけて、酸素濃度を制御することを特
徴とする特許である。[Structure of the Invention] (Means for Solving the Problems) In order to achieve the above object, the present invention provides an oxygen/nitrogen separation device at the inlet of the oxidizer electrode (cathode) of a fuel cell to remove oxygen from the air. ) Increase the agricultural degree to about 50 to 80% and supply this as a reaction gas. Furthermore, an oxygen gas sensor is installed at the cathode inlet, and the acid Mm concentration at the cathode inlet is constantly checked. This patent is characterized by controlling the oxygen concentration by applying feedback to the oxygen/nitrogen separation device.
(作 用)
カソードにおける酸素ガスの分圧は酸素還元反応の速度
式によると電流値の1次に比例しているので、カソード
に供給する空気を酸素/窒素分離装置を通過させること
により酸素分圧が上昇し、これに伴い活性化分極領域の
一定電位における発生電流値は2〜3倍増加し、電池性
能を向上させることができる。(Function) According to the oxygen reduction reaction rate equation, the partial pressure of oxygen gas at the cathode is linearly proportional to the current value. As the pressure increases, the current value generated at a constant potential in the activated polarization region increases by 2 to 3 times, and battery performance can be improved.
(実施例)
以下、本発明の一実施例を第1図に基づいて詳細に説明
するるなお第1図と第3図の同一部分は同一符号を付し
て示した。(Embodiment) Hereinafter, an embodiment of the present invention will be described in detail based on FIG. 1. In addition, the same parts in FIG. 1 and FIG. 3 are denoted by the same reference numerals.
第1図は本発明の燃料電池発電プラントの構成図でおり
、燃料1は燃料改質装置5で改質され、ざらに変成器7
および燃料ガス気水分離器8によって001度および余
剰スチームを調節し、燃料ガス流量調節弁12を介して
、燃料極11Aに供給される。また、空気供給装置19
から酸化剤極11Bに空気を供給してこのとき起こ漬電
気化学反応により上記両電極間から電気エネルギーを取
り出す。FIG. 1 is a block diagram of a fuel cell power generation plant according to the present invention, in which fuel 1 is reformed in a fuel reformer 5, and a shift converter 7 is used.
001 degrees and surplus steam are adjusted by the fuel gas steam water separator 8 and supplied to the fuel electrode 11A via the fuel gas flow rate control valve 12. In addition, the air supply device 19
Air is supplied to the oxidizer electrode 11B from the oxidizer electrode 11B, and at this time, electric energy is extracted from between the two electrodes by an electrochemical reaction.
本実施例では、空気供給装置19より送られできた圧縮
空気中の窒素ガスを20〜60%排出し、高濃度の酸素
ガスを酸素/窒素分離装置30を通し、酸化剤極(カソ
ード)11Bに供給する。T i O2、COO等の材
料を用いた半導体力スセン1ノーあるいはZrO2Ca
O1Th02−Y2O2などの4.j M’lを用いた
固体型IIS’?質センサー等の酸素ガスセンサー31
とを酸化剤極11Bの入口に設ける。In this embodiment, 20 to 60% of the nitrogen gas in the compressed air sent from the air supply device 19 is discharged, and the highly concentrated oxygen gas is passed through the oxygen/nitrogen separation device 30 to the oxidizer electrode (cathode) 11B. supply to. Semiconductor force sensor using materials such as T i O2, COO or ZrO2Ca
4. such as O1Th02-Y2O2. j Solid-state IIS' using M'l? Oxygen gas sensor 31 such as quality sensor
is provided at the inlet of the oxidizer electrode 11B.
次に、上記の如く構成された本実施例の作用について説
明する。Next, the operation of this embodiment configured as described above will be explained.
燃料電池発電プラントが発電運転状態では酸化剤極11
3の出口からは空気供給装置に連なる空気リサイクル配
管23が分岐され空気排ガスの一部は、空気再循環ファ
ン24を経て酸化剤極11Bの入口に酸素/窒素分離装
置30.酸素ガスセン譬ナー31を介して戻される。酸
素/窒素弁it装置30で空気を酸素と窒素とに分離し
、供給空気中の酸素濃度を50〜80%程に高めてカソ
ード11Bに供給する。When the fuel cell power generation plant is in power generation operation, the oxidizer electrode 11
An air recycle pipe 23 connected to an air supply device is branched from the outlet of 30, and a part of the air exhaust gas is sent to the inlet of the oxidizer electrode 11B via an air recirculation fan 24 to the oxygen/nitrogen separation device 30. It is returned via the oxygen gas sensor 31. Air is separated into oxygen and nitrogen by the oxygen/nitrogen valve IT device 30, and the oxygen concentration in the supplied air is increased to about 50 to 80% and then supplied to the cathode 11B.
そして酸化ガスセンサー31によりカソード11B直前
の酸素濃度をチェックして制御ループ32により酸素濃
度が一定になるように酸素/窒素分離装置30を制御し
ている。Then, an oxidizing gas sensor 31 checks the oxygen concentration immediately before the cathode 11B, and a control loop 32 controls the oxygen/nitrogen separation device 30 so that the oxygen concentration is constant.
[発明の効果]
以上説明したように、本発明によれば、カソードに常に
一定瀧度の高に酸素濃度の反応ガスが供給されるため、
電極触媒層中の白金温度を増加さぼることなくカソード
反応に対する温度分極を低減し、高性能の電池を組み立
てることができる。[Effects of the Invention] As explained above, according to the present invention, since a reactant gas having a high oxygen concentration is always supplied to the cathode at a constant rate,
It is possible to reduce temperature polarization for cathode reactions without increasing the platinum temperature in the electrode catalyst layer, and to assemble high-performance batteries.
第1図は本発明の一実施例の燃料電池発電プランI・の
構成図、第2図は分極電流値を一定にし、電極触媒層中
の白金含有母を変化させたときの酸素ゲインの変化を示
ず図、第3図は従来の燃料電池発電プラントの構成図で
おる。
1・・・燃料
2・・・スヂーム供給器
3・・・燃料流量調節弁
4・・・スチーム流量調節弁
5・・・燃お1改質装置
6・・・改質接触デユープ
7・・・変成器
8・・・燃料ガス気水分離器
9・・・補助バーナ
10・・・補助バーナ燃料流量調節弁
11・・・燃料電池
11A・・・燃料極
11B・・・酸化剤極
12・・・燃料ガス流量調節弁
13・・・メインバーナ
14・・・燃料リサイクル配管
15・・・燃料再循環ファン
16・・・燃料排ガス気水分1iSlt器17・・・高
温排ガス
18・・・混合器
19・・・空気供給装置(ターボコンプレッサ)19A
・・・タービン
19[3・・・コンプレッサ
20・・・補助バーナ空気流間調節弁
21・・・メインバーナ空気流量調節弁22・・・空気
流量調節弁
23・・・空気リサイクル配管
24・・・空気再循環ファン
25・・・空気排ガス気水分離器
26・・・電気負荷
27・・・変成器
30・・・酸素/窒素分離装置
31・・・酸素ガスセンサ
32・・・制御ループ
(8733)代理人 弁理士 猪 股 祥 晃(ばか1
名)
第 1 閏
第 2 図Fig. 1 is a block diagram of a fuel cell power generation plan I according to an embodiment of the present invention, and Fig. 2 shows changes in oxygen gain when the polarization current value is kept constant and the platinum-containing matrix in the electrode catalyst layer is changed. Figure 3 is a block diagram of a conventional fuel cell power generation plant. 1... Fuel 2... Steam supply device 3... Fuel flow rate control valve 4... Steam flow rate control valve 5... Fuel 1 reformer 6... Reforming contact duplex 7... Transformer 8...Fuel gas steam separator 9...Auxiliary burner 10...Auxiliary burner fuel flow control valve 11...Fuel cell 11A...Fuel electrode 11B...Oxidizer electrode 12...・Fuel gas flow rate control valve 13...Main burner 14...Fuel recycle piping 15...Fuel recirculation fan 16...Fuel exhaust gas air/moisture 1iSlt device 17...High temperature exhaust gas 18...Mixer 19 ...Air supply device (turbo compressor) 19A
...Turbine 19[3...Compressor 20...Auxiliary burner air flow control valve 21...Main burner air flow control valve 22...Air flow control valve 23...Air recycle piping 24...・Air recirculation fan 25...Air exhaust gas water separator 26...Electrical load 27...Transformer 30...Oxygen/nitrogen separation device 31...Oxygen gas sensor 32...Control loop (8733 ) Agent Patent Attorney Yoshiaki Inomata (Baka 1
name) 1st leap 2nd figure
Claims (1)
する燃料改質装置と、圧縮した空気を供給する空気供給
装置と、前記燃料ガス中の水素と前記圧縮空気中の酸素
の反応により電流を出力する燃料電池とから構成される
燃料電池発電プラントにおいて、燃料電池の酸化剤極入
口直前の空気供給系に空気中の酸素量を検知する酸素濃
度センサーと、更にその上流に空気中の窒素と酸素とを
分離する窒素/酸素分離装置とを設け、前記酸化剤極に
供給される空気中の酸素濃度を制御するよう構成したこ
とを特徴とする燃料電池発電プラント。(1) A fuel reformer for reforming raw fuel as a mixed component into a fuel gas containing hydrogen as a main component; an air supply device for supplying compressed air; In a fuel cell power generation plant consisting of a fuel cell that outputs current through a reaction, an oxygen concentration sensor that detects the amount of oxygen in the air is installed in the air supply system just before the oxidizer electrode inlet of the fuel cell, and an air 1. A fuel cell power generation plant, comprising: a nitrogen/oxygen separation device for separating nitrogen and oxygen therein, and configured to control the oxygen concentration in the air supplied to the oxidizer electrode.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62037880A JPS63207053A (en) | 1987-02-23 | 1987-02-23 | Fuel cell power generation plant |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62037880A JPS63207053A (en) | 1987-02-23 | 1987-02-23 | Fuel cell power generation plant |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS63207053A true JPS63207053A (en) | 1988-08-26 |
Family
ID=12509850
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP62037880A Pending JPS63207053A (en) | 1987-02-23 | 1987-02-23 | Fuel cell power generation plant |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS63207053A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005340201A (en) * | 2004-05-22 | 2005-12-08 | Robert Bosch Gmbh | Fuel cell equipment having cathode substance flow |
WO2007033478A3 (en) * | 2005-09-21 | 2007-05-18 | Hydrogenics Corp | Air independent power production |
EP2544288A3 (en) * | 2004-11-16 | 2013-03-06 | Dcns | Method for supplying oxygen-containing gas to a cathode of a fuel cell and fuel cell. |
-
1987
- 1987-02-23 JP JP62037880A patent/JPS63207053A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005340201A (en) * | 2004-05-22 | 2005-12-08 | Robert Bosch Gmbh | Fuel cell equipment having cathode substance flow |
EP2544288A3 (en) * | 2004-11-16 | 2013-03-06 | Dcns | Method for supplying oxygen-containing gas to a cathode of a fuel cell and fuel cell. |
WO2007033478A3 (en) * | 2005-09-21 | 2007-05-18 | Hydrogenics Corp | Air independent power production |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6645650B2 (en) | Procedure for purging a fuel cell system with inert gas made from organic fuel | |
US6410175B1 (en) | Fuel cell system with improved starting capability | |
JP3414045B2 (en) | Hybrid fuel cell power generator | |
JP2001023670A (en) | Fuel cell power generating system | |
JPH0824049B2 (en) | Fuel cell power generation system | |
JPS63207053A (en) | Fuel cell power generation plant | |
JP4727642B2 (en) | Operation method of hydrogen production power generation system | |
JPH09147897A (en) | Solid high polymer fuel cell | |
JPH04133271A (en) | Fuel cell | |
JPS6020473A (en) | Fuel cell power generating system | |
JP3006200B2 (en) | Molten carbonate fuel cell power generation method | |
US7666537B2 (en) | Fuel cell system for preventing hydrogen permeable metal layer degradation | |
JP2007141744A (en) | Fuel cell system | |
JPS6010566A (en) | Operation of fuel cell | |
JPS59149664A (en) | Fuel-cell system | |
JP4466049B2 (en) | Water flow control method for reforming steam | |
JP3211505B2 (en) | Method for controlling anode inlet temperature of molten carbonate fuel cell power generator | |
JP3561659B2 (en) | Fuel cell system | |
JP3609961B2 (en) | Fuel cell power generator | |
JPS63254675A (en) | Fuel cell power generating system | |
JPH08250144A (en) | Fuel cell generating system | |
JP3905595B2 (en) | Carbon monoxide removal equipment | |
JPS62281275A (en) | Fuel cell power plant | |
JPS60207255A (en) | fuel cell control system | |
JP2981571B2 (en) | Solid electrolyte fuel cell |