JPS63193400A - Electrically writable read-only memory - Google Patents
Electrically writable read-only memoryInfo
- Publication number
- JPS63193400A JPS63193400A JP62026619A JP2661987A JPS63193400A JP S63193400 A JPS63193400 A JP S63193400A JP 62026619 A JP62026619 A JP 62026619A JP 2661987 A JP2661987 A JP 2661987A JP S63193400 A JPS63193400 A JP S63193400A
- Authority
- JP
- Japan
- Prior art keywords
- memory cells
- data line
- word lines
- memory
- gate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000008878 coupling Effects 0.000 claims abstract description 8
- 238000010168 coupling process Methods 0.000 claims abstract description 8
- 238000005859 coupling reaction Methods 0.000 claims abstract description 8
- 230000003071 parasitic effect Effects 0.000 claims abstract description 6
- 230000000694 effects Effects 0.000 description 4
- 230000004888 barrier function Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000002784 hot electron Substances 0.000 description 1
- 230000009191 jumping Effects 0.000 description 1
- 231100000989 no adverse effect Toxicity 0.000 description 1
Landscapes
- Read Only Memory (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、紫外線によって電気的書込み可能な読出し専
用メモリ(以下UV−EFROMと記す)に関する。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a read-only memory (hereinafter referred to as UV-EFROM) electrically writable by ultraviolet light.
UV−EPROMセルへの書込みはコントロールゲート
及びトレインに高電圧を印加して、ワード線及びデータ
線でプログラムしようとするメモリセルを選択し、ピン
チオフ領域の近傍に発生した高エネルギー電子(ホット
エレクトロン)をゲート絶縁膜のエネルギー障壁を飛び
越えてフローティングゲートに注入することにより行う
。To write to a UV-EPROM cell, apply a high voltage to the control gate and train, select the memory cell to be programmed using the word line and data line, and use high-energy electrons (hot electrons) generated near the pinch-off region. This is done by injecting the energy into the floating gate by jumping over the energy barrier of the gate insulating film.
一方、この書込みのために選択されたメモリセルと同一
データ線に接続された他の非選択メモリセルは、ゲート
電位が接地レベルで、ドレインに高電圧が印加された状
態にあり、フローティングゲートとドレイン間の寄生容
量結合により、フローティングゲートの電位が上昇する
。On the other hand, other unselected memory cells connected to the same data line as the memory cell selected for writing have their gate potential at the ground level and a high voltage applied to their drains, and have floating gates. The potential of the floating gate increases due to parasitic capacitive coupling between the drains.
この結果により、ゲート電位が接地レベル時にメモリセ
ルが導通するに至る時のドレイン電圧をVDFとすると
、このVDFがメモリセルの書き込みに必要とするトレ
イン電圧より低い場合、書込みに必要な電圧がデータ線
に印加される前に非選択のメモリセルが導通しリークす
る。From this result, if the drain voltage at which the memory cell becomes conductive when the gate potential is at ground level is VDF, and this VDF is lower than the train voltage required for writing to the memory cell, the voltage required for writing is Unselected memory cells conduct and leak before the voltage is applied to the line.
このようにしてリークするメモリセルが数多くになると
、データ線に高電圧を印加する回路の電流供給能力の関
係上からデータ線にVDF以上の電圧が印加できなくな
り、書込みができなくなることが知られている。It is known that when the number of memory cells leaking in this way increases, a voltage higher than VDF cannot be applied to the data line due to the current supply capacity of the circuit that applies a high voltage to the data line, and writing becomes impossible. ing.
このような現象は、メモリセルの微細化が進みチャンネ
ル長が短かくなってくるとますます顕著になる。このた
め、従来のUV−EPROMは、第2図に示如く、メモ
リセルMAI−MA4それぞれのソース側と接地電位と
の間に、エンハンスメントトランジスタCA1〜CA4
を挿入しているものがある。Such a phenomenon becomes more and more noticeable as the miniaturization of memory cells progresses and the channel length becomes shorter. Therefore, as shown in FIG. 2, in the conventional UV-EPROM, enhancement transistors CA1 to CA4 are connected between the sources of the memory cells MAI to MA4 and the ground potential.
There are some that insert .
例えば、メモリセルMA、に書込みを行う場合、同一デ
ータ線DA、に接続された他の非選択セルMA2〜MA
4は、挿入されたエンハンスメントトランジスタCA2
〜CA 4のゲートをワード線WA、〜WA4に接続し
ておくこと番こより、オフ状態に留められるため、接地
電位から切りはなされる。この結果、前述の寄生容量結
合により非選択セルが導通したとしても、データ線D
A lの電位には影響を与えず、書込みに必要な電圧が
印加できるようになる。For example, when writing to memory cell MA, other unselected cells MA2 to MA connected to the same data line DA
4 is the inserted enhancement transistor CA2
Since the gate of ~CA4 is connected to the word lines WA and ~WA4, it is kept in the off state, so that it is disconnected from the ground potential. As a result, even if the unselected cells become conductive due to the parasitic capacitive coupling described above, the data line D
The voltage necessary for writing can be applied without affecting the potential of Al.
上述した従来構成においては、メモリセル個々に非選択
時において接地電位と切りはなすためのトランジスタを
、設けねばならず、素子数が多くなり、チップサイズの
増大につながるという欠点があった。In the conventional configuration described above, a transistor must be provided for each memory cell to disconnect it from the ground potential when it is not selected, which has the drawback of increasing the number of elements and increasing the chip size.
本発明のUV−EFROMは、同一データ線に接続され
た複数メモリセルのソースを、メモリセルのドレイン・
フローティングゲート間の寄生容量結合によるメモリセ
ルの導通を許容できる範囲内で共通接続し、この共通接
続側゛所と接地電位との間に、共通接続対象のメモリセ
ル群のワード線のいずれかが選択されたときにのみ導通
するトランジスタを有している。The UV-EFROM of the present invention connects the sources of multiple memory cells connected to the same data line to the drains and
The floating gates are commonly connected within a range that allows conduction of the memory cells due to parasitic capacitance coupling, and one of the word lines of the memory cells to be commonly connected is connected between this common connection side and the ground potential. It has a transistor that becomes conductive only when selected.
次に、本発明について図面を参照して説明する。 Next, the present invention will be explained with reference to the drawings.
第1図は、本発明の一実施例であり、同一データ線D1
上の4個のメモリセルMl〜M、およびM s T=
M aのそれぞれを1組として、そのソース側を共通接
続している。FIG. 1 shows an embodiment of the present invention, in which the same data line D1
The upper four memory cells Ml to M, and M s T=
Each of M a is set as one set, and their source sides are commonly connected.
図中、W1〜W8はメモリセル間1〜M8等に対するワ
ード線、C1,C2はメモリセル群M1〜M4.M、〜
M8の共通接続されたソースと接地電位間に挿入された
Nチャンネルのエンハンスメントトランジスタ、X、、
X2は、エンハンスメントトランジスタc1.C,のゲ
ート入力である。ここで、ゲート入力x1はワード線W
1〜W4のうちのいずれかが、また、ゲートX2はワー
ド線W5〜W8のうちのいずれかがそれぞれ選択された
時、高レベルとなってエンハンスメントトランジスタC
1+ C2をオンさせ、その他の時はオフさせる。In the figure, W1 to W8 are word lines for memory cell groups 1 to M8, etc., and C1 and C2 are word lines for memory cell groups M1 to M4. M...
An N-channel enhancement transistor, X, inserted between the commonly connected sources of M8 and the ground potential.
X2 is an enhancement transistor c1. This is the gate input of C. Here, the gate input x1 is the word line W
When any one of word lines W5 to W4 is selected, and when one of word lines W5 to W8 is selected, the gate X2 becomes high level and the enhancement transistor C
1+ Turns on C2 and turns it off at other times.
いま、メモリセル4個に書込むため、データ線p1とワ
ード線Wフが選択されたとすると、トランジスタC2が
オンし、メモリセルM、〜M8のソースが接地電位とな
る。この時、非選択メモリセル4個〜M6およびM8は
、ゲート電位が接地レベルで、ドレインに高電圧がかか
った状態になり、データ線D1とメモリセルM1〜M6
.M。Assuming that data line p1 and word line W are selected to write data into four memory cells, transistor C2 is turned on and the sources of memory cells M and M8 are brought to ground potential. At this time, the four unselected memory cells M6 and M8 have their gate potentials at the ground level and a high voltage applied to their drains, and the data line D1 and memory cells M1 to M6
.. M.
のフローティンゲータと間の寄生容量結合により、それ
ぞれのフロティングゲートの電位が上昇する。The potential of each floating gate increases due to the parasitic capacitive coupling between the floating gate and the floating gate.
しかし、ソース側がエンハンスメントトランジスタC2
に接続されたメモリセルM、、M6およびM8以外のメ
モリセル、すなわちM、〜M4の各ソースは、エンハン
スメントトランジスタC1がオフのため接地電位と切り
はなされており、データ線D1の電位には全く影響を与
えない。However, the source side is the enhancement transistor C2.
Since the enhancement transistor C1 is off, the sources of the memory cells other than the memory cells M, , M6 and M8 connected to the data line D1 are disconnected from the ground potential, and the potential of the data line D1 is not connected to the potential of the data line D1. No effect at all.
また、メモリセルM5 、M6およびM8が、上記結合
により導通した場合でも、導通するメモリセルが3個だ
けのためデータ線D1への影響は軽微である。この結果
、メモリセルM、に書込みを行うためにデータ線り、に
印加される一高電圧への悪影響はほとんどなく、正確な
書込みができる。Furthermore, even if the memory cells M5, M6, and M8 are rendered conductive due to the above-described coupling, the effect on the data line D1 is slight because only three memory cells are rendered conductive. As a result, accurate writing can be performed with almost no adverse effect on the high voltage applied to the data line for writing into the memory cell M.
この様にメモリセル4個を1組とすることにより、同一
データ線上に、例えば1024個のメモリセルが接続さ
れる1メガビツトのUV−EFROMの場合、メモリセ
ルのソース側と接地電位との間に挿入されるトランジス
タを1024個から256個に削減することができる。In this way, by forming a set of four memory cells, in the case of a 1 megabit UV-EFROM in which, for example, 1024 memory cells are connected on the same data line, the connection between the source side of the memory cell and the ground potential is achieved. The number of transistors inserted into the circuit can be reduced from 1024 to 256.
本発明は、以上説明したような構成を採用することによ
り、書き込み時のカップリングのためにフローティング
ゲートの電位が上昇しUV−EPROMのメモリセルが
導通した場合でも、書込みを可能にしかつ素子数を減ら
し、ひいてはチップサイズを減少できる効果がある。By adopting the configuration described above, the present invention enables writing even when the floating gate potential rises due to coupling during writing and the UV-EPROM memory cell becomes conductive, and the number of elements can be reduced. This has the effect of reducing the chip size.
第1図は本発明の一実施例を示し、第2図は従来例を示
す。
D、、DA、・・・データ線、Wl〜W8.WA。
〜WA4・・・ワード線、M!〜M B 、 M A
1〜 MA4・・・メモリセル、CI 、C2、CAI
、CA2・・・エンハンスメントトランジスタ、X、
、X2・・・ゲート入力信号。FIG. 1 shows an embodiment of the present invention, and FIG. 2 shows a conventional example. D,, DA, . . . data lines, Wl to W8. WA. ~WA4...word line, M! ~M B, M A
1~MA4...Memory cell, CI, C2, CAI
, CA2... enhancement transistor, X,
, X2... Gate input signal.
Claims (1)
側を、該メモリセルのドレイン・フローティングゲート
間の寄生容量結合による該メモリセルの導通を許容でき
る範囲内で共通接続し、該共通接続個所と接地電位との
間に、該共通接続対象のメモリセルのワード線のいずれ
かが選択されたときにのみ導通するスイッチを一つ設け
たことを特徴とする電気的書込み可能な読出し専用メモ
リ。The source sides of multiple memory cells connected on the same data line are commonly connected within a range that allows conduction of the memory cells due to parasitic capacitance coupling between the drains and floating gates of the memory cells, and the common connection point is connected to the ground. 1. An electrically writable read-only memory, characterized in that one switch is provided between the potential and the switch that becomes conductive only when one of the word lines of the memory cells to be commonly connected is selected.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62026619A JPS63193400A (en) | 1987-02-06 | 1987-02-06 | Electrically writable read-only memory |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62026619A JPS63193400A (en) | 1987-02-06 | 1987-02-06 | Electrically writable read-only memory |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS63193400A true JPS63193400A (en) | 1988-08-10 |
Family
ID=12198491
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP62026619A Pending JPS63193400A (en) | 1987-02-06 | 1987-02-06 | Electrically writable read-only memory |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS63193400A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6654282B2 (en) | 2001-07-23 | 2003-11-25 | Seiko Epson Corporation | Nonvolatile semiconductor memory device |
US6744106B2 (en) | 2001-07-23 | 2004-06-01 | Seiko Epson Corporation | Non-volatile semiconductor memory device |
US6822926B2 (en) | 2001-07-23 | 2004-11-23 | Seiko Epson Corporation | Non-volatile semiconductor memory device |
JP2005353257A (en) * | 2004-06-08 | 2005-12-22 | Samsung Electronics Co Ltd | Semiconductor memory device |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS57150192A (en) * | 1981-03-13 | 1982-09-16 | Toshiba Corp | Non-volatile semiconductor memory device |
-
1987
- 1987-02-06 JP JP62026619A patent/JPS63193400A/en active Pending
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS57150192A (en) * | 1981-03-13 | 1982-09-16 | Toshiba Corp | Non-volatile semiconductor memory device |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6654282B2 (en) | 2001-07-23 | 2003-11-25 | Seiko Epson Corporation | Nonvolatile semiconductor memory device |
US6744106B2 (en) | 2001-07-23 | 2004-06-01 | Seiko Epson Corporation | Non-volatile semiconductor memory device |
US6822926B2 (en) | 2001-07-23 | 2004-11-23 | Seiko Epson Corporation | Non-volatile semiconductor memory device |
JP2005353257A (en) * | 2004-06-08 | 2005-12-22 | Samsung Electronics Co Ltd | Semiconductor memory device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5465235A (en) | Non-volatile memory device with a sense amplifier capable of copying back | |
KR100470846B1 (en) | Data writing method of semiconductor memory device, and semiconductor integrated circuit device | |
EP0293339B1 (en) | Nonvolatile memory device with a high number of cycle programming endurance | |
US20140204670A1 (en) | Semiconductor Memory Device Using Only Single-Channel Transistor to Apply Voltage to Selected Word Line | |
JPH02125521A (en) | Buffer circuit | |
JPH0746515B2 (en) | Decoder circuit | |
US4630087A (en) | Nonvolatile semiconductor memory device | |
JP2002151601A (en) | Semiconductor storage device | |
JP2964982B2 (en) | Nonvolatile semiconductor memory device | |
US4803662A (en) | EEPROM cell | |
JPH0679440B2 (en) | Nonvolatile semiconductor memory device | |
JP4398962B2 (en) | Data writing method for semiconductor memory device | |
JPS63193400A (en) | Electrically writable read-only memory | |
JP2009277348A (en) | Method for writing data in semiconductor memory device | |
JPH0447397B2 (en) | ||
EP0377841B1 (en) | Semiconductor integrated circuit capable of preventing occurrence of erroneous operation due to noise | |
JPH11273369A (en) | Insulated gate field-effect transistor | |
JPH0485795A (en) | Semiconductor device | |
JPS59162694A (en) | Semiconductor memory | |
JPS6233392A (en) | Semiconductor non-volatile memory device | |
JP2618065B2 (en) | Semiconductor circuit device | |
JPS5833637B2 (en) | Storage device | |
JPS61101073A (en) | Nonvolatile random access semiconductor memory | |
JPS5833636B2 (en) | Storage device | |
JPH09251791A (en) | Non-volatile semiconductor storage device |