[go: up one dir, main page]

JP7159445B2 - Soft heat treatment time shortened cold forging wire and its manufacturing method - Google Patents

Soft heat treatment time shortened cold forging wire and its manufacturing method Download PDF

Info

Publication number
JP7159445B2
JP7159445B2 JP2021506295A JP2021506295A JP7159445B2 JP 7159445 B2 JP7159445 B2 JP 7159445B2 JP 2021506295 A JP2021506295 A JP 2021506295A JP 2021506295 A JP2021506295 A JP 2021506295A JP 7159445 B2 JP7159445 B2 JP 7159445B2
Authority
JP
Japan
Prior art keywords
less
heat treatment
hardness
pro
wire rod
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021506295A
Other languages
Japanese (ja)
Other versions
JP2021533271A (en
Inventor
イ,ビョン‐ガブ
イ,サン‐ユン
パク,イン‐ギュ
イ,ジェ‐スン
キム,ハン‐フィ
ヤン,ヨ‐セプ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Posco Holdings Inc
Original Assignee
Posco Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Posco Co Ltd filed Critical Posco Co Ltd
Publication of JP2021533271A publication Critical patent/JP2021533271A/en
Application granted granted Critical
Publication of JP7159445B2 publication Critical patent/JP7159445B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/009Pearlite
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Strip Materials And Filament Materials (AREA)

Description

本発明は、軟質熱処理時間短縮形冷間圧造用線材及びその製造に係り、より詳しくは、圧延後の線材の微細組織を制御することにより、後続する軟質化熱処理時間を短縮することができる冷間圧造用線材及びその製造方法に関する。 TECHNICAL FIELD The present invention relates to a wire rod for cold heading with a shortened soft heat treatment time and its manufacture. The present invention relates to a wire rod for inter-heading and a method for manufacturing the same.

線材を軟質化するために、一般的に球状化熱処理を行う。球状化熱処理は、冷間成形時に冷間加工性を向上させるためにセメンタイトを球状化し、均質な粒子分布を誘導する。また、加工ダイスの寿命を向上させるために加工される素材の硬さをできる限り柔らかくすることができる。上記2つの目的を達成するために素材の軟質化概念として利用されている。
このような球状化熱処理は、大きく2つに分類される。一つは共析温度以下で長時間加熱する方法であって、主に熱延製品の球状化処理に用いられている(sub-critical annealing)。もう一つは共析温度とオーステナイト化温度との間で加熱した後に極徐冷して球状化組織を得る方法である(inter-critical annealing)。
A spheroidizing heat treatment is generally performed to soften the wire. The spheroidizing heat treatment induces a homogeneous particle distribution by spheroidizing cementite to improve cold workability during cold forming. In addition, the hardness of the material to be processed can be made as soft as possible in order to improve the life of the working dies. In order to achieve the above two purposes, it is used as a material softening concept.
Such a spheroidizing heat treatment is roughly classified into two. One is a method of heating for a long time below the eutectoid temperature, which is mainly used for spheroidizing treatment of hot-rolled products (sub-critical annealing). The other is a method of heating between the eutectoid temperature and the austenitizing temperature followed by extremely slow cooling to obtain a spheroidized structure (inter-critical annealing).

初期組織がパーライトで構成された場合、球状化熱処理温度で球状化が進行される過程は、高い温度での拡散によってラメラ(lamellar)セメンタイトの欠陥または端部分における平らな界面との曲率差による炭素濃度勾配が発生してラメラセメンタイトが分節され、この後、界面エネルギーを減らすために球状化されることが知られている。
このような球状化軟質化処理のためには、別途の工程数、多くの費用、及び時間がかかるため、その工程時間をできる限り短縮することが好ましく、これに伴い、上述した球状化軟質化処理工程を短縮する技術開発の研究が実施されている。
When the initial structure is made of pearlite, the process of spheroidization at the spheroidizing heat treatment temperature is caused by defects in lamellar cementite due to diffusion at high temperature or carbon due to the difference in curvature with the flat interface at the end portion. It is known that a concentration gradient develops to segment lamellar cementite, which is then spheronized to reduce interfacial energy.
For such a spheroidizing softening treatment, it takes a number of separate steps, a lot of cost, and a long time, so it is preferable to shorten the process time as much as possible. Research is being conducted to develop technology to shorten the processing steps.

韓国特許出願公開第2018-0072965号公報Korean Patent Application Publication No. 2018-0072965

本発明は、圧延後の線材組織を初析フェライト分率が平衡相80%以上である最大5μm以下の結晶粒径を有する微細初析フェライトと、ベイナイト/マルテンサイト分率は5%以下、残りのパーライト組織を含む複合組織で制御することにより、軟質化熱処理時間の短縮形冷間圧造用線材及びその製造方法を提供することを目的とする。
本発明が解決しようとする技術的課題は、上記で言及した技術的課題に限定されず、言及されていないさらに他の技術的課題は、以下の記載から本発明が属する技術分野における通常の知識を有する者であれば明確に理解することができる。
The present invention comprises fine pro-eutectoid ferrite having a maximum crystal grain size of 5 μm or less with a pro-eutectoid ferrite fraction of 80% or more in the equilibrium phase, and a bainite/martensite fraction of 5% or less and the balance It is an object of the present invention to provide a wire rod for cold forging with a shortened softening heat treatment time and a method for producing the same by controlling with a composite structure including a pearlite structure.
The technical problems to be solved by the present invention are not limited to the technical problems mentioned above. can be clearly understood by those who have

上記目的を達成するためになされた本発明の軟質化熱処理時間を短縮することができる冷間圧造用線材は、
重量%で、C:0.15~0.5%、Si:0.02~0.4%、Mn:0.3~1.2%、Al:0.02~0.05%、P:0.03%以下、S:0.01%未満、N:0.01%未満を含み、残りのFe及びその他の不可避不純物からなり、
その内部の微細組織が20~90面積%の初析フェライト組織、5面積%以下のベイナイトとマルテンサイト組織、及び残りのパーライト組織を含み、平衡初析フェライト分率のうち80%以上が平均粒径5μmm以下の初析フェライト組織であり、
上記微細組織別の超微細硬度は、下記関係式1及び関係式2を満たすことを特徴とする。
[関係式1]
初析フェライト:Hardness(Hv)≧128+61*([C]+[Si]/8+[Mn]/18)
[関係式2]
パーライト:Hardness(Hv)≦254+23*([C]+[Si]/8+[Mn]/18)
A wire rod for cold heading capable of shortening the softening heat treatment time of the present invention to achieve the above object,
% by weight, C: 0.15-0.5%, Si: 0.02-0.4%, Mn: 0.3-1.2%, Al: 0.02-0.05%, P: 0.03% or less, S: less than 0.01%, N: less than 0.01%, and the remaining Fe and other inevitable impurities,
The internal fine structure contains 20 to 90 area% pro-eutectoid ferrite structure, 5 area% or less bainite and martensite structures, and the remaining pearlite structure, and 80% or more of the equilibrium pro-eutectoid ferrite fraction is average grains. A proeutectoid ferrite structure with a diameter of 5 μmm or less,
The ultrafine hardness for each microstructure is characterized by satisfying the following relational expressions 1 and 2.
[Relationship 1]
Proeutectoid ferrite: Hardness (Hv) ≥ 128 + 61 * ([C] + [Si] / 8 + [Mn] / 18)
[Relational expression 2]
Perlite: Hardness (Hv) ≤ 254 + 23 * ([C] + [Si] / 8 + [Mn] / 18)

上記Cが0.4~0.5%の範囲を満たすことが好ましい。 It is preferable that the above C satisfies the range of 0.4 to 0.5%.

本発明の軟質化熱処理時間を短縮することができる冷間圧造用線材の製造方法は、
上記組成の鋼材を900℃以上~1050℃以下に加熱した後、180分以内維持する工程、
前記鋼材のオーステナイト結晶粒サイズ(AGS)を5~20μmの範囲で制御する工程、
前記AGSが制御された鋼材をAe以下~730℃以上の温度で0.3~2.0の変形量で線材形状に仕上げ熱間圧延する工程、及び
前記仕上げ熱間圧延された線材を3~20℃/sの冷却速度で冷却する工程、を含むことを特徴とする。
The method for producing a wire rod for cold heading that can shorten the softening heat treatment time of the present invention includes:
A step of heating the steel material having the above composition to 900° C. or higher and 1050° C. or lower and then maintaining the temperature within 180 minutes;
A step of controlling the austenite grain size (AGS) of the steel material in the range of 5 to 20 μm;
A step of finish hot rolling the AGS-controlled steel material into a wire rod shape at a temperature of Ae 3 or less to 730 ° C. or more with a deformation amount of 0.3 to 2.0; cooling at a cooling rate of ~20°C/s.

上記Cは0.4~0.5%の範囲を満たすことが好ましい。 The above C preferably satisfies the range of 0.4 to 0.5%.

上記冷却によって製造された線材は、
その内部の微細組織が20~90面積%の初析フェライト組織、5面積%以下のベイナイトとマルテンサイト組織、及び残りのパーライト組織を含み、平衡初析フェライト分率のうち80%以上が平均粒径5μmm以下の初析フェライト組織であり、そして
上記微細組織別の超微細硬度は、下記関係式1及び関係式2を満たすことが好ましい。
[関係式1]
初析フェライト:Hardness(Hv)≧128+61*([C]+[Si]/8+[Mn]/18)
[関係式2]
パーライト:Hardness(Hv)≦254+23*([C]+[Si]/8+[Mn]/18)
The wire rod manufactured by the above cooling is
The internal fine structure contains 20 to 90 area% pro-eutectoid ferrite structure, 5 area% or less bainite and martensite structures, and the remaining pearlite structure, and 80% or more of the equilibrium pro-eutectoid ferrite fraction is average grains. It is preferable that the proeutectoid ferrite structure has a diameter of 5 μmm or less, and the ultrafine hardness of each microstructure satisfies the following relational expression 1 and relational expression 2.
[Relationship 1]
Proeutectoid ferrite: Hardness (Hv) ≥ 128 + 61 * ([C] + [Si] / 8 + [Mn] / 18)
[Relational expression 2]
Perlite: Hardness (Hv) ≤ 254 + 23 * ([C] + [Si] / 8 + [Mn] / 18)

上記冷却された線材を球状化熱処理する工程をさらに含むことができる。
上記球状化熱処理後パーライト内のcementiteの形状比が2.5以下であることがよい。
A step of subjecting the cooled wire to spheroidizing heat treatment may be further included.
The shape ratio of cementite in the pearlite after the spheroidizing heat treatment is preferably 2.5 or less.

本発明によれば、上記構成の本発明は、製造された線材の微細組織の最適化によって所望の特性を有する線材を比較的短い軟質化熱処理時間で得ることができ、これに伴い、製造費用及び時間を減らすことができる有用な効果がある。 According to the present invention having the above configuration, a wire having desired properties can be obtained in a relatively short softening heat treatment time by optimizing the microstructure of the manufactured wire, and accordingly, the manufacturing cost is reduced. And there is a useful effect that can reduce the time.

仕上げ熱間圧延前の鋼材のAGSを示す組織写真であって、(a)は発明例1を、(b)は比較例5を示す。2 is a structural photograph showing AGS of a steel material before finish hot rolling, (a) showing invention example 1 and (b) showing comparative example 5. FIG. 線材圧延後の冷却によって得られた線材の微細組織を示す組織写真であって、(a)は発明例2を、(b)は比較例1を示す。2 is a microstructure photograph showing the microstructure of a wire rod obtained by cooling after wire rolling, (a) showing invention example 2 and (b) showing comparative example 1. FIG. 球状化熱処理後の線材の微細組織を示す組織写真であって、(a)は発明例1を、(b)は比較例1を示す。4 is a microstructure photograph showing the fine structure of the wire after spheroidizing heat treatment, (a) showing invention example 1 and (b) showing comparative example 1. FIG.

以下、本発明を説明する。
本発明は、重量%で、C:0.15~0.5%、Si:0.02~0.4%、Mn:0.3~1.2%、Al:0.02~0.05%、P:0.03%以下、S:0.01%未満、N:0.01%未満を含み、残りのFe及び他の不可避不純物からなる鋼材に圧延によって初析フェライトを生成させ、結晶粒の微細化を誘導し、素材の軟質熱処理中の炭素の拡散加速によって軟質線材を得るようにする熱処理短縮形線材の製造方法に関するものである。
The present invention will be described below.
In the present invention, by weight %, C: 0.15 to 0.5%, Si: 0.02 to 0.4%, Mn: 0.3 to 1.2%, Al: 0.02 to 0.05 %, P: 0.03% or less, S: less than 0.01%, N: less than 0.01%, and the remaining Fe and other inevitable impurities are rolled to form proeutectoid ferrite, crystals The present invention relates to a method for producing a heat-treated shortened wire that induces grain refinement and obtains a soft wire by accelerating the diffusion of carbon during the soft heat treatment of the material.

本発明の線材組成成分及びその含有量の制限理由を説明する。ここで、%は特に定義されていない限り、重量%を意味する。 The compositional components of the wire rod of the present invention and the reasons for restricting the content thereof will be explained. Here, % means weight % unless otherwise defined.

C:0.15~0.5%
上記炭素の含有量を0.15~0.5%に制限した理由は、その含有量が0.5%を超えると、ほぼすべての組織がパーライトで構成されてしまい、目的とする初析フェライトの亜結晶粒を確保し難くなり、一方、0.15%未満では初析フェライト分率の増加によって結晶粒が微細ではなくなり、QT熱処理時にマルテンサイト微細組織に変態させ難くなり、上記マルテンサイト組織においても低い炭素含有量によって十分な強度を確保し難いためである。
本発明では、上記炭素含有量を0.4~0.5%の範囲に制限することがより好ましい。
C: 0.15-0.5%
The reason why the content of carbon is limited to 0.15 to 0.5% is that if the content exceeds 0.5%, almost all the structure is composed of pearlite, and the desired pro-eutectoid ferrite On the other hand, if it is less than 0.15%, the crystal grains will not be fine due to an increase in the proeutectoid ferrite fraction, and it will be difficult to transform into a martensite microstructure during the QT heat treatment, and the above martensite structure. This is also because it is difficult to ensure sufficient strength due to the low carbon content.
In the present invention, it is more preferable to limit the carbon content to the range of 0.4 to 0.5%.

Si:0.02~0.4%
上記シリコン(Si)の含有量を0.02~0.4%に限定する理由は、以下のとおりである。Siは代表的な置換型元素として鋼の強度確保に大きな影響を及ぼす。その含有量が0.02%未満であると、鋼の強度確保が難しくなり、一方、0.4%を超えると、線材圧延中に脱炭組織の生成を助長するため、追加的な削除費用が必要となり、鍛造時の強度が上昇して鍛造し難いためである。
Si: 0.02-0.4%
The reason for limiting the content of silicon (Si) to 0.02 to 0.4% is as follows. Si, as a representative substitutional element, has a great effect on ensuring the strength of steel. If its content is less than 0.02%, it becomes difficult to ensure the strength of the steel, while if it exceeds 0.4%, it promotes the formation of a decarburized structure during wire rolling, resulting in additional removal costs. is required, and the strength at the time of forging increases, making it difficult to forge.

Mn:0.3~1.2%
上記マンガン(Mn)は、基地組織内に置換型固溶体を形成し、A1の温度を下げてパーライト層間の間隙を微細化する。そして、初析フェライト組織内の亜結晶粒を増加させるため、その含有量は0.3~1.2%に制限する。上記マンガンを1.2%超過して添加する場合、マンガン偏析によって組織内に不均質が生じ、有害な影響を及ぼすようになる。鋼の凝固時の偏析機構によって、マクロ偏析及びミクロ偏析が起こり易いが、マンガン偏析は他元素に比べて相対的に低い拡散係数により偏析帯を助長し、これによる硬化能向上は、中心部の低温組織(core martensite)を形成する主な原因となる。また、上記マンガンが0.3%未満で添加される場合、QT後のマルテンサイト組織を確保するための十分な焼入れ性が確保され難くなることがある。
Mn: 0.3-1.2%
Manganese (Mn) forms a substitutional solid solution in the matrix structure, lowers the temperature of A1, and refines the gap between the pearlite layers. In order to increase the number of subgrains in the pro-eutectoid ferrite structure, the content is limited to 0.3-1.2%. If manganese is added in excess of 1.2%, manganese segregation will cause inhomogeneity in the structure and have a detrimental effect. Due to the segregation mechanism during solidification of steel, macro-segregation and micro-segregation are likely to occur. It is the main cause of the formation of core martensite. Moreover, when the manganese is added in an amount of less than 0.3%, it may become difficult to ensure sufficient hardenability for ensuring a martensite structure after QT.

Al:0.02~0.05%
本発明において上記アルミニウム含有量は、0.02~0.05%に限定することが好ましい。これは、その含有量が0.02%未満であると、十分な脱酸力が確保され難くなり、一方、0.05%を超えると、Alなどの硬質介在物が増加することがあり、特に連鋳時の介在物によるノズルの目詰まりが発生する虞があるためである。
Al: 0.02-0.05%
In the present invention, the aluminum content is preferably limited to 0.02 to 0.05%. This is because if the content is less than 0.02%, it becomes difficult to ensure sufficient deoxidizing power, while if it exceeds 0.05%, hard inclusions such as Al 2 O 3 increase. This is because there is a risk of nozzle clogging due to inclusions during continuous casting.

N:0.01%未満
本発明において窒素の含有量は、0.01%未満で管理する必要がある。これは、0.01%以上である場合、析出物として結合しない固溶窒素により、素材の靭性/延性の低下が発生する虞があるためである。
N: less than 0.01% In the present invention, the nitrogen content must be controlled at less than 0.01%. This is because if the content is 0.01% or more, there is a possibility that the toughness/ductility of the material may be lowered due to dissolved nitrogen that does not combine as precipitates.

P:0.03%以下、S:0.01%未満
P及びSは不純物として混入し、Pは結晶粒界に偏析して靭性を低下させるため、その含有量を0.03%以下に制限することが好ましい。そして、Sは低融点元素であり、粒界偏析して靭性を低下させ、 硫化物を生成させて製品に有害な影響を及ぼすため、その含有量を0.01%未満に管理することが好ましい。
P: 0.03% or less, S: less than 0.01% P and S are mixed as impurities, and P segregates at grain boundaries and reduces toughness, so the content is limited to 0.03% or less. preferably. S is an element with a low melting point, segregates at grain boundaries to reduce toughness, and produces sulfides, which adversely affect the product. .

また、本発明の冷間圧造用線材は、その内部組織が20~90面積%の初析フェライト組織、5面積%以下のベイナイトとマルテンサイト組織、及び残りのパーライト組織を含み、平衡初析フェライト分率のうち80%以上が平均粒径5μmm以下の初析フェライト組織である。 In addition, the wire rod for cold heading of the present invention has an internal structure containing 20 to 90 area % of pro-eutectoid ferrite structure, 5 area % or less of bainite and martensite structure, and the remaining pearlite structure, and has equilibrium pro-eutectoid ferrite. 80% or more of the fraction is the proeutectoid ferrite structure with an average grain size of 5 μmm or less.

本発明において平衡初析フェライト分率とは、各組成の状態図においてA1直上の温度でのこの原理による初析フェライト分率を意味する。本発明では、Thermo calc.という名のソフトウェアを用いて計算された状態図を活用した。 In the present invention, the equilibrium pro-eutectoid ferrite fraction means the pro-eutectoid ferrite fraction according to this principle at a temperature just above A1 in the phase diagram of each composition. In the present invention, Thermo calc. We utilized a phase diagram calculated using a software called

本発明は、このような平衡初析フェライト分率が80%以上である初析フェライト組織を有することを特徴とする。本発明鋼の初析フェライト分率は、通常の冷却中に生成及び成長する線材内の初析フェライトと比較して、Ae以下~730℃の温度で仕上げ圧延中の初析フェライトが生成及び成長し、冷却中に成長するため、通常の方法で製造された同一組成の線材内の初析フェライト分率よりも高い。 The present invention is characterized by having such a pro-eutectoid ferrite structure with an equilibrium pro-eutectoid ferrite fraction of 80% or more. The pro-eutectoid ferrite fraction of the steel of the present invention is higher than the pro-eutectoid ferrite in the wire rod that is formed and grown during normal cooling, and the pro-eutectoid ferrite during finish rolling is formed and grown at a temperature of Ae 3 or less to 730 ° C. Since it grows and grows during cooling, it is higher than the pro-eutectoid ferrite fraction in wires of the same composition produced by conventional methods.

また、本発明で初析フェライト平均粒径を5μmm以下に制限する理由は、上記初析フェライトが仕上げ圧延中に急速に生成されることにより結晶粒が微細化するためであり、これによって、後工程の軟質化熱処理時、上記微細な結晶粒によって炭素の拡散を加速させ、通常よりも短い時間で球状化組織を得ることができるためである。そして、ベイナイト及びマルテンサイト組織の面積率を5%以下に制御する理由は、上記組織が存在する場合、軟質化熱処理前に伸線工程、或いはアンコイル時に素材が断線する虞があるためである。 Further, the reason why the pro-eutectoid ferrite average grain size is limited to 5 μmm or less in the present invention is that the pro-eutectoid ferrite is rapidly generated during the finish rolling, thereby making the crystal grains finer. This is because the diffusion of carbon is accelerated by the fine crystal grains during the softening heat treatment in the process, and a spheroidized structure can be obtained in a shorter time than usual. The reason why the area ratio of the bainite and martensite structures is controlled to 5% or less is that if the above structures exist, the material may break during the wire drawing process or uncoiling before the softening heat treatment.

また、本発明の線材の場合には、結晶粒微細化に伴う線材の硬さが通常材と比較して高く、それぞれの微細組織を超微細硬度で測定したとき、フェライトは、通常材に比べて硬度値が高く、パーライトの場合は、逆に硬度値が低いという特性がある。すなわち、本発明においては、上記微細組織別の超微細硬度が下記関係式1及び関係式2を満たすようにすることが好ましい。下記関係式1及び2を満たすことで同一球状化熱処理時の球状化時間を短縮する効果がある。線材の微細組織別の硬度は、合金元素(C、Si、Mn)が増加するにつれて向上するが、本発明材の場合は、初析フェライトは通常材と比べて高い硬度値を有し、パーライトは通常材と比べて低い硬度値を特徴とし、下記関係式により区分される。
[関係式1]
初析フェライト:Hardness(Hv)≧128+61*([C]+[Si]/8+[Mn]/18)
[関係式2]
パーライト:Hardness(Hv)≦254+23*([C]+[Si]/8+[Mn]/18)
In addition, in the case of the wire of the present invention, the hardness of the wire due to the refinement of the crystal grains is higher than that of the ordinary material, and when each microstructure is measured by ultrafine hardness, the ferrite has a higher hardness than that of the ordinary material. In contrast, pearlite has a low hardness value. That is, in the present invention, it is preferable that the ultrafine hardness for each microstructure satisfies the following relational expressions 1 and 2. Satisfying the following relational expressions 1 and 2 has the effect of shortening the spheroidizing time during the same spheroidizing heat treatment. The hardness of each microstructure of the wire improves as the alloying elements (C, Si, Mn) increase. is characterized by a lower hardness value than ordinary materials, and is classified by the following relational expression.
[Relationship 1]
Proeutectoid ferrite: Hardness (Hv) ≥ 128 + 61 * ([C] + [Si] / 8 + [Mn] / 18)
[Relational expression 2]
Perlite: Hardness (Hv) ≤ 254 + 23 * ([C] + [Si] / 8 + [Mn] / 18)

次に、本発明の軟質化熱処理を加速させることができる超細粒線材を製造する方法について詳細に説明する。
本発明の軟質化熱処理時間を短縮することができる冷間圧造用線材の製造方法は、上記の組成成分を有する鋼材を900~1050℃の範囲で加熱した後、一定時間維持する工程、上記鋼材のオーステナイト結晶粒サイズ(AGS)を5~20μmの範囲で制御する工程、上記AGSが制御された鋼材をAe以下~730℃以上の温度で0.3~2.0の変形量で線材形状に仕上げ熱間圧延する工程、及び上記仕上げ熱間圧延された線材を3~20℃/sの冷却速度で冷却する工程、を含む。
Next, a detailed description will be given of a method for producing an ultra-fine grain wire capable of accelerating the softening heat treatment of the present invention.
A method for producing a wire rod for cold heading that can shorten the softening heat treatment time of the present invention includes a step of heating a steel material having the above-described composition in a range of 900 to 1050 ° C. and then maintaining the steel material for a certain period of time. A step of controlling the austenite grain size (AGS) in the range of 5 to 20 μm, and the steel material in which the AGS is controlled is Ae at a temperature of 3 or less to 730 ° C. or more and a wire shape with a deformation amount of 0.3 to 2.0 and cooling the finish hot rolled wire rod at a cooling rate of 3 to 20° C./s.

まず、本発明は、上記の組成成分を有する鋼材を900~1050℃の範囲で加熱した後、180分以内維持する。これは、上記加熱温度が1050℃を超えると、AGSが大きく成長するようになり、仕上げ圧延中により多くの変形量で初析フェライトを誘導して結晶粒を微細化させる上で問題があり、一方、900℃未満であると、粗圧延中に圧下量の増加により装備への過負荷がかかるためである。そして、保持時間が180分を超えると、上記理由からAGSが大きく成長するようになり、仕上げ圧延中により多くの変形量で初析フェライトを誘導する必要があり、結晶粒を微細化させる上で問題があるためである。 First, in the present invention, a steel material having the above compositional components is heated in the range of 900 to 1050° C. and maintained within 180 minutes. This is because when the heating temperature exceeds 1050 ° C., AGS grows greatly, and there is a problem in inducing pro-eutectoid ferrite with a large amount of deformation during finish rolling and refining the crystal grains. On the other hand, if it is less than 900° C., the equipment will be overloaded due to an increase in rolling reduction during rough rolling. When the holding time exceeds 180 minutes, the AGS grows large for the above reason, and it is necessary to induce pro-eutectoid ferrite with a larger amount of deformation during finish rolling. This is because there is a problem.

続いて、本発明においては仕上げ熱間圧延の直前に上記鋼材のオーステナイト結晶粒サイズ(AGS)を5~20μmの範囲で制御する。このようにオーステナイト結晶粒サイズ(AGS)を制御する理由は、仕上げ圧延中に0.3以上の変形量でも初析フェライトを誘導して結晶粒を微細化させるためである。もし、上記サイズが20μmを超えると、より多くの仕上げ圧延量が要求されて結晶粒微細化が難しくなり、粗圧延中に5μm以下のAGS素材を製作するためには、通常の製造方法よりさらに多くの変形量が必要となることから、ビュレットサイズを増加させるか、或いはinterpass timeを減らすために素材の移送速度を増加させなければならないという工程的制約の問題がある。 Subsequently, in the present invention, the austenite grain size (AGS) of the steel material is controlled within the range of 5 to 20 μm immediately before finish hot rolling. The reason for controlling the austenite grain size (AGS) in this way is to induce pro-eutectoid ferrite and refine the grains even if the amount of deformation is 0.3 or more during finish rolling. If the size exceeds 20 μm, a larger amount of finish rolling is required, making it difficult to refine grains. Since a large amount of deformation is required, there is a problem of process constraints such as increasing the burette size or increasing the material transfer speed in order to reduce the interpass time.

そして、本発明においては上記AGSが制御された鋼材をAe以下~730℃以上の温度で0.3~2.0の変形量の線材形状に仕上げ熱間圧延する。
このとき、熱間仕上げ温度範囲をAe以下~730℃以上の温度範囲で制御することが好ましい。これは、Ae温度を超えると、初析フェライトが生成されず、結晶粒微細化に不利であり、一方、730℃未満であると、パーライトが圧延中に生成されて結晶粒微細化に不利であり、圧延温度が低くて圧延ロールへの過負荷がかかるためである。
In the present invention, the AGS-controlled steel material is finish hot rolled at a temperature of Ae 3 or less to 730° C. or more into a wire rod shape having a deformation amount of 0.3 to 2.0.
At this time, it is preferable to control the hot finishing temperature range within a temperature range of Ae 3 or less to 730° C. or more. This is because when the Ae 3 temperature is exceeded, no proeutectoid ferrite is formed, which is unfavorable to grain refinement, while when it is less than 730 ° C, pearlite is formed during rolling, which is unfavorable to grain refinement. This is because the rolling temperature is low and the rolling rolls are overloaded.

そして、その変形量は0.3~2.0になるようにすることが好ましい。これは0.3以下の場合には、変形量が小さくて初析フェライトを誘導できず、結晶粒を微細化させることができなくなり、他方、2.0以上の場合には、変形量の増大によって圧延量に過負荷がかかり、所望の素材の直径を製造し難くなるためである。
続いて、本発明においては、上記仕上げ熱間圧延された線材を3~20℃/sの冷却速度で冷却することで上記のようなその内部の微細組織が細粒に制御された線材を得ることができる。このとき、冷却速度を3~20℃/sの範囲に制御する理由は、熱間圧延終了後、フェライト結晶粒サイズ(FGS)を5μm以下の結晶粒に成長を抑制するためである。
そして、本発明においては上記冷却された線材を球状化熱処理することができる。
It is preferable that the amount of deformation is 0.3 to 2.0. When this is 0.3 or less, the deformation amount is small and proeutectoid ferrite cannot be induced, and the crystal grains cannot be refined. On the other hand, when it is 2.0 or more, the deformation amount increases. This is because the amount of rolling is overloaded by the rolling, making it difficult to manufacture the desired material diameter.
Subsequently, in the present invention, the finish hot-rolled wire rod is cooled at a cooling rate of 3 to 20° C./s to obtain a wire rod in which the internal microstructure is controlled to fine grains as described above. be able to. At this time, the reason for controlling the cooling rate in the range of 3 to 20° C./s is to suppress the growth of ferrite grain size (FGS) to 5 μm or less after hot rolling.
Then, in the present invention, the cooled wire can be subjected to a spheroidizing heat treatment.

具体的に、30%の断面減少伸線工程を経た後、690℃で2時間熱処理した後、焼入れすることができる。このような方法で製造された本発明の線材は、パーライト内のセメンタイト(cementite)の分節速度が増加し、セメンタイトの形状比が2.5以下と優れ、硬度も10Hv程度低い。 Specifically, the wire may be quenched after undergoing a 30% cross-sectional reduction wire drawing process, heat-treated at 690° C. for 2 hours, and then quenched. The wire rod of the present invention manufactured by such a method has an increased segmentation speed of cementite in pearlite, an excellent cementite shape ratio of 2.5 or less, and a hardness as low as 10 Hv.

以下、実施例を挙げて本発明を詳細に説明する。
(実施例)
下記表1に示した成分組成を有するビレットを9mmとなるように線材圧延した。発明例は本発明の成分範囲及び製造条件を満たすものであり、比較例は本発明の製造条件から外れたものである。
The present invention will be described in detail below with reference to examples.
(Example)
A billet having the composition shown in Table 1 below was wire-rolled to a thickness of 9 mm. The invention examples satisfy the component ranges and production conditions of the present invention, and the comparative examples are outside the production conditions of the present invention.

Figure 0007159445000001
*表1の冷却条件は、線材の表面温度が500℃に到達するまでの冷却速度(℃/s)
Figure 0007159445000001
*The cooling conditions in Table 1 are the cooling rate (°C/s) until the surface temperature of the wire reaches 500°C.

図1は、仕上げ熱間圧延前の鋼材のAGSを示す組織写真であって、(a)は発明例1を、そして(b)は比較例5を示す。AGSは、ASTM E112法を活用して測定した。上記比較例5の場合、他の条件に比べて高い加熱温度で加熱されたため、仕上げ圧延前のAGSが他の条件に比べて大きいことが分かる。一方、仕上げ圧延前の小さなAGSは、仕上げ圧延時の変形量によって粒界で多くの初析フェライトを生成させることができるため、これにより圧延中に初析フェライトの生成及び成長によって最終線材の結晶粒サイズを小さくすることができる。 FIG. 1 is a micrograph showing AGS of a steel material before finish hot rolling, in which (a) shows Inventive Example 1 and (b) shows Comparative Example 5. FIG. AGS was measured utilizing the ASTM E112 method. In the case of Comparative Example 5, since the steel was heated at a higher heating temperature than under other conditions, it can be seen that the AGS before finish rolling is larger than under other conditions. On the other hand, a small AGS before finish rolling can generate a large amount of pro-eutectoid ferrite at grain boundaries due to the amount of deformation during finish rolling. Grain size can be reduced.

下記表2は、上記製造条件で製作された線材の微細組織と、軟質化熱処理された軟質化材の微細組織及び機械的物性を示している。
一方、表2において初析フェライト相分率は、試験片を切断、研磨、及びエッチングを行った後、電子顕微鏡を介して微細組織写真を得て、image j’というプログラムを介して該当相を区分して角条件当たり×1000倍で5枚のSEM写真で面積を計算し、その平均値を示したものである。
Table 2 below shows the microstructure of the wire manufactured under the above manufacturing conditions, and the microstructure and mechanical properties of the softened material subjected to the softening heat treatment.
On the other hand, in Table 2, the proeutectoid ferrite phase fraction was obtained by cutting, polishing, and etching the test piece, obtaining a microstructure photograph through an electron microscope, and identifying the corresponding phase through a program called image j'. The area was calculated from five SEM photographs at ×1000 times per corner condition, and the average value is shown.

超微細硬度は、試験片を切断、研磨、エッチングを行った後、光学顕微鏡を介して超微細硬度を測定する微細組織部位を確認し、ピラミッド型ダイヤモンド圧粒子0.2942Nの圧力で初析フェライト及びパーライトをそれぞれ10個ずつ圧入した後、圧入した痕跡の長さを測定して硬度値に換算し、これを平均した。 After cutting, polishing, and etching the test piece, the ultrafine hardness was measured through an optical microscope to confirm the microstructure site, and the proeutectoid ferrite was measured under the pressure of 0.2942 N of pyramidal diamond pressure particles. After 10 pieces of perlite and 10 perlite were pressed in, the length of the press-in trace was measured, converted into a hardness value, and averaged.

線材硬度値及び球状化熱処理後の軟質化材の硬度値は、試験片を切断、研磨、エッチングを行った後、光学顕微鏡を介して硬さを測定する微細組織部位を確認し、ピラミッド型ダイヤモンド圧粒子98.1Nの圧力でC断面1/4部に10回圧入した後、圧入した痕跡の長さを測定して硬度値に換算し、これを平均した値である。
また、アスペクト比(Aspect ratio)は,×5000倍で3枚のSEM写真を撮影し、SEM写真内に存在するすべてのセメンタイトの長軸/短縮の長さを測定し、それぞれの長さ比を平均した値である。
The wire hardness value and the hardness value of the softened material after spheroidizing heat treatment are obtained by cutting, polishing, and etching the test piece, and then using an optical microscope to check the microstructure area for hardness measurement. After press-fitting 1/4 part of the C cross section 10 times with a pressure of 98.1 N of pressure particles, the length of the press-fitting trace was measured, converted into a hardness value, and the average value was obtained.
In addition, the aspect ratio is obtained by taking three SEM photographs at ×5000 times, measuring the long axis/shortened length of all cementite present in the SEM photographs, and calculating the length ratio of each. Average value.

Figure 0007159445000002
*表2のaは初析フェライト結晶粒サイズ(μm)、bは初析フェライト平衡分率(%)、cは初析フェライト分率(%)、dはフェライト超微細硬度(Hv)、eはフェライト超微細硬度パラメータ、Hardness(Hv)≧128+61*([C]+[Si]/8+[Mn]/18)、fはパーライト超微細硬度(Hv)、gはパーライト超微細硬度パラメータ、Hardness(Hv)≦254+23*([C]+[Si]/8+[Mn]/18)、iは熱処理後、セメンタイトのアスペクト比、そして、jは球状化熱処理後の硬さ(Hv)を示す。
Figure 0007159445000002
* In Table 2, a is pro-eutectoid ferrite grain size (μm), b is pro-eutectoid ferrite equilibrium fraction (%), c is pro-eutectoid ferrite fraction (%), d is ferrite ultrafine hardness (Hv), e is the ferrite ultrafine hardness parameter, Hardness (Hv) ≥ 128 + 61 * ([C] + [Si] / 8 + [Mn] / 18), f is the pearlite ultrafine hardness (Hv), g is the pearlite ultrafine hardness parameter, Hardness (Hv)≦254+23*([C]+[Si]/8+[Mn]/18), i is the aspect ratio of cementite after heat treatment, and j is the hardness (Hv) after spheroidizing heat treatment.

具体的に、比較例1、2は圧延温度が887℃及び862℃とAe以上の温度で仕上げ圧延されたため、初析フェライトが誘導されなかった。比較例3の場合、線材の表面温度が500℃まで到達する冷却速度が1℃/sと低速であったため初析フェライトが非常に成長した。比較例4の場合、仕上げ圧延中の変形量が0.1と非常に小さかったため、変形による初析フェライトを誘導することができなかった。そして、比較例5の場合、上述したとおり、加熱温度が1120℃と他の条件に比べて高かったため、仕上げ圧延前のAGSが他の条件に比べて大きく、圧延中に十分に初析フェライトが誘導されなかった。 Specifically, in Comparative Examples 1 and 2, pro-eutectoid ferrite was not induced because finish rolling was performed at a rolling temperature of 887° C. and 862° C., which is Ae 3 or higher. In the case of Comparative Example 3, since the cooling rate at which the surface temperature of the wire reached 500° C. was as low as 1° C./s, the pro-eutectoid ferrite grew significantly. In the case of Comparative Example 4, since the amount of deformation during finish rolling was as small as 0.1, pro-eutectoid ferrite due to deformation could not be induced. In the case of Comparative Example 5, as described above, the heating temperature was 1120 ° C., which was higher than other conditions, so the AGS before finish rolling was larger than other conditions, and pro-eutectoid ferrite was sufficiently formed during rolling. was not induced.

図2は、線材圧延後の冷却で得られた線材の微細組織を示す組織であり、(a)は発明例2を、そして(b)は比較例1を示す。
表2において比較例に対する発明例は、フェライトの結晶粒サイズが小さく、初析フェライト分率が平衡分率の80%以上となり、初析フェライト分率が高いことが特徴である。また、発明例のフェライトの超微細硬度は、比較例に比べてフェライトの硬度値が高く、逆にパーライトの硬度値は、比較例に比べて低いことが特徴である。
FIG. 2 shows microstructures of wire rods obtained by cooling after wire rolling, (a) showing invention example 2 and (b) showing comparative example 1. FIG.
In Table 2, the inventive examples compared to the comparative examples are characterized by a small ferrite grain size and a high pro-eutectoid ferrite fraction of 80% or more of the equilibrium fraction. In addition, the ultrafine hardness of the ferrite of the invention example is characterized in that the hardness value of ferrite is higher than that of the comparative example, and the hardness value of pearlite is lower than that of the comparative example.

そして、この時、本発明例の線材の微細組織は、フェライト超微細硬度パラメータ、Hardness(Hv)≧128+61*([C]+[Si]/8+[Mn]/18)、パーライト超微細硬度パラメータ、Hardness(Hv)≦254+23*([C]+[Si]/8+[Mn]/18)のすべてを満たしていることが確認できる。
一方、本発明例の線材は、結晶粒微細化により比較例に比べて10Hv程度高い線材の硬さを示したが、690℃で2時間熱処理した後に球状化された素材の硬さは発明例に比べて10Hv低かった。
At this time, the fine structure of the wire rod of the example of the present invention is the ferrite ultrafine hardness parameter, Hardness (Hv) ≥ 128 + 61 * ([C] + [Si] / 8 + [Mn] / 18), the pearlite ultrafine hardness parameter , Hardness (Hv)≦254+23*([C]+[Si]/8+[Mn]/18).
On the other hand, the wires of the present invention showed a wire hardness higher than that of the comparative example by about 10 Hv due to the refinement of the crystal grains, but the hardness of the material spheroidized after heat treatment at 690 ° C. for 2 hours was lower than that of the wires of the invention. 10Hv lower than

図3は、球状化熱処理後の線材の微細組織を示す組織であり、(a)は発明例1を、そして(b)は比較例1を示す。図3に示すように、セメンタイトのアスペクト比が2.5以下であることから、結晶粒微細化によってパーライト内のセメンタイトが690℃、2時間という短い時間の間でも、十分に分節されたことが確認できる。 FIG. 3 is a structure showing the microstructure of the wire rod after the spheroidizing heat treatment, (a) showing Inventive Example 1 and (b) showing Comparative Example 1. FIG. As shown in FIG. 3, since the aspect ratio of cementite is 2.5 or less, it can be said that the cementite in the pearlite was sufficiently segmented by crystal grain refinement even at 690° C. for a short time of 2 hours. I can confirm.

上記のとおり、本発明は、限定された実施例及び実験例によって説明されたが、本発明はこれによって限定されず、本発明が属する技術分野で通常の知識を有する者により、本発明の技術思想及び特許請求の範囲の均等範囲内で多様な修正及び変形が可能であることはもちろんである。

As described above, the present invention has been illustrated by limited examples and experimental examples, but the present invention is not limited thereto, and a person having ordinary knowledge in the technical field to which the present invention belongs can understand the techniques of the present invention. It goes without saying that various modifications and variations are possible within the equivalent scope of the concept and claims.

Claims (6)

重量%で、C:0.15~0.5%、Si:0.02~0.4%、Mn:0.3~1.2%、Al:0.02~0.05%、P:0.03%以下、S:0.01%未満、N:0.01%未満を含み、残りのFe及びその他の不可避不純物からなり、
その内部の微細組織が20~90面積%の初析フェライト組織、5面積%以下のベイナイトとマルテンサイト組織、及び残りのパーライト組織を含み、平衡初析フェライト分率のうち80%以上が平均粒径5μmm以下である初析フェライト組織であり、そして
前記微細組織別の超微細硬度は、下記関係式1及び関係式2を満たすことを特徴とする軟質化熱処理時間を短縮することができる冷間圧造用線材。
[関係式1]
初析フェライト:Hardness(Hv)≧128+61*([C]+[Si]/8+[Mn]/18)
[関係式2]
パーライト:Hardness(Hv)≦254+23*([C]+[Si]/8+[Mn]/18)
% by weight, C: 0.15-0.5%, Si: 0.02-0.4%, Mn: 0.3-1.2%, Al: 0.02-0.05%, P: 0.03% or less, S: less than 0.01%, N: less than 0.01%, and the remaining Fe and other inevitable impurities,
The internal fine structure contains 20 to 90 area% pro-eutectoid ferrite structure, 5 area% or less bainite and martensite structures, and the remaining pearlite structure, and 80% or more of the equilibrium pro-eutectoid ferrite fraction is average grains. It has a pro-eutectoid ferrite structure with a diameter of 5 μmm or less, and the ultrafine hardness of each microstructure satisfies the following relational expression 1 and relational expression 2. Cold heat treatment time can be shortened. Wire rod for forging.
[Relationship 1]
Proeutectoid ferrite: Hardness (Hv) ≥ 128 + 61 * ([C] + [Si] / 8 + [Mn] / 18)
[Relational expression 2]
Perlite: Hardness (Hv) ≤ 254 + 23 * ([C] + [Si] / 8 + [Mn] / 18)
前記Cが0.4~0.5%の範囲を満たすことを特徴とする請求項1に記載の軟質化熱処理時間を短縮することができる冷間圧造用線材。 The wire rod for cold heading according to claim 1, wherein the C content satisfies the range of 0.4 to 0.5%, and the softening heat treatment time can be reduced. 重量%で、C:0.15~0.5%、Si:0.02~0.4%、Mn:0.3~1.2%、Al:0.02~0.05%、P:0.03%以下、S:0.01%未満、N:0.01%未満を含み、残りのFe及びその他の不可避不純物からなる鋼材を900℃以上~1050℃以下に加熱した後、180分以内維持する工程、
前記鋼材のオーステナイト結晶粒サイズ(AGS)を5~20μmの範囲で制御する工程、
前記AGSが制御された鋼材をAe3以下~730℃以上の温度で0.3~2.0の変形量で線材形状に仕上げ熱間圧延する工程、及び
前記仕上げ熱間圧延された線材を3~20℃/sの冷却速度で冷却する工程、を含み、
前記冷却で製造された線材は、
その内部の微細組織が20~90面積%の初析フェライト組織、5面積%以下のベイナイトとマルテンサイト組織、及び残りのパーライト組織を含み、平衡初析フェライト分率のうち80%以上が平均粒径5μmm以下である初析フェライト組織であり、
前記微細組織別の超微細硬度は、下記関係式1及び関係式2を満たすことを特徴とする軟質化熱処理時間を短縮することができる冷間圧造用線材の製造方法。
[関係式1]
初析フェライト:Hardness(Hv)≧128+61*([C]+[Si]/8+[Mn]/18)
[関係式2]
パーライト:Hardness(Hv)≦254+23*([C]+[Si]/8+[Mn]/18)
% by weight, C: 0.15-0.5%, Si: 0.02-0.4%, Mn: 0.3-1.2%, Al: 0.02-0.05%, P: 180 minutes after heating a steel material containing 0.03% or less, S: less than 0.01%, N: less than 0.01%, and remaining Fe and other inevitable impurities to 900 ° C. or higher and 1050 ° C. or lower. process to maintain within
A step of controlling the austenite grain size (AGS) of the steel material in the range of 5 to 20 μm;
A step of finish hot rolling the AGS-controlled steel material into a wire rod shape at a temperature of Ae 3 or less to 730 ° C. or more with a deformation amount of 0.3 to 2.0; cooling at a cooling rate of 20 ° C./s,
The wire rod manufactured by the cooling is
The internal fine structure contains 20 to 90 area% pro-eutectoid ferrite structure, 5 area% or less bainite and martensite structures, and the remaining pearlite structure, and 80% or more of the equilibrium pro-eutectoid ferrite fraction is average grains. A proeutectoid ferrite structure having a diameter of 5 μmm or less,
A method for producing a wire rod for cold heading capable of shortening the softening heat treatment time, wherein the ultrafine hardness for each microstructure satisfies the following relational expressions 1 and 2 .
[Relationship 1]
Proeutectoid ferrite: Hardness (Hv) ≥ 128 + 61 * ([C] + [Si] / 8 + [Mn] / 18)
[Relational expression 2]
Perlite: Hardness (Hv) ≤ 254 + 23 * ([C] + [Si] / 8 + [Mn] / 18)
前記Cは0.4~0.5%の範囲を満たすことを特徴とする請求項3に記載の軟質化熱処理時間を短縮することができる冷間圧造用線材の製造方法。 4. The method for producing a wire rod for cold forging capable of shortening the softening heat treatment time according to claim 3, wherein the C satisfies the range of 0.4 to 0.5%. 前記冷却された線材を球状化熱処理する工程をさらに含むことを特徴とする請求項3に記載の軟質化熱処理時間を短縮することができる冷間圧造用線材の製造方法。 4. The method of claim 3, further comprising subjecting the cooled wire to a spheroidizing heat treatment to shorten the softening heat treatment time. 前記球状化熱処理後のパーライト内のセメンタイトのアスペクト比が2.5以下であることを特徴とする請求項に記載の軟質化熱処理時間を短縮することができる冷間圧造用線材の製造方法。
6. The method of manufacturing a wire rod for cold heading according to claim 5 , wherein the cementite in the pearlite after the spheroidizing heat treatment has an aspect ratio of 2.5 or less.
JP2021506295A 2018-08-08 2019-08-02 Soft heat treatment time shortened cold forging wire and its manufacturing method Active JP7159445B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
KR10-2018-0092288 2018-08-08
KR1020180092288A KR102065264B1 (en) 2018-08-08 2018-08-08 Wire rod for chq capable of reducing softening treatment time, and method for manufaturing the same
PCT/KR2019/095030 WO2020032785A1 (en) 2018-08-08 2019-08-02 Wire rod for cold heading, capable of reducing softening thermal treatment time, and method for manufacturing same

Publications (2)

Publication Number Publication Date
JP2021533271A JP2021533271A (en) 2021-12-02
JP7159445B2 true JP7159445B2 (en) 2022-10-24

Family

ID=69158381

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021506295A Active JP7159445B2 (en) 2018-08-08 2019-08-02 Soft heat treatment time shortened cold forging wire and its manufacturing method

Country Status (4)

Country Link
JP (1) JP7159445B2 (en)
KR (1) KR102065264B1 (en)
CN (1) CN112703266B (en)
WO (1) WO2020032785A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102065265B1 (en) * 2018-08-08 2020-01-10 주식회사 포스코 Wire rod for chq capable of reducing softening treatment time, and method for manufaturing the same
WO2022220238A1 (en) * 2021-04-15 2022-10-20 東京製綱株式会社 Heat-treated steel material and heat treatment method for steel material
CN114855065A (en) * 2022-04-29 2022-08-05 包头钢铁(集团)有限责任公司 Method for shortening aging time of SWRH82B wire rod
CN116060440B (en) * 2023-03-06 2023-06-20 太原科技大学 A kind of nickel base alloy wire rod and preparation method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009275252A (en) 2008-05-13 2009-11-26 Nippon Steel Corp Steel wire rod excellent in cold forgeability after annealing, and method for production thereof
JP2013007090A (en) 2011-06-23 2013-01-10 Kobe Steel Ltd Steel for mechanical structure for cold working, method for manufacturing the same, and component for mechanical structure
WO2017122830A1 (en) 2016-01-15 2017-07-20 新日鐵住金株式会社 Steel wire for non-thermal-refined machine component, and non-thermal-refined machine component

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11131187A (en) * 1997-10-24 1999-05-18 Kobe Steel Ltd Rapidly graphitizable steel and its production
KR100946129B1 (en) * 2002-12-11 2010-03-10 주식회사 포스코 Spherical heat treatment method to soften medium carbon steel quickly
JP4340754B2 (en) 2003-12-26 2009-10-07 独立行政法人物質・材料研究機構 Steel having high strength and excellent cold forgeability, and excellent molded parts such as screws and bolts or shafts having excellent strength, and methods for producing the same.
KR100722394B1 (en) 2005-12-26 2007-05-28 주식회사 포스코 High carbon steel sheet having excellent spheroidizing annealing properties and method for manufacturing the same
JP5618917B2 (en) 2011-06-23 2014-11-05 株式会社神戸製鋼所 Machine structural steel for cold working, method for producing the same, and machine structural parts
JP5357994B2 (en) * 2011-12-19 2013-12-04 株式会社神戸製鋼所 Machine structural steel for cold working and method for producing the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009275252A (en) 2008-05-13 2009-11-26 Nippon Steel Corp Steel wire rod excellent in cold forgeability after annealing, and method for production thereof
JP2013007090A (en) 2011-06-23 2013-01-10 Kobe Steel Ltd Steel for mechanical structure for cold working, method for manufacturing the same, and component for mechanical structure
WO2017122830A1 (en) 2016-01-15 2017-07-20 新日鐵住金株式会社 Steel wire for non-thermal-refined machine component, and non-thermal-refined machine component

Also Published As

Publication number Publication date
CN112703266A (en) 2021-04-23
WO2020032785A1 (en) 2020-02-13
KR102065264B1 (en) 2020-01-10
CN112703266B (en) 2022-09-13
JP2021533271A (en) 2021-12-02

Similar Documents

Publication Publication Date Title
JP7159445B2 (en) Soft heat treatment time shortened cold forging wire and its manufacturing method
JP4018905B2 (en) Hot rolled wire rod and bar for machine structure and manufacturing method thereof
JP6226086B2 (en) Rolled steel bar or wire rod for cold forging parts
CN102741441A (en) Steel wire with excellent cold forging characteristics and manufacturing process thereof
JP5576785B2 (en) Steel material excellent in cold forgeability and manufacturing method thereof
JP6226085B2 (en) Rolled steel bar or wire rod for cold forging parts
JP6566168B1 (en) High-strength cold-rolled steel sheet and manufacturing method thereof
JP7576033B2 (en) Wire rod that can omit softening heat treatment and its manufacturing method
KR101977499B1 (en) Wire rod without spheroidizing heat treatment, and method for manufacturing thereof
CN102549174B (en) High-carbon soft wire rod not requiring softening treatment and manufacturing method thereof
KR102131530B1 (en) Steel wire rod having excellent spheroidizing heat treatment properties and method of manufacturing the same
JP7221478B2 (en) Cold heading wire rod for shortening soft heat treatment time and its manufacturing method
JP7389909B2 (en) Bearing wire rod and its manufacturing method
US20240254588A1 (en) Wire rod having excellent drawability, and manufacturing method therefor
KR102065266B1 (en) Wire rod for chq capable of reducing softening treatment time, and method for manufaturing the same
CN112996940B (en) Steel wire rod enabling softening heat treatment to be omitted and method for manufacturing same
CN114829661A (en) Steel wire rod having excellent spheroidizing heat treatment characteristics and method for manufacturing same
JP2024500146A (en) Ultra-high strength spring wire rod, steel wire and manufacturing method thereof
JP2023507640A (en) Wire rod excellent in spheroidizing heat treatment and method for producing the same
JPS6220823A (en) Manufacture of high strength and toughness ultrathin steel wire

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210405

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220607

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220907

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220920

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221012

R150 Certificate of patent or registration of utility model

Ref document number: 7159445

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350