[go: up one dir, main page]

JPS6320419A - Low alloy steel wire rod permitting quick spheroidization treatment and its production - Google Patents

Low alloy steel wire rod permitting quick spheroidization treatment and its production

Info

Publication number
JPS6320419A
JPS6320419A JP16469886A JP16469886A JPS6320419A JP S6320419 A JPS6320419 A JP S6320419A JP 16469886 A JP16469886 A JP 16469886A JP 16469886 A JP16469886 A JP 16469886A JP S6320419 A JPS6320419 A JP S6320419A
Authority
JP
Japan
Prior art keywords
wire rod
rolling
ferrite
steel wire
grain size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16469886A
Other languages
Japanese (ja)
Inventor
Toshiyuki Hoshino
俊幸 星野
Kimio Mine
峰 公雄
Toshio Sakamoto
坂本 俊夫
Seiji Ino
井野 清治
Akio Noda
野田 昭雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP16469886A priority Critical patent/JPS6320419A/en
Publication of JPS6320419A publication Critical patent/JPS6320419A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • C21D9/525Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length for wire, for rods

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Strip Materials And Filament Materials (AREA)

Abstract

PURPOSE:To produce a titled wire rod by subjecting a specifically composed low alloy steel to rough rolling and intermediate rolling, then subjecting the steel to finish rolling, coiling and cooing under specified conditions and specifying the ferrite grain size thereof. CONSTITUTION:This wire rod contains, by weight %, 0.13-0.43 C, 0.15-0.35 Si, 0.30-1.20 Mn, 0.75-1.20 Cr, <=0.10 Al, and <=0.020 S, consists of the balance Fe and has the fine ferrite pearlite structure having <=5mu ferrite grain size. The above-mentioned wire rod is obtd. by subjecting the stock having said compsn. to the rough rolling and intermediate rolling, then to the finish rolling at over 700-900 deg.C, and cooling the rolled steel down to 700-680 deg.C immediately thereafter, coiling the cooled rod and cooling the coil at 0.1-0.5 deg.C/s cooling rate down to 600 deg.C. The spheroidization annealing time as a pretreatment before the cold forging of the wire rod is considerably shortened by the above- mentioned method.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、迅速球状化処理の可能な低合金鋼線材およ
びその製造方法に関し、とくに冷間鍛造用の低合金鋼線
材の、冷間鍛造に先立つ前処理としての法条化焼鈍にお
ける処理時間の短縮化を可能ならしめようとするもので
ある。
Detailed Description of the Invention (Field of Industrial Application) The present invention relates to a low-alloy steel wire rod that can be quickly spheroidized and a method for manufacturing the same, and in particular to a low-alloy steel wire rod for cold forging. This is intended to make it possible to shorten the processing time in the process annealing as a pretreatment prior to the process.

(従来の技術) 自動車用ボルト、ナツトおよびロッドなどに使用される
低合金鋼は、冷間鍛造によって上記の各種形状に形成さ
れるに先立ち、球状化焼鈍が施される。というのは上記
した如き低合金鋼は、熱間圧延のままの状態では冷間加
工に耐え得る変形能が不足すると同時に変形抵抗が高く
、従って割れの発生や工具寿命の低下をもたらすことか
ら、球状化焼鈍によって素材の変形能を向上させて、工
具寿命を延ばすと同時に、割れの発生などを防止するた
めである。
(Prior Art) Low-alloy steel used for automobile bolts, nuts, rods, etc. is subjected to spheroidizing annealing before being formed into the various shapes described above by cold forging. This is because low-alloy steel as described above, in its hot-rolled state, lacks deformability to withstand cold working and at the same time has high deformation resistance, resulting in cracking and reduced tool life. This is to improve the deformability of the material through spheroidizing annealing, extend tool life, and at the same time prevent the occurrence of cracks.

しかしながらかような熱処理は、高温での長時間保持が
必要であるため、加熱炉などの熱処理設備と共に多大の
熱エネルギーを必要とする。またスケールロスや脱炭な
どが避けられないことから、資源、エネルギー、コスト
および生産性などの面での損失が大きかった。
However, such heat treatment requires holding at a high temperature for a long time, and therefore requires heat treatment equipment such as a heating furnace and a large amount of thermal energy. In addition, scale loss and decarbonization were unavoidable, resulting in large losses in terms of resources, energy, costs, and productivity.

かかる問題の解決策として、例えば特公昭59−296
45号や同55−31165号各公報においては、熱間
圧延後鋼線材をただちに急冷して中間段階組繊としたの
ち、650℃以上、A、変態点以下の温度範囲で焼鈍を
施す方法が開示されている。
As a solution to this problem, for example,
No. 45 and No. 55-31165 disclose a method in which the steel wire rod is immediately quenched after hot rolling to form an intermediate-stage composite fiber, and then annealed at a temperature range of 650°C or higher, A, or lower than the transformation point. Disclosed.

上掲各公報に開示の技術はいずれも、熱間圧延後の冷却
を制御することによって鋼線材のミクロ組織を適正に制
御し、その後の球状化焼鈍を有利に実現することを骨子
とするものである。
All of the techniques disclosed in the above-mentioned publications are aimed at appropriately controlling the microstructure of the steel wire rod by controlling cooling after hot rolling, and advantageously realizing the subsequent spheroidizing annealing. It is.

(発明が解決しようとする問題点) しかしながら上記の方法では、球状化処理後の変形能は
改善されるものの変形抵抗は依然として高く、とはいえ
変形抵抗を低下させようとすれば長時間の焼鈍を必要と
する。とくに前掲の低合金鋼においてはかかる傾向が著
しいため、変形能の向上と変形抵抗の低下とを同時に実
現するためには長時間の焼鈍が必要となり、従って結局
、熱処理工程全体としてはエネルギーコストおよび生産
性とも従来と比較して大差ないというところに問題を残
していた。
(Problems to be Solved by the Invention) However, in the above method, although the deformability after spheroidization treatment is improved, the deformation resistance is still high. Requires. This tendency is particularly pronounced in the low-alloy steel mentioned above, so long-term annealing is required to simultaneously improve deformability and reduce deformation resistance, which ultimately results in lower energy costs and lower heat treatment processes as a whole. The problem remained that there was not much difference in productivity compared to the conventional method.

(問題点を解決するための手段) さて発明者らは、上記の問題を解決すべく鋭意研究を重
ねた結果、以下のような知見を得るに到った。
(Means for Solving the Problems) The inventors have conducted intensive research to solve the above problems, and as a result, they have obtained the following knowledge.

まず発明者らは、球状化焼鈍前の鋼線材のミクロ組織と
球状化焼鈍後の機械的性質との関係について調査した。
First, the inventors investigated the relationship between the microstructure of a steel wire before spheroidizing annealing and the mechanical properties after spheroidizing annealing.

この結果を第1図および第2図に、引張り強さおよび限
界圧縮率と球状化焼鈍時間との関係でそれぞれ示す。
The results are shown in FIGS. 1 and 2 as the relationships between tensile strength, critical compressibility, and spheroidizing annealing time, respectively.

同図に示す如く焼鈍前の鋼線材のミクロ組織をマルテン
サイトないしベイナイトの低温変態組織とした場合には
、フェライト・パーライト組織の場合に比較して短時間
の焼鈍により高い変形能を得ることが可能である。しか
し、変形抵抗は、低下しにくい。一方、球状化焼鈍前の
組織をフェライト・パーライトとした場合には、低温変
態組織に比較して変形抵抗は低いが、変形能も低い値と
なり、この結果従来と同等程度の熱処理が必要であるこ
とがわかった。
As shown in the figure, when the microstructure of the steel wire before annealing is a low-temperature transformed structure of martensite or bainite, higher deformability can be obtained by annealing for a shorter time than in the case of a ferrite/pearlite structure. It is possible. However, deformation resistance is difficult to decrease. On the other hand, when the structure before spheroidizing annealing is ferrite/pearlite, the deformation resistance is lower than that of a low-temperature transformed structure, but the deformability is also lower, and as a result, the same degree of heat treatment as conventional methods is required. I understand.

前述したように球状化焼鈍の目的は厳しい冷間。As mentioned above, the purpose of spheroidizing annealing is severe cold annealing.

加工に耐え得る高い変形能と工具寿命の関係より低い変
形抵抗が必要でり、迅速な球状化処理を可能とするため
に・は単に焼鈍前のミクロ組織を上記の如きミクロ組織
とするのみでは不充分であることが判明した。
The relationship between high deformability that can withstand machining and tool life requires low deformation resistance, and in order to enable rapid spheroidization, it is not enough to simply change the microstructure before annealing to the above-mentioned microstructure. It turned out to be inadequate.

そこで発明者らは、この点につきさらに検討を加えた結
果、球状化焼鈍前の鋼線材のミクロ組織をフェライト・
パーライト組織とした場合でも、フェライト粒径をある
特定の大きさ以下に制御することにより、球状化焼鈍後
の変形能が飛躍的に向上することの知見を得た。
Therefore, the inventors further investigated this point, and as a result, the microstructure of the steel wire before spheroidizing annealing was changed to ferrite.
Even in the case of a pearlite structure, we have found that the deformability after spheroidizing annealing can be dramatically improved by controlling the ferrite grain size to a certain size or less.

すなわち、 ■)フェライト粒の微細化は、粒界面積を増加させ、C
原子の粒界拡散を促進する、 ■)またフェライト粒の微細化により同時にパーライト
粒の微細化が達成され、球状化焼鈍時のパーライト部の
セメンタイトの分断、凝集化が促進される。、 ■)そしてこれらが相乗的に作用する結果、球状化焼鈍
特性とくに変形能が飛躍的に向上する、ことを究明した
のである。
In other words, ■) Refinement of ferrite grains increases the grain boundary area and increases C
(2) Further, the refinement of ferrite grains simultaneously achieves refinement of pearlite grains, promoting fragmentation and agglomeration of cementite in pearlite parts during spheroidizing annealing. , (2) and as a result of these acting synergistically, it was discovered that the spheroidizing annealing properties, especially the deformability, were dramatically improved.

第3図は、その具体的な実験結果を示したもので、第4
図に示すヒートパターンで5時間の焼鈍を施した後のフ
ェライト粒径と限界圧縮率との関係を示したものである
が、焼鈍前のフェライト粒径を5μm以下とすることに
より限界圧縮率は著しく向上している。
Figure 3 shows the specific experimental results.
The figure shows the relationship between the ferrite grain size and the critical compressibility after annealing for 5 hours with the heat pattern shown in the figure. By setting the ferrite grain size before annealing to 5 μm or less, the critical compressibility can be It has improved significantly.

次に発胡者らは、前記ミクロ組穐を得るための圧延およ
び冷却条件について検討を加えた。以下にこの結果を述
べる。
Next, the inventors investigated the rolling and cooling conditions for obtaining the above-mentioned micro-assembly. The results are described below.

微細フェライト・パーライト組織を得るためには、良(
知られているように変態前のオーステナイト粒径を細粒
にしておく必要がある。これはγ→α変態に際してオー
ステナイト粒界が、変態核の発生位置として作用するか
らである。このために、オーステナイトを細粒化するこ
とを通じて粒界面積の増加が計られ、変態核が増加する
。この結果、変態後のフェライト粒径は細粒化する。こ
の関係についての調査結果を、第5図に示す。同図は、
変態前のオーステナイト粒径が種々に異なる試料につい
て同一の冷却速度(0,1℃/s)で変態させた際の、
フェライト粒径の変化を示したものである。
In order to obtain a fine ferrite/pearlite structure, a good (
As is known, it is necessary to keep the austenite grain size fine before transformation. This is because the austenite grain boundaries act as locations where transformation nuclei occur during the γ→α transformation. For this purpose, the grain boundary area is increased by making the austenite grain finer, and the number of transformation nuclei increases. As a result, the ferrite grain size after transformation becomes finer. The results of a survey regarding this relationship are shown in FIG. The figure is
When samples with various austenite grain sizes before transformation were transformed at the same cooling rate (0.1°C/s),
This figure shows the change in ferrite grain size.

同図より、目標とする5μ山のフェライト粒径を得るた
めには、変態前のオーステナイト粒径をASTMNαで
9.5よりも細粒にすることが必要であることが判明し
た。
From the same figure, it was found that in order to obtain the target ferrite grain size of 5 μm, it is necessary to make the austenite grain size before transformation smaller than 9.5 in ASTM Na.

ところで、変態前の7粒径は、圧延条件特に圧延仕上げ
温度および圧延後の冷却速度と密接な関係がある。すな
わち線材圧延の如き高歪度の変形においては、動的再結
晶が生じるが、この動的再結晶粒は、仕上げ圧延温度で
一義的に決定され、仕上げ圧延温度が高くなるほど粗粒
となり、また再結晶後の粒成長は鋼材温度が高い程急速
に進行するが、圧延後の冷却速度が速い程、オーステナ
イトの粒成長が抑制されるためである。
Incidentally, the grain size before transformation has a close relationship with the rolling conditions, particularly the finishing temperature of rolling, and the cooling rate after rolling. In other words, during high-strain deformation such as wire rolling, dynamic recrystallization occurs, but this dynamic recrystallization grain is uniquely determined by the finish rolling temperature, and the higher the finish rolling temperature, the coarser the grain. This is because grain growth after recrystallization progresses more rapidly as the steel temperature increases, but the faster the cooling rate after rolling, the more austenite grain growth is suppressed.

これらの関係を第6図に示す。第6図は圧延終了温度お
よび圧延後の冷却停止温度(巻取り温度)と調整冷却開
始時すなわち変態開始直前のオーステナイト粒径との関
係を示したものである。圧延終了温度が低い程、また圧
延後の巻取り温度が低い程、細粒となることを示してお
り、目標とするASTMNα9.5以上の細粒化された
オーステナイトを得るためには、圧延仕上げ温度を90
0℃以下、巻取り温度を700℃以下に制御する必要が
あることがわかる。
These relationships are shown in FIG. FIG. 6 shows the relationship between the rolling end temperature, the post-rolling cooling stop temperature (coiling temperature), and the austenite grain size at the start of adjustment cooling, that is, immediately before the start of transformation. The lower the rolling end temperature and the lower the coiling temperature after rolling, the finer the grains become. temperature to 90
It can be seen that it is necessary to control the winding temperature to 0°C or lower and the winding temperature to 700°C or lower.

さらに変態後のフェライト粒径は、圧延後の冷却速度と
密接な関係がある。というのは、変態時の冷却速度が遅
(なるに従い、γ→α変態時の初析フェライト粒の成長
が促進されるためであり、細粒のオーステナイト組織か
らT→α変態を行わせても冷却速度が遅くなると微細な
フェライト・パーライト組織を得ることは困難となるの
である。
Furthermore, the ferrite grain size after transformation is closely related to the cooling rate after rolling. This is because the cooling rate during transformation is slow (as the cooling rate becomes slower, the growth of pro-eutectoid ferrite grains during γ→α transformation is promoted. If the cooling rate is slow, it becomes difficult to obtain a fine ferrite/pearlite structure.

第7図に、ASTMNα9.5の細粒オーステナイトよ
りなる試料を、種々の異なる冷却速度で冷却してγ→α
変態を行わせた際の冷却速度とフェライト粒径との関係
を示す。
Figure 7 shows that samples made of fine-grained austenite of ASTMNα9.5 were cooled at various cooling rates to change γ→α.
The relationship between the cooling rate and the ferrite grain size during transformation is shown.

同図より明らかなように、冷却速度が遅くなるに従って
フェライト粒径は増加し、0.1t/Sよりもおそい冷
却速度域においては変態後のフェライト粒径は5μmよ
りも大きな粒径となり、このような組織においては、迅
速球状化処理が困難となるのである。
As is clear from the figure, the ferrite grain size increases as the cooling rate becomes slower, and in the cooling rate range slower than 0.1 t/S, the ferrite grain size after transformation becomes larger than 5 μm. In such a structure, rapid spheroidization becomes difficult.

この発明は、上記の知見に基づいて完成されたものであ
る。
This invention was completed based on the above findings.

すなわちコノ発明は、C: 0.13〜Q、43wt%
(以下単に%で示す)、Si : 0.15〜0.35
%、Mn:0.30〜1.20%、 Cr : 0.7
5〜1.20%、 Al  : 0.10% 以下およ
びS:0.020%以下を含有し、残部は実質的にFe
の組成になり、かつフェライト粒径が5μm以下の微細
フェライト・パーライト組織を有することから成る、迅
速球状化処理の可能な鋼線材である。
That is, in the invention, C: 0.13 to Q, 43wt%
(hereinafter simply expressed in %), Si: 0.15 to 0.35
%, Mn: 0.30-1.20%, Cr: 0.7
5 to 1.20%, Al: 0.10% or less, S: 0.020% or less, and the remainder is substantially Fe.
This is a steel wire rod which can be rapidly spheronized, and has a fine ferrite/pearlite structure with a ferrite grain size of 5 μm or less.

またこの発明は、C:0.13〜0.43%、Sl:0
.15〜0.35%、Mn : 0.30〜1.20%
、Cr:0.75〜1.20%、Al : 0.10%
以下右よびS:0、020%以下を含有し、残部は実質
的にFe組成になる低合金鋼の鋼線素材に、粗圧延、中
間圧延を施したのち、引続き700℃超〜900℃の温
度範囲において仕上げ圧延を施し、その後直ちに700
〜680℃の範囲の温度に冷却して巻取り、しかるのち
600℃までを0.1〜0.5℃/sの冷却速度で冷却
することから成る迅速球状化処理の可能な低合金鋼線材
の製造方法である。
In addition, this invention has C: 0.13 to 0.43%, Sl: 0
.. 15-0.35%, Mn: 0.30-1.20%
, Cr: 0.75-1.20%, Al: 0.10%
As shown on the right below, a low alloy steel wire material containing 0.020% or less of S:0,000 with the remainder being substantially Fe is subjected to rough rolling and intermediate rolling, and then subsequently heated to a temperature of over 700°C to 900°C. Finish rolling is performed in the temperature range, and then immediately rolled at 700
A low-alloy steel wire rod capable of rapid spheroidization, which consists of cooling to a temperature in the range of ~680°C, winding, and then cooling to 600°C at a cooling rate of 0.1 to 0.5°C/s. This is a manufacturing method.

(作 用) 以下、この発明を具体的に説明する。(for production) This invention will be specifically explained below.

まずこの発明において、素材成分を上記の範囲に限定し
た理由について説明する。
First, in this invention, the reason why the material components are limited to the above range will be explained.

C:O,13〜0.43% Cは、0.13%未満では構造お財として充分な強度が
得られず、一方0.43%を超えると変形抵抗が増大し
冷間加工性が劣化するので、0.13〜0.43%の範
囲に限定した。
C: O, 13-0.43% If C is less than 0.13%, sufficient strength as a structural property cannot be obtained, while if it exceeds 0.43%, deformation resistance increases and cold workability deteriorates. Therefore, it was limited to a range of 0.13 to 0.43%.

Si : 0.15〜0.35% Siは、0.15%未満では脱酸効果に乏しく、一方0
.35%を超えると衝!i!値の低下を招くので、0.
15〜0,35%の範囲に限定した。
Si: 0.15-0.35% Si has poor deoxidizing effect when it is less than 0.15%;
.. If it exceeds 35%, it is an opposition! i! 0.
It was limited to a range of 15 to 0.35%.

Mn : 0.30〜1.20% Mnは、焼入れ性の向上に有効に寄与するが、0.3%
未満ではその添加効果に乏しく、一方1.2%を超える
と強度の上昇を招き冷間加工性が低下するので、0.3
0〜1.2%の範囲に限定した。
Mn: 0.30-1.20% Mn effectively contributes to improving hardenability, but 0.3%
If it is less than 0.3%, the effect of addition is poor, while if it exceeds 1.2%, the strength will increase and cold workability will decrease.
It was limited to a range of 0 to 1.2%.

Cr : 0.75〜1.20% Crは、焼入れ性を向上させるだけでなくフェライト・
パーライト組織を微細にする上でも有用な元素であるが
、0.75%未満ではその添加効果に乏しく、一方1.
20%を超えると強度が上昇し、冷間加工性を劣化させ
るので、0.75〜1.20にの範囲に限定した。
Cr: 0.75-1.20% Cr not only improves hardenability but also improves ferrite and
Although it is a useful element in making the pearlite structure fine, if it is less than 0.75%, its addition effect is poor; on the other hand, 1.
If it exceeds 20%, the strength will increase and cold workability will deteriorate, so it was limited to a range of 0.75 to 1.20.

Al : 0.10%以下 AI は、オーステナイト粒の成長を抑制する効果があ
るので、微細フェライト・パーライト組織を得るために
は有用な元素であるが、0.10%を超えるとAI系介
在物が増加し冷間加工性の劣化を招くので、0.10%
以下の範囲で含有させることにした。
Al: 0.10% or lessAl has the effect of suppressing the growth of austenite grains, so it is a useful element for obtaining a fine ferrite/pearlite structure, but if it exceeds 0.10%, AI-based inclusions may occur. 0.10% because it increases and causes deterioration of cold workability.
It was decided to contain it in the following range.

S : 0.020%以下 Sは、切削性を向上させる有用な元素であるが、0、0
20%を超えると、MnS系介在物が増加し、冷間加工
性を劣化させるので0.020%以下の範囲に限定した
S: 0.020% or less S is a useful element that improves machinability, but 0.020% or less
If it exceeds 20%, MnS-based inclusions increase and cold workability deteriorates, so it was limited to a range of 0.020% or less.

また鋼線材のミクロ組織につき、フェライト粒径が5μ
m以下の微細フェライト・パーライト組織としたのは、
フェライト粒径が5μmを超えると球状化の進行が遅く
迅速な処理が行えないためである。またフェライト・パ
ーライト組織とするのは、ベイナイトおよびマルテンサ
イトあるいはそれらの混合組織においては球状化焼鈍後
の変形抵抗が高(迅速な球状化処理を行えないためであ
る。
In addition, the microstructure of the steel wire has a ferrite grain size of 5 μm.
The reason for the fine ferrite/pearlite structure of less than m is as follows.
This is because if the ferrite particle size exceeds 5 μm, spheroidization progresses slowly and rapid processing cannot be performed. The ferrite/pearlite structure is used because bainite, martensite, or a mixed structure thereof has high deformation resistance after spheroidizing annealing (quick spheroidizing treatment cannot be performed).

次に圧延、冷却条件の限定理由について説明する。Next, the reasons for limiting the rolling and cooling conditions will be explained.

仕上げ圧延温度を700℃超〜900℃としたのは、7
00℃以下では変形抵抗が大きくなって圧延の実施が困
難となり、一方900℃を超えるとオーステナイト粒径
が大きくなって目標とする微細なフェライト・パーライ
ト組織が得られないためである。
The reason why the finish rolling temperature was set to over 700°C to 900°C was 7.
This is because if the temperature is below 00°C, the deformation resistance increases and rolling becomes difficult, while if it exceeds 900°C, the austenite grain size increases and the target fine ferrite-pearlite structure cannot be obtained.

また巻取り温度を680〜700℃としたのは、680
℃を下回ると鋼線材表面に焼入れ組織が発生し、一方7
00℃を超えるとオーステナイト粒の粒成長抑制効果が
不充分になるためである。
Also, the winding temperature was set at 680 to 700°C.
When the temperature drops below ℃, a hardened structure occurs on the surface of the steel wire;
This is because if the temperature exceeds 00°C, the effect of suppressing grain growth of austenite grains becomes insufficient.

さらに巻取り後の冷却速度を0.1〜0.5℃/sとし
たのは、0.1℃/s未満では初析フェライトが成長し
目的とする微細フェライト・パーライト組織が得難く、
一方0.5  ℃/sを超えるとベイナイト組繊が混入
し、これに起因して球状化焼鈍後の変形抵抗が高くなる
ため、迅速な球状化処理が困難になるからである。ここ
に冷却停止温度を600℃としたのは600℃を超える
とベイナイトが発生して強度の過度の上昇を招き、軟質
化が困難となるためである。
Furthermore, the cooling rate after winding was set to 0.1 to 0.5°C/s because if it is less than 0.1°C/s, pro-eutectoid ferrite will grow and it will be difficult to obtain the desired fine ferrite/pearlite structure.
On the other hand, if it exceeds 0.5°C/s, bainite fibers will be mixed in, which will increase the deformation resistance after spheroidizing annealing, making it difficult to perform a rapid spheroidizing process. The reason why the cooling stop temperature is set at 600° C. is that if it exceeds 600° C., bainite is generated, leading to an excessive increase in strength and making it difficult to soften.

(実施例) 以下この発明の実施例を従来例と対比しつつ説明する。(Example) Embodiments of the present invention will be described below in comparison with conventional examples.

表1に示す成分組成になる鋼線素材を、表2に示したよ
うな従来法およびこの発明法に従う条件下に、圧延およ
び冷却処理を施して線材を製造し表2 かくして得られた各線材に第8図に示したヒートパター
ンに従う球状化焼鈍を施し、かかる球状化焼鈍後の強度
について調べた結果を第9図に、また冷間鍛造性試験結
果を第10図に示す。
Steel wire materials having the compositions shown in Table 1 were rolled and cooled to produce wire rods under the conditions shown in Table 2 according to the conventional method and the method of this invention. The specimens were subjected to spheroidizing annealing according to the heat pattern shown in FIG. 8, and the strength after the spheroidizing annealing was investigated. The results are shown in FIG. 9, and the results of the cold forgeability test are shown in FIG.

第9図および第10図に示した結果から明らかなように
、この発明に従い得られた鋼線材は、短時間の球状化焼
鈍により低い変形抵抗および高い変形能が容易に得られ
、迅速球状化処理が達成されている。
As is clear from the results shown in FIGS. 9 and 10, the steel wire rod obtained according to the present invention can easily obtain low deformation resistance and high deformability by short-time spheroidizing annealing, and can be quickly spheroidized. processing has been achieved.

(発明の効果) かくしてこの発明によれば、従来、冷間鍛造に先立って
、長時間の球状化処理が不可欠とされた低合金鋼線材に
つき、球状化処理時間の大幅な短縮を実現することがで
き、ひいてはエネルギーコストの低減ならびに生産性の
飛躍的な向上が実現される。
(Effects of the Invention) Thus, according to the present invention, it is possible to significantly shorten the spheroidizing time for low alloy steel wire rods, which conventionally required a long spheroidizing process prior to cold forging. This results in a reduction in energy costs and a dramatic improvement in productivity.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、焼鈍前のミクロ組織を変化させたときの球状
化焼鈍時間と引張強さとの関係を示したグラフ、 第2図は、同じく焼鈍前のミクロ組織を変化させたとき
の球状化焼鈍時間と限界圧縮率との関係を示したグラフ
、 第3図は、フェライト・パーライト組織のフェライト粒
径を変化させ5時間の球状化焼鈍を施したときのフェラ
イト粒径と限界圧縮率との関係を示したグラフ、 第4図は、第1〜3図における球状化焼鈍のヒート・パ
ターン図、 第5図は、°変態前のオーステナイト粒径と、フェライ
ト・パーライト組織のフェライト粒径との関係を示した
グラフ、 第6図は、圧延仕上げ温度および巻き取り温度と変態開
始直前のオーステナイト粒径との関係を示したグラフ、 第7図は、冷却速度と、フェライト・パーライト組織の
フェライト粒径との関係を示したグラフ、第8図は、実
施例における鋼線材の球状化焼鈍のヒート・パターン図
、 第9図は、実施例で製造した鋼線材に球状化焼鈍を施し
たときの球状化焼鈍時間と引張強さとの関係を示したグ
ラフ、 第10図は、実施例で製造した鋼線材に球状化焼鈍を施
したときの球状化焼鈍時間と限界圧縮率との関係を示し
たグラフである。 第1図 第2図 !1大化it斜−5rJ(h) 第3図 フエライトオ止1謄(、μm) 第7図 玲1鳩a (”e/s) 第8図 As丁M No。 フエライトカ1蚤(声fn) MRfL1fi#、) %、nvI  %   −V〜 − g1張蓬さくKt仏m2)
Figure 1 is a graph showing the relationship between spheroidization annealing time and tensile strength when changing the microstructure before annealing. Figure 2 is a graph showing the relationship between spheroidization annealing time and tensile strength when changing the microstructure before annealing. Figure 3, a graph showing the relationship between annealing time and critical compressibility, shows the relationship between ferrite grain size and critical compressibility when the ferrite grain size of the ferrite-pearlite structure is changed and spheroidizing annealing is performed for 5 hours. Figure 4 is a graph showing the relationship between the austenite grain size before ° transformation and the ferrite grain size of the ferrite-pearlite structure. Figure 6 is a graph showing the relationship between the finishing rolling temperature and winding temperature and the austenite grain size just before the start of transformation. Figure 7 is the relationship between the cooling rate and the ferrite grain size of the ferrite-pearlite structure. Figure 8 is a graph showing the relationship with the diameter, and Figure 8 is a heat pattern diagram of the spheroidizing annealing of the steel wire rod produced in the example. A graph showing the relationship between spheroidizing annealing time and tensile strength, Fig. 10 shows the relationship between spheroidizing annealing time and critical compressibility when spheroidizing annealing was performed on the steel wire produced in the example. It is a graph. Figure 1 Figure 2! 1 large it diagonal -5rJ (h) Fig. 3 Ferrite O stop 1 (, μm) Fig. 7 Rei 1 pigeon a (”e/s) Fig. 8 As ding M No. Ferrite 1 flea (voice fn) MRfL1fi #, ) %, nvI % -V~ - g1 Zhang Pengsaku Kt Buddha m2)

Claims (1)

【特許請求の範囲】 1、C:0.13〜0.43wt% Si:0.15〜0.35wt% Mn:0.30〜1.20wt% Cr:0.75〜1.20wt% Al:0.10wt% 以下および S:0.020wt% 以下 を含有し、残部は実質的にFeの組成になり、かつフェ
ライト粒径が5μm以下の微細フェライト・パーライト
組織を有することを特徴とする、迅速球状化処理の可能
な鋼線材。 2、c:0.13〜0.43wt% Si:0.15〜0.35wt% Mn:0.30〜1.20wt% Cr:0.75〜1.20wt% Al:0.10wt% 以下および S:0.020wt% 以下 を含有し、残部は実質的にFeの組成になる低合金鋼の
鋼線素材に、粗圧延、中間圧延を施したのち、引続き7
00℃超〜900℃の温度範囲において仕上げ圧延を施
し、その後直ちに700〜680℃の範囲の温度に冷却
して巻取り、しかるのち600℃までを0.1〜0.5
℃/sの冷却速度で冷却することを特徴とする迅速球状
化処理の可能な低合金鋼線材の製造方法。
[Claims] 1. C: 0.13 to 0.43 wt% Si: 0.15 to 0.35 wt% Mn: 0.30 to 1.20 wt% Cr: 0.75 to 1.20 wt% Al: 0.10 wt% or less and S: 0.020 wt% or less, the remainder is substantially Fe, and has a fine ferrite/pearlite structure with a ferrite grain size of 5 μm or less. Steel wire rod that can be spheroidized. 2, c: 0.13 to 0.43 wt% Si: 0.15 to 0.35 wt% Mn: 0.30 to 1.20 wt% Cr: 0.75 to 1.20 wt% Al: 0.10 wt% or less and A low-alloy steel wire material containing 0.020 wt% or less of S, with the remainder being essentially Fe, is subjected to rough rolling and intermediate rolling, and then
Finish rolling is performed at a temperature range of over 00°C to 900°C, then immediately cooled to a temperature in the range of 700 to 680°C and coiled, and then rolled up to 600°C by 0.1 to 0.5
A method for producing a low-alloy steel wire rod capable of rapid spheroidization treatment, characterized by cooling at a cooling rate of °C/s.
JP16469886A 1986-07-15 1986-07-15 Low alloy steel wire rod permitting quick spheroidization treatment and its production Pending JPS6320419A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16469886A JPS6320419A (en) 1986-07-15 1986-07-15 Low alloy steel wire rod permitting quick spheroidization treatment and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16469886A JPS6320419A (en) 1986-07-15 1986-07-15 Low alloy steel wire rod permitting quick spheroidization treatment and its production

Publications (1)

Publication Number Publication Date
JPS6320419A true JPS6320419A (en) 1988-01-28

Family

ID=15798169

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16469886A Pending JPS6320419A (en) 1986-07-15 1986-07-15 Low alloy steel wire rod permitting quick spheroidization treatment and its production

Country Status (1)

Country Link
JP (1) JPS6320419A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6645319B2 (en) * 2000-11-06 2003-11-11 Kobe Steel Ltd. Wire rod for drawing superior in twisting characteristics and method for production thereof
CN110106334A (en) * 2018-02-01 2019-08-09 福建省长汀金龙稀土有限公司 One kind being carried out continuously grain boundary decision and heat-treating apparatus and method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6645319B2 (en) * 2000-11-06 2003-11-11 Kobe Steel Ltd. Wire rod for drawing superior in twisting characteristics and method for production thereof
CN110106334A (en) * 2018-02-01 2019-08-09 福建省长汀金龙稀土有限公司 One kind being carried out continuously grain boundary decision and heat-treating apparatus and method

Similar Documents

Publication Publication Date Title
JP4018905B2 (en) Hot rolled wire rod and bar for machine structure and manufacturing method thereof
JP3966493B2 (en) Cold forging wire and method for producing the same
JP3742232B2 (en) Steel wire rod capable of rapid spheroidization and excellent cold forgeability and method for producing the same
JP7159445B2 (en) Soft heat treatment time shortened cold forging wire and its manufacturing method
JP7576033B2 (en) Wire rod that can omit softening heat treatment and its manufacturing method
JPH09324212A (en) Production of hot rolled high carbon steel strip excellent in hardenability and cold workability
JPS6320419A (en) Low alloy steel wire rod permitting quick spheroidization treatment and its production
JPH02213416A (en) Production of steel bar with high ductility
JPH0112815B2 (en)
JPH0213004B2 (en)
JPS61153230A (en) Production of low-alloy steel wire rod which permits quick spheroidization
JPH0570685B2 (en)
JPH1025521A (en) Annealing method for spheroidizing wire
TW202221148A (en) Dual-phase steel wire rod and method of making the same
JP2564535B2 (en) Direct spheroidizing method for hot rolled steel wire rod
JPH1088237A (en) Manufacturing method of high carbon cold rolled steel strip
KR100355019B1 (en) Manufacturing method of wire rod for soft anneal omitted cold press
JP3941748B2 (en) Method for producing softened steel
JPH11256233A (en) Direct spheroidizing annealing method for steel wire rod
JPS62139817A (en) Production of steel wire enabling quick spheroidization treatment
KR20040057216A (en) High strength hypereutectoid steel and method for manufacturing hypereutectoid steel rod wire using the same
JPH0353021A (en) Manufacture of high carbon steel for spheroidizing
JPS6220820A (en) Cold working method
JPH09263838A (en) Production of high strength cold rolled steel sheet excellent in stretch-flange formability
JPS62139818A (en) Production of high-strength and high-toughness wire