JPS6010566A - Operation of fuel cell - Google Patents
Operation of fuel cellInfo
- Publication number
- JPS6010566A JPS6010566A JP58119321A JP11932183A JPS6010566A JP S6010566 A JPS6010566 A JP S6010566A JP 58119321 A JP58119321 A JP 58119321A JP 11932183 A JP11932183 A JP 11932183A JP S6010566 A JPS6010566 A JP S6010566A
- Authority
- JP
- Japan
- Prior art keywords
- gas
- fuel
- load
- fuel cell
- pressure
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000446 fuel Substances 0.000 title claims abstract description 62
- 239000002737 fuel gas Substances 0.000 claims abstract description 20
- 230000007423 decrease Effects 0.000 claims abstract description 17
- 239000007800 oxidant agent Substances 0.000 claims description 24
- 230000001590 oxidative effect Effects 0.000 claims description 13
- 239000003792 electrolyte Substances 0.000 claims description 11
- 238000000034 method Methods 0.000 claims description 9
- 239000007789 gas Substances 0.000 abstract description 65
- 239000003054 catalyst Substances 0.000 abstract description 17
- 238000002485 combustion reaction Methods 0.000 abstract description 14
- 230000006866 deterioration Effects 0.000 abstract description 9
- 238000003487 electrochemical reaction Methods 0.000 abstract description 8
- 230000003647 oxidation Effects 0.000 abstract description 3
- 238000007254 oxidation reaction Methods 0.000 abstract description 3
- 230000033228 biological regulation Effects 0.000 abstract 2
- 239000003795 chemical substances by application Substances 0.000 abstract 2
- 230000003247 decreasing effect Effects 0.000 abstract 1
- 229910052739 hydrogen Inorganic materials 0.000 description 14
- 239000001257 hydrogen Substances 0.000 description 14
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 11
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 8
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 8
- 229910052760 oxygen Inorganic materials 0.000 description 8
- 239000001301 oxygen Substances 0.000 description 8
- 238000006243 chemical reaction Methods 0.000 description 7
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 6
- 238000010248 power generation Methods 0.000 description 6
- 230000010287 polarization Effects 0.000 description 5
- -1 hydrogen ions Chemical class 0.000 description 4
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 150000002431 hydrogen Chemical class 0.000 description 3
- 239000003345 natural gas Substances 0.000 description 3
- 230000001105 regulatory effect Effects 0.000 description 3
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 230000004913 activation Effects 0.000 description 2
- 230000001276 controlling effect Effects 0.000 description 2
- 238000005265 energy consumption Methods 0.000 description 2
- 229910052697 platinum Inorganic materials 0.000 description 2
- 239000002699 waste material Substances 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- GJEAMHAFPYZYDE-UHFFFAOYSA-N [C].[S] Chemical compound [C].[S] GJEAMHAFPYZYDE-UHFFFAOYSA-N 0.000 description 1
- 239000003929 acidic solution Substances 0.000 description 1
- 239000012670 alkaline solution Substances 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 125000004429 atom Chemical group 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 229910002091 carbon monoxide Inorganic materials 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000002542 deteriorative effect Effects 0.000 description 1
- 238000010494 dissociation reaction Methods 0.000 description 1
- 230000005593 dissociations Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 238000011017 operating method Methods 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 239000002893 slag Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 239000011800 void material Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/06—Combination of fuel cells with means for production of reactants or for treatment of residues
- H01M8/0606—Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
- H01M8/0612—Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Fuel Cell (AREA)
Abstract
Description
【発明の詳細な説明】
〔発明の技術分野〕
本発明は電極の電気化学的反応による劣化を防止するよ
うにした燃料電池の運転方法に関する。DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a method of operating a fuel cell in which deterioration of electrodes due to electrochemical reactions is prevented.
従来、燃料電池は燃料の有している化学的エネルギーを
、直接電気エネルギーに変換する装置である。この燃料
電池は、通常電解質を挾んで一対の多孔質電極を配置し
、一方の電極の背面に水素等の燃料ガスを接触させると
共に、他方の電極の背面に酸素等の酸化剤がスを接触さ
せ、このときに起る電気化学的反応によ多発生する電気
エネルギーを、上記一対の電極から取出すようにしたも
のである。この場合、電解質としては溶融塩、アルカリ
溶液、酸性溶液等があるが、ここでは燃料電池として代
表的なリン酸を電解質とするリン酸型燃料電池を例とし
てその原理について説明する。Conventionally, fuel cells are devices that directly convert chemical energy contained in fuel into electrical energy. This fuel cell usually has a pair of porous electrodes sandwiching an electrolyte between them, and a fuel gas such as hydrogen is brought into contact with the back surface of one electrode, while an oxidizing agent such as oxygen is brought into contact with the back surface of the other electrode. The electric energy generated by the electrochemical reaction occurring at this time is extracted from the pair of electrodes. In this case, the electrolyte may be a molten salt, an alkaline solution, an acidic solution, etc., but here, the principle will be explained using a phosphoric acid fuel cell, which is a typical fuel cell and uses phosphoric acid as the electrolyte, as an example.
第1図は、この種の燃料電池の原理構成を示すものであ
る。図において、電解質層1は繊維質シートや鉱物質粉
末にリン酸を含浸したものである。また、2および3は
この電解質層1を挾んで配置されたアノードおよびカソ
ードの一対の多孔質(炭素質)電極で、電解質層1との
間にはコロイド状白金を炭素質0末に担持ぜしめたもの
を塗布してなる融媒層4,5を夫々配置している。さら
に、6は水ゑく等の燃料がスの、流iれる部屋であシ、
7は11ぽ素(通常は空気)等の酸化剤がスのbiコれ
る部屋である。FIG. 1 shows the basic structure of this type of fuel cell. In the figure, an electrolyte layer 1 is a fibrous sheet or mineral powder impregnated with phosphoric acid. In addition, 2 and 3 are a pair of porous (carbonaceous) electrodes, an anode and a cathode, which are arranged with this electrolyte layer 1 in between. Fusing medium layers 4 and 5 each coated with a moisturized material are disposed. Furthermore, 6 is a room where fuel such as water flows,
7 is a room in which an oxidizing agent such as 11-polymers (usually air) is exposed.
かかる燃料電池において、部屋6に流入した水素はアノ
ード電極2の空所を拡散して触媒層4に達する。ここで
、水素がスは触媒の作用によシ水素イオンと7’+l子
と1・て解離する。その反応式は
H2−+ 2 H” + 2 e −−・(11となる
・そして、水素イオンは電解質i・5zに入り、起電圧
による作用と濃度拡散によシカソード電極3に向って泳
動する。一方、水素ガスの解離により分離した電子はア
ノード電極2に流れ込み、電極2は負に割〒1【シたこ
とになる。またカソード電極3では、アノード電極2側
から泳動してきた水素イオンと、酸化剤として部屋7に
供給されさらにカソード電極3の空所を拡散してきた酸
素と、アノード電極2から外部の電力負荷を通って仕事
をし電池のカソード93に戻ってきた電子の3者が、触
媒層5表面で次の反応を起こす。In such a fuel cell, hydrogen that has flowed into the chamber 6 diffuses through the space in the anode electrode 2 and reaches the catalyst layer 4 . Here, hydrogen gas dissociates into hydrogen ions and 7'+l atoms by the action of a catalyst. The reaction formula is H2-+ 2 H" + 2 e -- (11) Then, the hydrogen ions enter the electrolyte i. On the other hand, the electrons separated due to the dissociation of hydrogen gas flow into the anode electrode 2, and the electrode 2 becomes negative by 〒1.In addition, at the cathode electrode 3, the hydrogen ions migrating from the anode electrode 2 side and , oxygen that is supplied to the chamber 7 as an oxidizing agent and further diffused through the void space of the cathode electrode 3, and electrons that have returned from the anode electrode 2 to the cathode 93 of the battery after passing through the external power load and doing work. , the following reaction occurs on the surface of the catalyst layer 5.
4 H+ 4 g +02 →2 H2O・叩曲(21
この両電極2,3での還元と酸化の過程で起電力と熱を
発生するが、その合計は水素が酸化するときのエネルギ
ーに等しい。そして、もしこのエネルギーが全て電気エ
ネルギーに変換されるならば、理論上略1.23rv>
の電圧を発生するが、実際に外部に電気エネルギーとし
て取出される分は、電池の内部抵抗による電圧降下を差
し引いたものとなる。この損失となるものは、触媒の活
性により支配される活性化分極、電極の反応点近傍の水
素濃度および酸素濃度(Cより決まる濃度分極、゛電解
質1中をイオンが流れるときの電圧降下、電極や接触部
等電子の流れる経路での抵抗による電圧降下の合計が、
電池内部の損失つまシミ圧降下となる。この場合、電解
質1を挾んで配置されている触媒層4,5間の電圧を直
接測定することはむずかしいが、〃(部で測定される電
圧に上記電極2 、.3:間の電圧降下を加えたものに
略等しいと考えられる。4 H+ 4 g +02 →2 H2O・Kokoku (21
Electromotive force and heat are generated in the process of reduction and oxidation at both electrodes 2 and 3, and the total thereof is equal to the energy when hydrogen is oxidized. If all this energy is converted into electrical energy, theoretically approximately 1.23rv>
However, the amount of electrical energy actually extracted to the outside is the voltage drop due to the battery's internal resistance. This loss is caused by the activation polarization controlled by the activity of the catalyst, the concentration polarization determined by the hydrogen concentration and oxygen concentration (C) near the reaction point of the electrode, the voltage drop when ions flow through the electrolyte 1, and the electrode The total voltage drop due to resistance in the path where electrons flow, such as at contact points, is
Loss inside the battery causes pressure drop. In this case, it is difficult to directly measure the voltage between the catalyst layers 4 and 5, which are arranged with the electrolyte 1 in between. It is considered to be approximately equal to the added value.
ところで、触媒層4.5間の電圧が高くなった場合には
、電気化学的作用によシ白金の溶解や白金相持体の炭素
粒子が電気化学的に酸化す□る現象が生じ、電極2.3
は急激に劣化することが知られている。特に、燃料電池
技術の進歩や供給ガスの高圧化が可能となり、発生電圧
の上昇が軽負荷時の過電圧で上記劣化を促進させる結果
となっている。By the way, when the voltage between the catalyst layers 4.5 becomes high, a phenomenon occurs in which platinum is dissolved due to electrochemical action and the carbon particles of the platinum support are electrochemically oxidized. .3
is known to deteriorate rapidly. In particular, advances in fuel cell technology and the possibility of increasing the pressure of the supplied gas have resulted in an increase in the generated voltage, resulting in an overvoltage during light loads that accelerates the above-mentioned deterioration.
そこで、かかる過電圧を防止するために、軽負荷時には
負荷抵抗を接続してこれに電力を消費させたり、あるい
は酸化剤ガスの供給量をしぼって電圧を抑えたりする等
の対策が考えられている。しかし乍ら、前者の方法では
電力を無駄に消費することになり、後者の方法は多数の
電池を積層して使用する実用電池では、各電池に供給す
る酸化剤がス量にアンバランスを生じ、各電池に発生す
る電圧に大きなばらつきを生じて、全ての電池゛を必要
な限度内の電圧に抑えられず、目的を達成することがで
きないと旨う問題がある。Therefore, in order to prevent such overvoltage, countermeasures have been considered, such as connecting a load resistor to consume power during light loads, or reducing the voltage by reducing the amount of oxidizing gas supplied. . However, the former method wastes power, and the latter method causes an imbalance in the amount of oxidant supplied to each battery in practical batteries that use many stacked batteries. However, there is a problem in that the voltage generated in each battery varies greatly, making it impossible to suppress the voltage of all the batteries to within a necessary limit, and thus making it impossible to achieve the purpose.
本発明は上記のような事情を考慮して成されたもので、
その目的は装置の複雑化や無駄なエネルギーの消費を抑
えつつ電気化学的作用姉よる電極の劣化を防止して長寿
命を保持することが可能な燃料電池の運転方法を提供す
ることにある。The present invention was made in consideration of the above circumstances, and
The purpose is to provide a fuel cell operating method that can maintain a long life by preventing deterioration of the electrodes due to electrochemical action while suppressing the complexity of the device and wasteful energy consumption.
上記目的を達成するために本発明では、燃料電池を運転
する場合、負荷が増大したときは供給する燃料ガス、酸
化剤がスの圧力を増大させて高電圧を得ることによって
効率のよい発電を行ない、また負荷が減少するときは上
記供給する各ガスの圧力を減少させて、発生電圧を前述
した電気化学的劣化が生じない電圧以下に抑えるように
したことを特徴とする。In order to achieve the above object, the present invention provides efficient power generation by increasing the pressure of the supplied fuel gas and oxidizer gas to obtain a high voltage when the load increases when operating a fuel cell. In addition, when the load is reduced, the pressure of each of the gases to be supplied is reduced to suppress the generated voltage below a voltage at which the electrochemical deterioration described above does not occur.
〔発明の実施例〕 以下、本発明を図面に示す一実施例について説明する。[Embodiments of the invention] An embodiment of the present invention shown in the drawings will be described below.
第2図は、本発明を適用するがス供給装置を備えた燃料
電池発電システムの構成例を示したものである。なお、
燃料電池の燃料ガスは水素であ之が、一般の電力用途の
燃料電池では天然ガスやナフサやメタノール等を改質し
たものを供給するシステムが多いことから、ここでは天
然がスが燃料ガスの場合について述べる。FIG. 2 shows an example of the configuration of a fuel cell power generation system equipped with a gas supply device to which the present invention is applied. In addition,
The fuel gas for fuel cells is hydrogen, but in most fuel cells for general power use, systems supply reformed natural gas, naphtha, methanol, etc., so here natural gas is used as the fuel gas. Let's talk about the case.
図において、8は触媒管9および燃焼室10から成るリ
フオーマ−で、その触媒管91Cは燃料がスAを燃料が
ス調節弁11を介してfi量の水蒸気Bと共に導入し、
これより燃料電池12のアノード電極2のがス流通部屋
6へ供給する。In the figure, reference numeral 8 denotes a reformer consisting of a catalyst pipe 9 and a combustion chamber 10, and the catalyst pipe 91C introduces fuel gas A together with an amount of water vapor B via a fuel gas control valve 11.
This supplies the anode electrode 2 of the fuel cell 12 to the gas distribution chamber 6 .
そして、このがス流通部屋6からの未反応燃料がスを含
むアノード排ガスを、上記リフオーマ−8の燃焼室10
へ後述する酸化剤がスCと共に供給して燃焼させる。Then, the anode exhaust gas containing unreacted fuel gas from the gas distribution chamber 6 is transferred to the combustion chamber 10 of the reformer 8.
An oxidizing agent, which will be described later, is supplied together with the sulfur C and burned.
一方、13は後述する混合器からの排ガスDのエネルギ
ーで回転するタービンで、これによりコンプレッサ14
を駆動して吸入空気Eを圧縮し、酸化剤がスCとして上
記燃料電池12のカソード電極3のガス流通部屋7へ酸
化剤がス調節弁15を介して供給する。また、ノロは上
記リフオーマ−8の燃焼室10からの排ガスと、調圧弁
12を介して得られる上記がス流通部屋7からのカソー
ド排がスを混合する混合器で、その混合がスを上記排ガ
スDとしてタービン13へ供給する。さらに、18は調
節弁19を介して得られる上記燃料がスAと、調節弁2
0を介して得られる上記酸化剤がスCとを夫々導入して
燃焼させる補助燃焼器で、その燃焼排ガスを上記混合器
16へ付加的に供給する。つまシ、この補助燃焼器18
は上記燃焼室10の排ガスとカンーP排がスのみでりτ
ビン13を駆動するエネルギーが不足している場合に、
調節弁19.20を作動させて運転を行なうものである
。さらに、上記リフオーマ−8の燃焼室10と混合器1
6との間の排ガス供給管の途中に1放出弁21を分岐さ
せて設けている。On the other hand, 13 is a turbine that rotates with the energy of exhaust gas D from the mixer, which will be described later.
is driven to compress the intake air E, and the oxidizing agent is supplied as gas C to the gas distribution chamber 7 of the cathode electrode 3 of the fuel cell 12 via the gas control valve 15. In addition, the slag is a mixer that mixes the exhaust gas from the combustion chamber 10 of the reheater 8 and the cathode exhaust gas from the gas distribution chamber 7 obtained via the pressure regulating valve 12. It is supplied to the turbine 13 as exhaust gas D. Further, 18 indicates that the fuel obtained via the control valve 19 is connected to the control valve 2A and the control valve 2.
This auxiliary combustor introduces and burns the oxidizing agent obtained through the oxidizing agent 0 and the sulfur carbon, respectively, and additionally supplies the combustion exhaust gas to the mixer 16. Tsumashi, this auxiliary combustor 18
is the exhaust gas from the combustion chamber 10 and the exhaust gas from the can-P.
When there is insufficient energy to drive the bin 13,
The operation is performed by operating the control valves 19 and 20. Furthermore, the combustion chamber 10 of the reformer 8 and the mixer 1
A discharge valve 21 is branched in the middle of the exhaust gas supply pipe between the exhaust gas supply pipe and the exhaust gas supply pipe 6.
なお、燃料電池発電システムは上記要素以外に、電池の
冷却・加熱装置、電気出力調整器、燃料がスおよび酸化
剤ガスの予熱や熱回収のための熱交換器、蒸気発生装置
を備えているが、これらは本発明と直接関係ないためこ
こではその図示説明を省略する。また、上記でリフオー
マ−8の触媒管9はその触媒としてはニッケル/アルミ
ナ系を用い、燃料がスAとしてのメタン等の天然ガスを
水素と二酸化炭素と一酸化炭素とに転化する。In addition to the above elements, the fuel cell power generation system is equipped with a battery cooling/heating device, an electrical output regulator, a heat exchanger for preheating and heat recovery of the fuel gas and oxidant gas, and a steam generator. However, since these are not directly related to the present invention, illustrations and explanations thereof will be omitted here. Further, in the catalyst tube 9 of the reformer 8 mentioned above, a nickel/alumina type catalyst is used as the catalyst, and the fuel converts natural gas such as methane as the gas A into hydrogen, carbon dioxide, and carbon monoxide.
次に1かかる構成に基づく本発明の燃料電池の運転方法
について説明する。Next, a method of operating a fuel cell according to the present invention based on the above configuration will be described.
まず、燃料電池の端子電圧つまシミ極間電圧は理論値が
1.23(V)になることは前述したが、活性化分極、
濃度分極、電気抵抗による電圧降下によシ、実用的運転
条件である2 00 CmAArI?)付近の電流密度
では0.7 CV)前後の値となる。この場合、本発明
に直接関係があるのは濃度分極で、アノード電極の反応
点近傍では水素ガスの濃度が高い穆反応が活発とな勺、
一方力ソート9電極では酸素濃度が高い程反応が活発と
なって高い電圧が発生する。虻って、燃料電池に供給す
る燃料がスおよび酸化剤ガスの圧力を高めると、同一成
分のがス゛を供給するならば当然水素および酸素の濃度
が高くなるため、反応が活発となって高い電圧が発生し
、逆にガスの圧力を低くすることによシ発生電圧を低く
することが可能となる。First, as mentioned above, the theoretical value of the terminal voltage of a fuel cell is 1.23 (V), but the activation polarization,
Due to concentration polarization and voltage drop due to electrical resistance, 200 CmAArI? which is a practical operating condition? ), the value is around 0.7 CV). In this case, concentration polarization is directly related to the present invention; near the reaction point of the anode electrode, the hydrogen gas concentration is high and the reaction is active.
On the other hand, at the force sort 9 electrode, the higher the oxygen concentration, the more active the reaction and the higher the voltage generated. When the fuel supplied to the fuel cell increases the pressure of the gas and oxidant gas, the concentration of hydrogen and oxygen naturally increases if the same components are supplied, so the reaction becomes active and the pressure increases. A voltage is generated, and conversely, by lowering the gas pressure, it is possible to lower the generated voltage.
本発明では、上記の現象に着目し燃料電池を運転する場
合、負荷が増大したときは供給する燃料がス、酸化剤ガ
スの圧力を増大させ、逆に負荷が減少したときはこれら
のガス圧力を減少させるようにして運転を行なうもので
あシ、以下その具体的な方法について第2図を基に述べ
る。In the present invention, when operating a fuel cell focusing on the above phenomenon, when the load increases, the pressure of the supplied fuel and oxidant gas increases, and conversely, when the load decreases, the pressure of these gases decreases. The operation is carried out in such a way as to reduce the amount of noise, and a specific method will be described below with reference to FIG.
ます嬉2図において、タービン13にて駆動されるコン
プレッサ14によシ圧縮された吸入空気Eは、酸化剤が
ス調節弁15を介し酸化剤jスCとして、リフオーマ−
8の燃焼室10に分岐導入されると共に、燃料電池12
のカソード電極3のがス流通部屋7に供給され、これよ
シそのカソード排ガスが混合器16へ導入される。In Fig. 2, intake air E compressed by a compressor 14 driven by a turbine 13 is converted into an oxidizer C through a control valve 15, and then converted into a reformer.
The fuel cell 12 is branched into the combustion chamber 10 of the fuel cell 8.
of the cathode electrode 3 is supplied to the gas flow chamber 7, and its cathode exhaust gas is introduced into the mixer 16.
一方、燃料がスAは燃料ガス調節弁11を介し、適量の
水蒸気Bと共姉リフオーマ−8の触媒管9に導入されて
水素化して、上記燃料電池12のアノード電極2のがス
流通部屋6に供給される。そして、この大半の水素を燃
料電池12内で消費して、その未反応燃料ガスは上記リ
フオーマ−8の燃焼室10内へ導入され、ここで燃焼し
て触媒管9を加熱し、これよシ上記混合器16へ導入さ
れる。これKよシ、混合器16ではこの燃焼室10から
の排ガスと上記カソード排ガスとを混合し、その混合排
ガスを上記タービン13へ供給してそのエネルギーによ
シこれを回転させる。ここで、燃焼室10からの排ガス
と上記カソード排がスでは、タービン13を駆動するの
に充分なエネルギーが不足するような場合には、調節弁
19 、20によシ燃料がスA、酸化剤がスCを補助燃
焼器18へ導入し、燃焼したその排ガスを上記混合器1
6へ付加的に導入して所定のエネルギーを得るようにす
る。On the other hand, the fuel A is introduced into the catalyst tube 9 of the sister reformer 8 with an appropriate amount of steam B through the fuel gas control valve 11 and hydrogenated, and the anode electrode 2 of the fuel cell 12 is heated to the gas distribution chamber. 6. Then, most of this hydrogen is consumed within the fuel cell 12, and the unreacted fuel gas is introduced into the combustion chamber 10 of the reformer 8, where it is combusted to heat the catalyst tube 9, and this fuel gas is then combusted. It is introduced into the mixer 16. In the mixer 16, the exhaust gas from the combustion chamber 10 and the cathode exhaust gas are mixed, and the mixed exhaust gas is supplied to the turbine 13, which is rotated by its energy. Here, if the exhaust gas from the combustion chamber 10 and the cathode exhaust gas do not have enough energy to drive the turbine 13, the control valves 19 and 20 will replace the fuel with the The combustible gas is introduced into the auxiliary combustor 18, and the combusted exhaust gas is transferred to the mixer 1.
6 to obtain a predetermined energy.
また、上記燃料電池12内ではアノード電極2に供給さ
れた水素と、カソード電極3に供給された空気との前述
した電気化学的反応によって、各電極2,3間忙所定の
大きさの電圧が発生し、これが図示しない負荷へ供給さ
れることになる。In addition, in the fuel cell 12, due to the aforementioned electrochemical reaction between the hydrogen supplied to the anode electrode 2 and the air supplied to the cathode electrode 3, a voltage of a predetermined magnitude is generated between each electrode 2 and 3. This will be supplied to a load (not shown).
さて、かような状態からいま例えば負荷が減少して軽負
荷となった場合には、まず燃料がス調節弁11を閉方向
に制御することによ如、リフオーマ−8の燃焼室9へ供
給する燃料がスAを燃料電池12で消費する水素量とリ
フオーマ−8の触媒管9の温度を維持するに必要な量に
絞夛、且つ調節弁19を閉方向に制御することによシ補
助燃焼器18へ供給する燃料がスAの量を絞る。これに
よシ、混合器16からタービン13へ供給される排がス
量とその温度が低下し、タービン13の回転数が低下し
てコンプレッサ14の吐出圧が低下し同時に吐出酸化剤
fスCiも低下する。さらに、この酸化剤ガスC量を絞
る場合には、酸化剤ガス調節弁15を閉方向に制御する
か、若しくは放出弁21を開放する。Now, for example, if the load decreases to a light load from such a state, first, the fuel is supplied to the combustion chamber 9 of the refoamer 8 by controlling the gas control valve 11 in the closing direction. The amount of fuel to be used is reduced to the amount necessary to maintain the amount of hydrogen consumed by the fuel cell 12 and the temperature of the catalyst tube 9 of the reformer 8, and the control valve 19 is assisted by controlling it in the closing direction. The amount of fuel supplied to the combustor 18 is reduced. As a result, the amount and temperature of the exhaust gas supplied from the mixer 16 to the turbine 13 decreases, the rotational speed of the turbine 13 decreases, the discharge pressure of the compressor 14 decreases, and at the same time the discharge oxidizer fS Ci also decreases. Furthermore, when reducing the amount of oxidizing gas C, the oxidizing gas regulating valve 15 is controlled in the closing direction, or the release valve 21 is opened.
その結果、燃料電池12内のアノード電極2のがス流通
室6に供給される燃料ガスの圧力と、同じくカソード゛
電極3のガス流通室7に供給される酸化剤がスの圧力が
夫々減少して、それらのガス濃度が低くなる。これによ
り、前述己た電気化学的反応が不活発となるため、各電
極2゜3間に発生する電圧つまシミ池電圧を低くして軽
負荷運転に対処することができる。As a result, the pressure of the fuel gas supplied to the gas distribution chamber 6 of the anode electrode 2 in the fuel cell 12 and the pressure of the oxidant gas supplied to the gas distribution chamber 7 of the cathode electrode 3 decrease, respectively. As a result, the concentration of those gases decreases. As a result, the electrochemical reaction described above becomes inactive, so that the voltage generated between the electrodes 2 and 3 can be reduced to cope with light load operation.
一方、上記で負荷が増大した場合には、上記と全く逆の
制御を行なうことによシ、燃料電池12へ供給する各ガ
スの圧力を増大させてその濃度を高くして、各な極2,
3間に所望の高電圧を発生させて重負荷運転に対処する
ことができる。On the other hand, if the load increases in the above manner, by performing the completely opposite control to the above, the pressure of each gas supplied to the fuel cell 12 is increased to increase its concentration, and each electrode 2 ,
A desired high voltage can be generated between 3 and 3 to cope with heavy load operation.
第3図は、上記燃料電池J2における電流密度と発生電
圧の関係を、供給ガスの圧力側に夫夫示したものである
。図において、42口、−・は供給ガス圧力が絶対圧力
で夫々6 (k〆))。FIG. 3 shows the relationship between the current density and the generated voltage in the fuel cell J2 on the pressure side of the supplied gas. In the figure, the supply gas pressure is 6 (k〆)) in absolute pressure for 42 ports.
2.5 (ky’cm2) 、 1.5 (喰−)の場
合の特性を示すものである。またその他の運転茶件は、
動作温度が195 (℃)、空気の酸素利用率(供給し
た空気中の酸素量に対する電池12内で消費する酸素量
の比)が50((6)、燃料がスの水素利用率が60(
@であシ、供給する空気と燃料ガスの圧力は電池12の
構成上略同一圧力に維持している第4図は、上記燃料電
池12における発生電圧と供給ガス圧力の関係を示した
ものである。2.5 (ky'cm2) and 1.5 (ky'cm2). Other driving incidents include
The operating temperature is 195 (℃), the oxygen utilization rate of the air (ratio of the amount of oxygen consumed in the battery 12 to the amount of oxygen in the supplied air) is 50 ((6), and the hydrogen utilization rate of the fuel is 60 (6).
@Ashi, the pressures of the supplied air and fuel gas are maintained at approximately the same pressure due to the structure of the cell 12. Figure 4 shows the relationship between the generated voltage and the supplied gas pressure in the fuel cell 12. be.
図において、二は軽負荷時の電流密度50 (mkA八
ホへ略定格負荷時の電流密度200 (mA/cry?
’) Kおける特性を夫々示すものである。。In the figure, 2 is the current density at light load of 50 (mkA) to the current density at approximately rated load of 200 (mA/cry?
') shows the characteristics of K. .
本特性から、無負荷時の1.0 (V)で運転すると短
時間で劣化するが、0.8(V)以下で運転すれば殆ん
ど劣化しないことがわかる。また、第3図の供給がス圧
力が6(ψ−)の特性イから電流密度が65 (mA/
cm’ )で危険電圧が0.8閏になるのに対し、それ
が1.5(ψ−)の特性−・から危険電圧0.8 (V
)に達するのは、電流密度が40(mfiv’=:rr
? )と低くなシ、運転可能な負荷範囲を拡大すること
ができることがわかる・
上述したように、電解質1を挾んで一対の多孔質電極2
,3を触媒層4.5を介して配置し、一方の電極2の背
面のがス流通部屋θに燃料ガスを通過させると共に他方
の電極3の背面のがス流通部屋7に酸化剤ガスを通過さ
せ、このときの電気化学的反応によシ発生する電気エネ
ルギーを前記一対の電で2,3から取出する燃料電池1
2の運転を行なうに際し、負荷が増大したときには前記
燃料電池12に供給する燃料がス、酸化剤ガスの圧力を
増大させ、また負荷が減少する時には前記燃料ガス、酸
化剤がスの圧力を減少させるようにしたものである。From this characteristic, it can be seen that when operated at 1.0 (V) with no load, it deteriorates in a short time, but when operated at 0.8 (V) or less, there is almost no deterioration. Also, from the characteristic A in Figure 3 where the supply pressure is 6 (ψ-), the current density is 65 (mA/
cm'), the dangerous voltage becomes 0.8 leap, but the characteristic of 1.5 (ψ-)... makes the dangerous voltage 0.8 (V
) is reached when the current density is 40 (mfiv'=:rr
? ), it can be seen that the operable load range can be expanded. As mentioned above, the electrolyte 1 is sandwiched between the pair of porous electrodes 2.
. A fuel cell 1 in which the electric energy generated by the electrochemical reaction at this time is extracted from 2 and 3 by the pair of electric currents.
2, when the load increases, the pressure of the fuel gas and oxidant gas supplied to the fuel cell 12 increases, and when the load decreases, the pressure of the fuel gas and oxidant gas decreases. It was designed to let you do so.
従って、燃料電池12が重負荷のときには供給する燃料
がス、酸化剤ガスの圧力を高くして高電圧を得ることに
よって効率のよい発電を行なうことができる。゛また、
軽負荷のときには各がスの圧力を低くして低電圧を得る
ことによって、軽負荷時に電池電圧が過度に高くなって
電池12の電極2,3を電気化学的反応により劣化させ
るということを防止することができる。Therefore, when the fuel cell 12 is under heavy load, efficient power generation can be achieved by increasing the pressure of the supplied fuel and the oxidant gas to obtain a high voltage.゛Also,
When the load is light, the pressure of each battery is lowered to obtain a low voltage, thereby preventing the battery voltage from becoming excessively high during light loads and deteriorating the electrodes 2 and 3 of the battery 12 due to electrochemical reactions. can do.
これによシ、燃料電池12の長寿命化を図りつつ、広い
負荷範囲にわたって燃料電池の運転を行なうことが可能
となる。さらに、軽負荷運転時には上述したようにター
ビン13の動力が小さくてよいので、リフオーマ−8の
燃焼排がスおよび補助燃焼器18へ供給する燃料ガスの
分だけ、使用燃料の節約を図ることが可能となシ総合的
な発電効率が高まる等、種々の優れた効果が得られるも
のである。This makes it possible to extend the life of the fuel cell 12 and operate the fuel cell over a wide load range. Furthermore, during light load operation, as mentioned above, the power of the turbine 13 may be small, so that the fuel used can be saved by the amount of fuel gas supplied to the combustion exhaust gas of the reheater 8 and the auxiliary combustor 18. Various excellent effects can be obtained, such as an increase in overall power generation efficiency.
以上説明したように本発明によ、れば、燃料電池を運転
する場合、負荷が増大したときは供給する燃料がス、酸
化剤ガスの圧力を増大させて高電圧を得ることによって
効率のよい発電を行ない、また負荷が減少するときは上
記供給する各ガスの圧力を減少させて、発生電圧を前述
した電気化学的劣化が生じない電圧以下に抑えるように
したので、装置の複雑化や無駄なエネルギーの消費を抑
えつつ電気化学的反応による電極の劣化を防止して長寿
命化を図りかつ発電効率の高い燃料電池の運転方法が提
供できる。As explained above, according to the present invention, when operating a fuel cell, when the load increases, the supplied fuel can be efficiently supplied by increasing the pressure of the oxidant gas and obtaining a high voltage. When power is generated and the load decreases, the pressure of each of the gases to be supplied is reduced to keep the generated voltage below the voltage that does not cause the electrochemical deterioration described above, thereby reducing equipment complexity and waste. It is possible to provide a method of operating a fuel cell that achieves long life by suppressing energy consumption, preventing deterioration of electrodes due to electrochemical reactions, and achieving high power generation efficiency.
第1図は燃料電池の原理構成を示す構成図、第2図は本
発明の一実施例を示す構成図、第3図および第4図は本
発明の詳細な説明するための特性図を示すものである。
1・・・電解質、2・・・アノード電極、3・・・カソ
ード電極、4,5・・・触媒層、6,7・・・ガス流通
部屋、8・・・リフオーマ−19・・・触媒管、10・
・・燃焼室、11・・・燃料ガス調節弁、12・・・燃
料電池、13・・・タービン、14・・・コンプレッサ
、15・・・酸化剤がス調節弁、16・・・混合器、1
7・・・調圧弁、18・・・補助燃焼器、19.20・
・・調節弁、21・・・放出弁、A・・・燃料fス、B
・・・水蒸気、C・・・酸化剤がス、D・・・排ガス、
E・・・吸入空気。
出願人代理人 弁理士 細 江 武 彦第 1L、1
H202
第2図
第3n
−電i!、i (m A/cm2)
□万力(197cm2)Fig. 1 is a block diagram showing the principle structure of a fuel cell, Fig. 2 is a block diagram showing an embodiment of the present invention, and Figs. 3 and 4 are characteristic diagrams for explaining the present invention in detail. It is something. DESCRIPTION OF SYMBOLS 1... Electrolyte, 2... Anode electrode, 3... Cathode electrode, 4, 5... Catalyst layer, 6, 7... Gas distribution room, 8... Reformer-19... Catalyst tube, 10・
... Combustion chamber, 11 ... Fuel gas control valve, 12 ... Fuel cell, 13 ... Turbine, 14 ... Compressor, 15 ... Oxidizer gas control valve, 16 ... Mixer ,1
7...Pressure regulating valve, 18...Auxiliary combustor, 19.20.
...Control valve, 21...Discharge valve, A...Fuel f-s, B
...Water vapor, C...oxidizing agent, D...exhaust gas,
E...Inhaled air. Applicant's representative Patent attorney Takehiko Hosoe No. 1L, 1 H202 Figure 2, Figure 3n - Deni! , i (m A/cm2) □Vise (197cm2)
Claims (1)
の背面に燃料がスを通過させると共に他方の電極の背面
に酸化剤がスを通過させ、このときの電気化学的反応に
より発生する電気エネルギーを前記一対の電極から取出
する燃料電池の運転方法において、負荷の増減に対応し
て、負荷が増大したときは前記燃料電池に供給する燃料
がス、酸化剤ブスの圧力を増大さぜ、また負荷が減少す
るときは前記燃料ガス、酸化剤がスの圧力を減少させる
ようにしたことを特徴とする燃料電池の運転方法。A pair of porous electrodes are placed between the electrolyte, and the fuel is passed through the back of one electrode, and the oxidant is passed through the back of the other electrode. In a method of operating a fuel cell in which electrical energy is extracted from the pair of electrodes, when the load increases, the pressure of the oxidizer bus is increased so that the fuel supplied to the fuel cell increases in response to increases and decreases in the load. A method of operating a fuel cell, further comprising reducing the pressure of the fuel gas and the oxidizing agent when the load decreases.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58119321A JPS6010566A (en) | 1983-06-30 | 1983-06-30 | Operation of fuel cell |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58119321A JPS6010566A (en) | 1983-06-30 | 1983-06-30 | Operation of fuel cell |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS6010566A true JPS6010566A (en) | 1985-01-19 |
Family
ID=14758560
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP58119321A Pending JPS6010566A (en) | 1983-06-30 | 1983-06-30 | Operation of fuel cell |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6010566A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01112671A (en) * | 1987-10-26 | 1989-05-01 | Hitachi Ltd | Operating method of fuel cell power generation plant and fuel cell power generation plant |
JP2008117788A (en) * | 2007-12-25 | 2008-05-22 | Ballard Power Syst Inc | Control device of fuel cell |
JP2011520228A (en) * | 2008-05-09 | 2011-07-14 | ベレノス・クリーン・パワー・ホールディング・アーゲー | Method for limiting the output voltage of a PEM fuel cell system |
US8435697B2 (en) | 2004-01-22 | 2013-05-07 | Toyota Jidosha Kabushiki Kaisha | Fuel cell system with pressure regulator and method for driving same |
EP3901087A1 (en) * | 2020-04-20 | 2021-10-27 | Deutsches Zentrum für Luft- und Raumfahrt e.V. | Method and device for electrochemically assisted thermo-chemical splitting of water and carbon dioxide |
-
1983
- 1983-06-30 JP JP58119321A patent/JPS6010566A/en active Pending
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01112671A (en) * | 1987-10-26 | 1989-05-01 | Hitachi Ltd | Operating method of fuel cell power generation plant and fuel cell power generation plant |
US8435697B2 (en) | 2004-01-22 | 2013-05-07 | Toyota Jidosha Kabushiki Kaisha | Fuel cell system with pressure regulator and method for driving same |
JP2008117788A (en) * | 2007-12-25 | 2008-05-22 | Ballard Power Syst Inc | Control device of fuel cell |
JP2011520228A (en) * | 2008-05-09 | 2011-07-14 | ベレノス・クリーン・パワー・ホールディング・アーゲー | Method for limiting the output voltage of a PEM fuel cell system |
EP3901087A1 (en) * | 2020-04-20 | 2021-10-27 | Deutsches Zentrum für Luft- und Raumfahrt e.V. | Method and device for electrochemically assisted thermo-chemical splitting of water and carbon dioxide |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN215578650U (en) | Hybrid system of solid oxide fuel cell and proton exchange membrane fuel cell using ammonia as fuel | |
JP4021880B2 (en) | Fuel cell conditioning and temperature control | |
CN113506902A (en) | Solid oxide fuel cell and proton exchange membrane fuel cell hybrid system using ammonia gas as fuel | |
JPH1126003A (en) | Method of stopping power generation of fuel cell power generation system | |
JP2004095263A (en) | Electrode catalyst for fuel cell, fuel cell and fuel cell system | |
JP4873952B2 (en) | Fuel cell system | |
JP4670228B2 (en) | Fuel cell plant | |
JP2001023670A (en) | Fuel cell power generating system | |
JP2004171802A (en) | Fuel cell system | |
JPH0275164A (en) | Molten carbonate fuel cell power generation device and method of operating the power generation device | |
JPS6010566A (en) | Operation of fuel cell | |
JP3784775B2 (en) | Control method of fuel cell power generation system | |
JP2005085662A (en) | Fuel cell system and operation method thereof | |
US20100285379A1 (en) | Transitioning an electrochemical cell stack between a power producing mode and a pumping mode | |
JPS6020473A (en) | Fuel cell power generating system | |
JP3575650B2 (en) | Molten carbonate fuel cell | |
JP2000233905A (en) | Device for reducing carbon monoxide concentration in gaseous hydrogen-containing carbon monoxide and fuel cell power generation system using the same | |
JPS63236262A (en) | Fuel cell | |
JPH01304668A (en) | Phosphoric acid type fuel cell power generating plant | |
JPS5998471A (en) | Melting carbonate type fuel cell device | |
JP4467929B2 (en) | Fuel cell power generation system | |
JP3211505B2 (en) | Method for controlling anode inlet temperature of molten carbonate fuel cell power generator | |
JPS59149664A (en) | Fuel-cell system | |
JPS63237363A (en) | methanol fuel cell | |
JPH0622153B2 (en) | How to operate a fuel cell |