[go: up one dir, main page]

JPS63193400A - Electrically writable read-only memory - Google Patents

Electrically writable read-only memory

Info

Publication number
JPS63193400A
JPS63193400A JP62026619A JP2661987A JPS63193400A JP S63193400 A JPS63193400 A JP S63193400A JP 62026619 A JP62026619 A JP 62026619A JP 2661987 A JP2661987 A JP 2661987A JP S63193400 A JPS63193400 A JP S63193400A
Authority
JP
Japan
Prior art keywords
memory cells
data line
word lines
memory
gate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62026619A
Other languages
Japanese (ja)
Inventor
Nobuyuki Orita
折田 伸之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP62026619A priority Critical patent/JPS63193400A/en
Publication of JPS63193400A publication Critical patent/JPS63193400A/en
Pending legal-status Critical Current

Links

Landscapes

  • Read Only Memory (AREA)

Abstract

PURPOSE:To reduce the number of elements by connecting the source sides of plural memory cells connected to the same data line in common and providing a piece of a switch, which is conductive only when either of the word lines of the memory cells of the object of the common connection between the spot of the common connection and an earth potential is selected. CONSTITUTION:Within a range that the conduction of the memory cell is permissible by a parasitic capacitance coupling between a drain and a floating gate, the respective four memory cells M1-M4 and M5-M8 on the same data line D1, are made into one group, and their source sides are connected in common. Here, a gate input X1 when either of the word lines W1-W4 is selected, and the gate X2 when some of the word lines W5-W8 is selected go to high level respectively, and make enhancement transistors C1, C2 into ON respectively, and at the other cases, they make them into OFF. Thus, the number of the transistors to be inserted between the source side of the memory cell and the earth potential, can be reduced.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、紫外線によって電気的書込み可能な読出し専
用メモリ(以下UV−EFROMと記す)に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a read-only memory (hereinafter referred to as UV-EFROM) electrically writable by ultraviolet light.

〔従来の技術〕[Conventional technology]

UV−EPROMセルへの書込みはコントロールゲート
及びトレインに高電圧を印加して、ワード線及びデータ
線でプログラムしようとするメモリセルを選択し、ピン
チオフ領域の近傍に発生した高エネルギー電子(ホット
エレクトロン)をゲート絶縁膜のエネルギー障壁を飛び
越えてフローティングゲートに注入することにより行う
To write to a UV-EPROM cell, apply a high voltage to the control gate and train, select the memory cell to be programmed using the word line and data line, and use high-energy electrons (hot electrons) generated near the pinch-off region. This is done by injecting the energy into the floating gate by jumping over the energy barrier of the gate insulating film.

一方、この書込みのために選択されたメモリセルと同一
データ線に接続された他の非選択メモリセルは、ゲート
電位が接地レベルで、ドレインに高電圧が印加された状
態にあり、フローティングゲートとドレイン間の寄生容
量結合により、フローティングゲートの電位が上昇する
On the other hand, other unselected memory cells connected to the same data line as the memory cell selected for writing have their gate potential at the ground level and a high voltage applied to their drains, and have floating gates. The potential of the floating gate increases due to parasitic capacitive coupling between the drains.

この結果により、ゲート電位が接地レベル時にメモリセ
ルが導通するに至る時のドレイン電圧をVDFとすると
、このVDFがメモリセルの書き込みに必要とするトレ
イン電圧より低い場合、書込みに必要な電圧がデータ線
に印加される前に非選択のメモリセルが導通しリークす
る。
From this result, if the drain voltage at which the memory cell becomes conductive when the gate potential is at ground level is VDF, and this VDF is lower than the train voltage required for writing to the memory cell, the voltage required for writing is Unselected memory cells conduct and leak before the voltage is applied to the line.

このようにしてリークするメモリセルが数多くになると
、データ線に高電圧を印加する回路の電流供給能力の関
係上からデータ線にVDF以上の電圧が印加できなくな
り、書込みができなくなることが知られている。
It is known that when the number of memory cells leaking in this way increases, a voltage higher than VDF cannot be applied to the data line due to the current supply capacity of the circuit that applies a high voltage to the data line, and writing becomes impossible. ing.

このような現象は、メモリセルの微細化が進みチャンネ
ル長が短かくなってくるとますます顕著になる。このた
め、従来のUV−EPROMは、第2図に示如く、メモ
リセルMAI−MA4それぞれのソース側と接地電位と
の間に、エンハンスメントトランジスタCA1〜CA4
を挿入しているものがある。
Such a phenomenon becomes more and more noticeable as the miniaturization of memory cells progresses and the channel length becomes shorter. Therefore, as shown in FIG. 2, in the conventional UV-EPROM, enhancement transistors CA1 to CA4 are connected between the sources of the memory cells MAI to MA4 and the ground potential.
There are some that insert .

例えば、メモリセルMA、に書込みを行う場合、同一デ
ータ線DA、に接続された他の非選択セルMA2〜MA
4は、挿入されたエンハンスメントトランジスタCA2
〜CA 4のゲートをワード線WA、〜WA4に接続し
ておくこと番こより、オフ状態に留められるため、接地
電位から切りはなされる。この結果、前述の寄生容量結
合により非選択セルが導通したとしても、データ線D 
A lの電位には影響を与えず、書込みに必要な電圧が
印加できるようになる。
For example, when writing to memory cell MA, other unselected cells MA2 to MA connected to the same data line DA
4 is the inserted enhancement transistor CA2
Since the gate of ~CA4 is connected to the word lines WA and ~WA4, it is kept in the off state, so that it is disconnected from the ground potential. As a result, even if the unselected cells become conductive due to the parasitic capacitive coupling described above, the data line D
The voltage necessary for writing can be applied without affecting the potential of Al.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上述した従来構成においては、メモリセル個々に非選択
時において接地電位と切りはなすためのトランジスタを
、設けねばならず、素子数が多くなり、チップサイズの
増大につながるという欠点があった。
In the conventional configuration described above, a transistor must be provided for each memory cell to disconnect it from the ground potential when it is not selected, which has the drawback of increasing the number of elements and increasing the chip size.

〔問題点を解決するための手段〕[Means for solving problems]

本発明のUV−EFROMは、同一データ線に接続され
た複数メモリセルのソースを、メモリセルのドレイン・
フローティングゲート間の寄生容量結合によるメモリセ
ルの導通を許容できる範囲内で共通接続し、この共通接
続側゛所と接地電位との間に、共通接続対象のメモリセ
ル群のワード線のいずれかが選択されたときにのみ導通
するトランジスタを有している。
The UV-EFROM of the present invention connects the sources of multiple memory cells connected to the same data line to the drains and
The floating gates are commonly connected within a range that allows conduction of the memory cells due to parasitic capacitance coupling, and one of the word lines of the memory cells to be commonly connected is connected between this common connection side and the ground potential. It has a transistor that becomes conductive only when selected.

〔実施例〕〔Example〕

次に、本発明について図面を参照して説明する。 Next, the present invention will be explained with reference to the drawings.

第1図は、本発明の一実施例であり、同一データ線D1
上の4個のメモリセルMl〜M、およびM s T= 
M aのそれぞれを1組として、そのソース側を共通接
続している。
FIG. 1 shows an embodiment of the present invention, in which the same data line D1
The upper four memory cells Ml to M, and M s T=
Each of M a is set as one set, and their source sides are commonly connected.

図中、W1〜W8はメモリセル間1〜M8等に対するワ
ード線、C1,C2はメモリセル群M1〜M4.M、〜
M8の共通接続されたソースと接地電位間に挿入された
Nチャンネルのエンハンスメントトランジスタ、X、、
X2は、エンハンスメントトランジスタc1.C,のゲ
ート入力である。ここで、ゲート入力x1はワード線W
1〜W4のうちのいずれかが、また、ゲートX2はワー
ド線W5〜W8のうちのいずれかがそれぞれ選択された
時、高レベルとなってエンハンスメントトランジスタC
1+ C2をオンさせ、その他の時はオフさせる。
In the figure, W1 to W8 are word lines for memory cell groups 1 to M8, etc., and C1 and C2 are word lines for memory cell groups M1 to M4. M...
An N-channel enhancement transistor, X, inserted between the commonly connected sources of M8 and the ground potential.
X2 is an enhancement transistor c1. This is the gate input of C. Here, the gate input x1 is the word line W
When any one of word lines W5 to W4 is selected, and when one of word lines W5 to W8 is selected, the gate X2 becomes high level and the enhancement transistor C
1+ Turns on C2 and turns it off at other times.

いま、メモリセル4個に書込むため、データ線p1とワ
ード線Wフが選択されたとすると、トランジスタC2が
オンし、メモリセルM、〜M8のソースが接地電位とな
る。この時、非選択メモリセル4個〜M6およびM8は
、ゲート電位が接地レベルで、ドレインに高電圧がかか
った状態になり、データ線D1とメモリセルM1〜M6
.M。
Assuming that data line p1 and word line W are selected to write data into four memory cells, transistor C2 is turned on and the sources of memory cells M and M8 are brought to ground potential. At this time, the four unselected memory cells M6 and M8 have their gate potentials at the ground level and a high voltage applied to their drains, and the data line D1 and memory cells M1 to M6
.. M.

のフローティンゲータと間の寄生容量結合により、それ
ぞれのフロティングゲートの電位が上昇する。
The potential of each floating gate increases due to the parasitic capacitive coupling between the floating gate and the floating gate.

しかし、ソース側がエンハンスメントトランジスタC2
に接続されたメモリセルM、、M6およびM8以外のメ
モリセル、すなわちM、〜M4の各ソースは、エンハン
スメントトランジスタC1がオフのため接地電位と切り
はなされており、データ線D1の電位には全く影響を与
えない。
However, the source side is the enhancement transistor C2.
Since the enhancement transistor C1 is off, the sources of the memory cells other than the memory cells M, , M6 and M8 connected to the data line D1 are disconnected from the ground potential, and the potential of the data line D1 is not connected to the potential of the data line D1. No effect at all.

また、メモリセルM5 、M6およびM8が、上記結合
により導通した場合でも、導通するメモリセルが3個だ
けのためデータ線D1への影響は軽微である。この結果
、メモリセルM、に書込みを行うためにデータ線り、に
印加される一高電圧への悪影響はほとんどなく、正確な
書込みができる。
Furthermore, even if the memory cells M5, M6, and M8 are rendered conductive due to the above-described coupling, the effect on the data line D1 is slight because only three memory cells are rendered conductive. As a result, accurate writing can be performed with almost no adverse effect on the high voltage applied to the data line for writing into the memory cell M.

この様にメモリセル4個を1組とすることにより、同一
データ線上に、例えば1024個のメモリセルが接続さ
れる1メガビツトのUV−EFROMの場合、メモリセ
ルのソース側と接地電位との間に挿入されるトランジス
タを1024個から256個に削減することができる。
In this way, by forming a set of four memory cells, in the case of a 1 megabit UV-EFROM in which, for example, 1024 memory cells are connected on the same data line, the connection between the source side of the memory cell and the ground potential is achieved. The number of transistors inserted into the circuit can be reduced from 1024 to 256.

〔発明の効果〕〔Effect of the invention〕

本発明は、以上説明したような構成を採用することによ
り、書き込み時のカップリングのためにフローティング
ゲートの電位が上昇しUV−EPROMのメモリセルが
導通した場合でも、書込みを可能にしかつ素子数を減ら
し、ひいてはチップサイズを減少できる効果がある。
By adopting the configuration described above, the present invention enables writing even when the floating gate potential rises due to coupling during writing and the UV-EPROM memory cell becomes conductive, and the number of elements can be reduced. This has the effect of reducing the chip size.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示し、第2図は従来例を示
す。 D、、DA、・・・データ線、Wl〜W8.WA。 〜WA4・・・ワード線、M!〜M B 、 M A 
1〜 MA4・・・メモリセル、CI 、C2、CAI
 、CA2・・・エンハンスメントトランジスタ、X、
、X2・・・ゲート入力信号。
FIG. 1 shows an embodiment of the present invention, and FIG. 2 shows a conventional example. D,, DA, . . . data lines, Wl to W8. WA. ~WA4...word line, M! ~M B, M A
1~MA4...Memory cell, CI, C2, CAI
, CA2... enhancement transistor, X,
, X2... Gate input signal.

Claims (1)

【特許請求の範囲】[Claims]  同一データ線上に接続された複数メモリセルのソース
側を、該メモリセルのドレイン・フローティングゲート
間の寄生容量結合による該メモリセルの導通を許容でき
る範囲内で共通接続し、該共通接続個所と接地電位との
間に、該共通接続対象のメモリセルのワード線のいずれ
かが選択されたときにのみ導通するスイッチを一つ設け
たことを特徴とする電気的書込み可能な読出し専用メモ
リ。
The source sides of multiple memory cells connected on the same data line are commonly connected within a range that allows conduction of the memory cells due to parasitic capacitance coupling between the drains and floating gates of the memory cells, and the common connection point is connected to the ground. 1. An electrically writable read-only memory, characterized in that one switch is provided between the potential and the switch that becomes conductive only when one of the word lines of the memory cells to be commonly connected is selected.
JP62026619A 1987-02-06 1987-02-06 Electrically writable read-only memory Pending JPS63193400A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62026619A JPS63193400A (en) 1987-02-06 1987-02-06 Electrically writable read-only memory

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62026619A JPS63193400A (en) 1987-02-06 1987-02-06 Electrically writable read-only memory

Publications (1)

Publication Number Publication Date
JPS63193400A true JPS63193400A (en) 1988-08-10

Family

ID=12198491

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62026619A Pending JPS63193400A (en) 1987-02-06 1987-02-06 Electrically writable read-only memory

Country Status (1)

Country Link
JP (1) JPS63193400A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6654282B2 (en) 2001-07-23 2003-11-25 Seiko Epson Corporation Nonvolatile semiconductor memory device
US6744106B2 (en) 2001-07-23 2004-06-01 Seiko Epson Corporation Non-volatile semiconductor memory device
US6822926B2 (en) 2001-07-23 2004-11-23 Seiko Epson Corporation Non-volatile semiconductor memory device
JP2005353257A (en) * 2004-06-08 2005-12-22 Samsung Electronics Co Ltd Semiconductor memory device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57150192A (en) * 1981-03-13 1982-09-16 Toshiba Corp Non-volatile semiconductor memory device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57150192A (en) * 1981-03-13 1982-09-16 Toshiba Corp Non-volatile semiconductor memory device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6654282B2 (en) 2001-07-23 2003-11-25 Seiko Epson Corporation Nonvolatile semiconductor memory device
US6744106B2 (en) 2001-07-23 2004-06-01 Seiko Epson Corporation Non-volatile semiconductor memory device
US6822926B2 (en) 2001-07-23 2004-11-23 Seiko Epson Corporation Non-volatile semiconductor memory device
JP2005353257A (en) * 2004-06-08 2005-12-22 Samsung Electronics Co Ltd Semiconductor memory device

Similar Documents

Publication Publication Date Title
US5465235A (en) Non-volatile memory device with a sense amplifier capable of copying back
KR100470846B1 (en) Data writing method of semiconductor memory device, and semiconductor integrated circuit device
EP0293339B1 (en) Nonvolatile memory device with a high number of cycle programming endurance
US20140204670A1 (en) Semiconductor Memory Device Using Only Single-Channel Transistor to Apply Voltage to Selected Word Line
JPH02125521A (en) Buffer circuit
JPH0746515B2 (en) Decoder circuit
US4630087A (en) Nonvolatile semiconductor memory device
JP2002151601A (en) Semiconductor storage device
JP2964982B2 (en) Nonvolatile semiconductor memory device
US4803662A (en) EEPROM cell
JPH0679440B2 (en) Nonvolatile semiconductor memory device
JP4398962B2 (en) Data writing method for semiconductor memory device
JPS63193400A (en) Electrically writable read-only memory
JP2009277348A (en) Method for writing data in semiconductor memory device
JPH0447397B2 (en)
EP0377841B1 (en) Semiconductor integrated circuit capable of preventing occurrence of erroneous operation due to noise
JPH11273369A (en) Insulated gate field-effect transistor
JPH0485795A (en) Semiconductor device
JPS59162694A (en) Semiconductor memory
JPS6233392A (en) Semiconductor non-volatile memory device
JP2618065B2 (en) Semiconductor circuit device
JPS5833637B2 (en) Storage device
JPS61101073A (en) Nonvolatile random access semiconductor memory
JPS5833636B2 (en) Storage device
JPH09251791A (en) Non-volatile semiconductor storage device