JPS63184906A - Magneto-resistance effect type magnetic head - Google Patents
Magneto-resistance effect type magnetic headInfo
- Publication number
- JPS63184906A JPS63184906A JP1796887A JP1796887A JPS63184906A JP S63184906 A JPS63184906 A JP S63184906A JP 1796887 A JP1796887 A JP 1796887A JP 1796887 A JP1796887 A JP 1796887A JP S63184906 A JPS63184906 A JP S63184906A
- Authority
- JP
- Japan
- Prior art keywords
- magnetic
- magnetically sensitive
- magnetic field
- sensitive part
- recording medium
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000000694 effects Effects 0.000 title claims description 14
- 239000010409 thin film Substances 0.000 claims abstract description 57
- 239000004020 conductor Substances 0.000 claims abstract description 15
- 238000010030 laminating Methods 0.000 claims abstract 2
- 239000000758 substrate Substances 0.000 claims description 7
- 239000000696 magnetic material Substances 0.000 claims description 3
- 230000005330 Barkhausen effect Effects 0.000 abstract description 22
- 230000005389 magnetism Effects 0.000 abstract description 6
- 230000002093 peripheral effect Effects 0.000 abstract 1
- 239000010410 layer Substances 0.000 description 35
- 230000005415 magnetization Effects 0.000 description 27
- 230000008859 change Effects 0.000 description 10
- 238000010586 diagram Methods 0.000 description 6
- 230000005381 magnetic domain Effects 0.000 description 6
- 230000004907 flux Effects 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 239000002356 single layer Substances 0.000 description 4
- 239000010408 film Substances 0.000 description 2
- 239000012212 insulator Substances 0.000 description 2
- 230000003993 interaction Effects 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 229910000859 α-Fe Inorganic materials 0.000 description 2
- 101100234408 Danio rerio kif7 gene Proteins 0.000 description 1
- 101100221620 Drosophila melanogaster cos gene Proteins 0.000 description 1
- 229910001030 Iron–nickel alloy Inorganic materials 0.000 description 1
- 229910003266 NiCo Inorganic materials 0.000 description 1
- 229910018605 Ni—Zn Inorganic materials 0.000 description 1
- 101100398237 Xenopus tropicalis kif11 gene Proteins 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910000808 amorphous metal alloy Inorganic materials 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 210000004185 liver Anatomy 0.000 description 1
- 239000011553 magnetic fluid Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 229910000889 permalloy Inorganic materials 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 238000000206 photolithography Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 229910000702 sendust Inorganic materials 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B5/00—Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
- G11B5/127—Structure or manufacture of heads, e.g. inductive
- G11B5/33—Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only
- G11B5/39—Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects
- G11B5/3903—Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects using magnetic thin film layers or their effects, the films being part of integrated structures
- G11B5/398—Specially shaped layers
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B5/00—Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
- G11B5/127—Structure or manufacture of heads, e.g. inductive
- G11B5/33—Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only
- G11B5/39—Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects
- G11B5/3903—Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects using magnetic thin film layers or their effects, the films being part of integrated structures
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Magnetic Heads (AREA)
Abstract
Description
【発明の詳細な説明】 〔産業上の利用分野〕 本発明は磁気抵抗効果型磁気ヘッドに関わる。[Detailed description of the invention] [Industrial application field] The present invention relates to a magnetoresistive magnetic head.
本発明は、基板上に、少くとも一方が磁気抵抗効果を有
する対の軟磁性薄膜が非磁性中間層を介して積層されて
成る感磁部をその前方端面が磁気記録媒体との対接面に
臨みさらにこの対接面とほぼ直交する方向に延在するよ
うに配置した構成をとり、この感磁部の磁気記録媒体と
の対接面に臨む前方端面ないしはその近傍のみを所要の
狭小幅とし、後方に向かって幅広として狭トランク化に
伴うバルクハウゼンノイズの増加を回避する。The present invention provides a magnetosensitive section in which a pair of soft magnetic thin films, at least one of which has a magnetoresistive effect, is laminated on a substrate with a nonmagnetic intermediate layer interposed therebetween, the front end surface of which is in contact with a magnetic recording medium. The structure is such that the magnetic sensing part is arranged so as to extend in a direction substantially perpendicular to the contact surface, and only the front end face facing the contact surface with the magnetic recording medium or its vicinity is narrowed to the required narrow width. The trunk is widened toward the rear to avoid an increase in Barkhausen noise that would otherwise be caused by a narrower trunk.
従来一般の磁気抵抗効果型磁気ヘッド(以下MR型磁気
ヘッドという)は、その感磁部が単層の磁気抵抗効果を
有する磁性薄膜(以下l磁性薄膜という)によって構成
される。このMR型磁気ヘッドにおいてシールド型構成
をとる場合、その感磁部が基板上に磁気記録媒体との対
接面に一側端面が臨むように配置形成されるとともに、
この感磁部に対して所定のバイアス磁界を印加するため
のパイアス磁界発生用導体が設けられ、この感磁部とバ
イアス磁界発生用導体の配置部上を覆ってシールド用磁
性体が配置された構成とする。In a conventional general magnetoresistive magnetic head (hereinafter referred to as an MR type magnetic head), the magnetic sensing portion thereof is composed of a single-layer magnetic thin film having a magnetoresistive effect (hereinafter referred to as a magnetic thin film). When this MR type magnetic head has a shield type configuration, the magnetic sensing part is arranged and formed on the substrate so that one end face faces the surface facing the magnetic recording medium, and
A conductor for generating a bias magnetic field is provided to apply a predetermined bias magnetic field to the magnetically sensitive part, and a magnetic material for shielding is arranged to cover the part where the conductor for generating a bias magnetic field is arranged. composition.
上述した単層の1磁性薄膜よりなる感磁部を有するMR
型磁気ヘッドにおいては、バルクハウゼンノイズすなわ
ち磁壁の移動に基づくノイズの発生が問題となる。MR having a magnetically sensitive part made of the above-mentioned single-layer magnetic thin film
In the type magnetic head, there is a problem of Barkhausen noise, that is, noise caused by movement of domain walls.
このようなバルクハウゼンノイズの回避を図るようにし
た間型磁気ヘッドとして、本出願人は先に特願昭60−
179135号出願によって非磁性中間層を介して対の
磁性薄膜を積層した多層構造による感磁部を設げてバル
クハウゼンノイズの低減化を図るとか、さらに特願昭6
0−247752号出願において感磁部に通ずるセンス
電流を信号磁界を同方向とすることによって、よりバル
クハウゼンノイズの低減化を図るようにしたMR型磁気
ヘッドの提案をなした。The present applicant previously proposed a patent application filed in 1983-1 for an inter-type magnetic head designed to avoid such Barkhausen noise.
According to the patent application No. 179135, Barkhausen noise was reduced by providing a magnetic sensing part with a multilayer structure in which a pair of magnetic thin films were laminated with a non-magnetic intermediate layer interposed therebetween.
In the patent application No. 0-247752, an MR type magnetic head was proposed in which the Barkhausen noise was further reduced by making the sense current flowing through the magnetically sensitive part have the same direction as the signal magnetic field.
このような感磁部として、対の磁性薄膜が非磁性中間層
を介して積層された構造とするとか、この感磁部に与え
られる磁気記録媒体からの信号磁界とこの信号時間に基
づく抵抗変化を例えば電圧変化として検出するためのセ
ンス電流とをほぼ同方向に選定する場合、後述するとこ
ろから明らかなようにバルクハウゼンノイズの低減化を
図ることができるものであるが、このようにしても近時
ハードディスク等において、よりトランク幅の狭小化が
図られ例えば1ap m未満の3〜6μm幅となりこれ
に伴って感磁部の幅がこの要求されるトランク幅に応じ
た幅に狭小化されると、多層構造による感磁部といえど
もバルクハウゼンノイズの発生が避けられなくなってく
るという問題点がある。第11図及び第12図はそれぞ
れMR感磁部の幅が3μm及び10μmとした場合の出
力(抵抗変化×電流)の測定結果を示したものでその幅
が狭小となることによって著しいヒステリシスが生じて
いる。Such a magnetically sensitive part may have a structure in which a pair of magnetic thin films are laminated with a non-magnetic intermediate layer in between, or a resistance change based on the signal magnetic field from the magnetic recording medium applied to this magnetically sensitive part and the signal time. For example, if the sense current for detecting a voltage change is selected in almost the same direction, Barkhausen noise can be reduced, as will be explained later. Recently, in hard disk drives, etc., the trunk width has been further reduced, for example, to a width of 3 to 6 μm, which is less than 1 apm, and accordingly, the width of the magnetically sensitive part has been reduced to a width corresponding to the required trunk width. However, there is a problem in that Barkhausen noise is unavoidable even in a magnetically sensitive part having a multilayer structure. Figures 11 and 12 show the measurement results of the output (resistance change x current) when the width of the MR magnetic sensing part is 3 μm and 10 μm, respectively.As the width becomes narrower, significant hysteresis occurs. ing.
本発明はこのようなトラック幅の狭小化に伴う感磁部の
幅の狭小化によるバルクハウゼンノイズの発生を効果的
に回避しようとするものである。The present invention aims to effectively avoid the occurrence of Barkhausen noise due to the narrowing of the width of the magnetically sensitive portion accompanying the narrowing of the track width.
本発明は第1図にその路線的拡大平面図を示し第2図に
第1図のA−A線上の断面図を示すように、基板(1)
上にMR効果(磁気抵抗効果)を有する感磁部(2)を
その前方端面が磁気記録媒体との対接面(3)に臨み、
かつこの対接面(3)とほぼ直交するように後方に延在
し、さらに対接面(3)に臨む前方端面ないしはその近
傍部分のみを所要の狭小幅WS例えば3〜6μmとして
これより後方に向かって漸次或いは滑らかに変化してW
sに比して大なる幅W、の例えば10μm以上を有する
幅広とする。As shown in FIG. 1 is an enlarged plan view of the present invention, and FIG. 2 is a sectional view taken along line A-A in FIG.
A magnetically sensitive part (2) having an MR effect (magnetoresistive effect) on the top, with its front end face facing the surface (3) in contact with the magnetic recording medium,
In addition, it extends rearward so as to be almost orthogonal to this contact surface (3), and furthermore, only the front end face facing the contact surface (3) or its vicinity is set to a required narrow width WS of, for example, 3 to 6 μm, and is further rearward from this. gradually or smoothly changing toward W
The width W is larger than s, for example, 10 μm or more.
また、この感磁部(2)とほぼ直交して横切るように絶
縁層(4)を介して感磁部(2)に対してバイアス磁界
を印加するためのバイアス磁界発生用導体(5)を配置
形成する。In addition, a bias magnetic field generating conductor (5) for applying a bias magnetic field to the magnetically sensitive part (2) via the insulating layer (4) is provided so as to cross the magnetically sensitive part (2) almost perpendicularly. Form the arrangement.
一方、感磁部(2)の前方端部及び後方端部にそれぞれ
電気的に連結してこの感磁部(2)にセンス電流iを印
加するに供する前方電極層(6)及び後方電極層(7)
を被着形成する。On the other hand, a front electrode layer (6) and a rear electrode layer are electrically connected to the front end and the rear end of the magnetically sensitive part (2), respectively, and serve to apply a sense current i to the magnetically sensitive part (2). (7)
Form the adhesion.
これら前方電極層(6)及び後方電極層(7)を有する
感磁部(2)とバイアス時間発生用導体(5)の配置部
上を覆って絶縁層(4)を介してシールド用の磁性体(
8)を被着する。A magnetic field for shielding is applied over an insulating layer (4) over the magnetic sensing part (2) having the front electrode layer (6) and the rear electrode layer (7) and the arrangement part of the bias time generating conductor (5). body(
8).
磁気記録媒体は、図示しないが対接面(3)の前方を第
1図において主面と直交する方向に相対的に移動するよ
うになされる。Although not shown, the magnetic recording medium is configured to move relatively in front of the facing surface (3) in a direction perpendicular to the main surface in FIG. 1.
感磁部(2)は第3図に示すように対の第1及び第2の
軟磁性iJ膜(9)及び(10)が非磁性中間層(11
)を介して積層されてなる。第1及び第2の軟磁性薄膜
(9)及び(10)の少くとも一方はMR効果を有する
軟磁性薄膜、例えばFe、 Co、 Niあるいはこれ
らのうちの2種以上の合金NiFe、 NiCo、 N
iFeCo等よりなる薄膜によって形成される。As shown in FIG. 3, the magnetically sensitive part (2) is composed of a pair of first and second soft magnetic iJ films (9) and (10) and a non-magnetic intermediate layer (11).
). At least one of the first and second soft magnetic thin films (9) and (10) is a soft magnetic thin film having an MR effect, such as Fe, Co, Ni, or an alloy of two or more of these, NiFe, NiCo, N.
It is formed of a thin film made of iFeCo or the like.
非磁性中間層(11)は、5i02.八7!2(h等の
絶縁物あるいはTt、 Mo、へg等の非磁性金属層に
よって形成し得る。そしてこの非磁性中間層(11)は
両軟磁性薄膜(9)及び(10)間に、交換相互作用に
比し静磁的相互作用が支配的に作用するような5人〜
10000人例えば5人〜500人の厚さに選定し得る
。また、第1及び第2の軟磁性薄膜(9)及び(10)
の一方をMR効果を有しない軟磁性薄膜によって形成す
る場合、その材料としては例えばセンダスト、CO系ア
モルファス合金、Moパーマロイ等の高透磁率軟磁性薄
膜によって構成する。また、この感磁部(2)の両歌磁
性薄膜(9)及び(10)は、その飽和磁束密度、厚さ
等の選定によっ゛ζ両薄膜(9)及び(10)の磁束量
が一致するようにして磁束が両薄膜(9)及び(10)
に関して全体的に閉じるようにされる。The non-magnetic intermediate layer (11) is 5i02. It can be formed of an insulator such as 87!2 (h) or a nonmagnetic metal layer such as Tt, Mo, or heg.The nonmagnetic intermediate layer (11) is formed between the soft magnetic thin films (9) and (10). In this case, there are five people in whom magnetostatic interaction acts more dominantly than exchange interaction.
The thickness can be selected from 10,000 people, for example 5 to 500 people. In addition, the first and second soft magnetic thin films (9) and (10)
When one of the two is formed of a soft magnetic thin film having no MR effect, the material thereof may be a high magnetic permeability soft magnetic thin film such as sendust, CO-based amorphous alloy, Mo permalloy, or the like. In addition, the amount of magnetic flux of both magnetic thin films (9) and (10) of this magnetically sensitive part (2) is determined by selecting their saturation magnetic flux density, thickness, etc. Both thin films (9) and (10) are aligned so that the magnetic flux is
It is made to be closed as a whole.
そして、両歌磁性薄膜(9)及び(10)をMR効果を
をする磁性薄膜とするときは、両歌磁性薄膜(9)及び
(10)は同一材料、寸法形状とすることが望ましいが
、一方MR効果がないかほとんどない材料によって構成
するときはこの軟磁性薄膜は、肝効果のある方の軟磁性
薄膜に比し電気抵抗が充分大となるようにその構成材料
の比抵抗、厚さ等の選定を行うことが望ましい。When both magnetic thin films (9) and (10) are magnetic thin films that have an MR effect, it is desirable that both magnetic thin films (9) and (10) be made of the same material and have the same size and shape. On the other hand, when the soft magnetic thin film is made of a material that has no or almost no MR effect, the specific resistance and thickness of the constituent material should be adjusted so that the electrical resistance is sufficiently larger than that of the soft magnetic thin film that has the liver effect. It is desirable to select the following.
前方電極層(6)は、バイアス磁界発生用導体(5)の
長手方向に沿う方向に延在させる。The front electrode layer (6) extends in the longitudinal direction of the bias magnetic field generating conductor (5).
このような構成において、前方電極層(6)及び後方電
極N(7)間すなわち感磁部(2)に、対接面(3)と
直交する方向、すなわち感磁部(2+の延在方向にセン
ス電流iを通電させる。In such a configuration, between the front electrode layer (6) and the rear electrode N (7), that is, the magnetically sensitive part (2), there is a direction perpendicular to the opposing surface (3), that is, the extending direction of the magnetically sensitive part (2+). Sense current i is applied to.
また、バイアス磁界発生用導体(5)に通電して感磁部
(2)にこれに対して信号磁界が与えられない状態でセ
ンス電流iの方向に対して所要の角度例えばほぼ45°
に磁化が向くようなバイアス磁界を与える。In addition, when the bias magnetic field generating conductor (5) is energized and no signal magnetic field is applied to the magnetically sensitive part (2), a required angle, for example approximately 45°, is set relative to the direction of the sense current i.
Apply a bias magnetic field that directs the magnetization.
感磁部(2)の各軟磁性薄膜(9)及び(10)は、そ
のセンス電流iの通電方向と直交する方向すなわち幅方
向に磁化容易軸を存在させる。Each of the soft magnetic thin films (9) and (10) of the magnetically sensitive part (2) has an axis of easy magnetization in a direction orthogonal to the direction of conduction of the sense current i, that is, in the width direction.
図において(1及びt2は前方及び後方両電極m f6
)及び(7)から導出した端子を示し、T1及びT2は
バイアス磁界発生用導体(5)の両端から導出した端子
を示す。In the figure (1 and t2 are both the front and rear electrodes m f6
) and (7), and T1 and T2 indicate terminals led out from both ends of the bias magnetic field generating conductor (5).
上述の本発明構成によれば、バルクハウゼンノイズが効
果的に除去される。これについて説明する。According to the configuration of the present invention described above, Barkhausen noise is effectively removed. This will be explained.
マス、バルクハウゼンノイズの発生原因の1つを説明す
ると、従来一般の11R型磁気ヘツドのように、その感
磁部が前述したようにR層のMR磁性薄膜によって構成
されている場合、このMR磁性薄膜は、磁気異方性エネ
ルギー、形状異方性等に起因する静磁エネルギー等の和
が層全体として最小となるような状態を保持すべく第9
図に示すような磁区構造をとる。すなわち、この単層磁
性薄膜が長方形の磁性薄膜(51)であり、短辺方向に
磁気異方性を有する場合、その面内において短辺方向に
沿って磁化方向が交互に逆向きの磁区(52)が生じる
とともに、これら隣り合う磁区(52)に関して閉ルー
プを形成するようにその両端間に磁性薄膜(51)の長
辺方向に沿って順次逆向きの磁区(53)が生じている
。したがって、このような磁性藩膜に外部磁界が与えら
れると磁壁(54) 。To explain one of the causes of mass and Barkhausen noise, when the magnetic sensitive part is composed of the R layer MR magnetic thin film as mentioned above, as in the case of a conventional general 11R type magnetic head, this MR In order to maintain a state in which the sum of magnetostatic energy caused by magnetic anisotropy energy, shape anisotropy, etc. is minimized for the entire layer, the magnetic thin film is
It has a magnetic domain structure as shown in the figure. That is, when this single-layer magnetic thin film is a rectangular magnetic thin film (51) and has magnetic anisotropy in the short side direction, magnetic domains ( 52) are generated, and magnetic domains (53) in opposite directions are generated sequentially along the long side direction of the magnetic thin film (51) between both ends of the magnetic thin film (51) so as to form a closed loop regarding these adjacent magnetic domains (52). Therefore, when an external magnetic field is applied to such a magnetic magnetic film, the domain wall (54) will form.
(55)が移動し、これによりバルクハウゼンノイズが
発生する。(55) moves, which causes Barkhausen noise.
これに比し、本発明構成においては、その感磁部(2)
が非磁性中間Ji(11)を介して軟磁性薄膜(9)及
び(10)が積層された構造とされていることによって
外部磁界が与えられていない状態では第3図に示すよう
に軟磁性薄膜(9)及び(10)は矢印M工及びM2で
示すようにそれぞれ磁化容易軸方向に互いに反平行な磁
化状態にあり、磁壁が生じていない。このように磁壁に
存在しないことについては、磁性流体を用いたビッタ−
(Bitter)法による磁区観察によって確認したと
ころである。In contrast, in the configuration of the present invention, the magnetically sensitive portion (2)
Since it has a structure in which soft magnetic thin films (9) and (10) are laminated via a non-magnetic intermediate Ji (11), it becomes soft magnetic as shown in Fig. 3 when no external magnetic field is applied. The thin films (9) and (10) are in a magnetized state antiparallel to each other in the direction of the easy axis of magnetization, respectively, as shown by arrows M and M2, and no domain wall is formed. This lack of presence in the domain wall can be solved by using a bitter using magnetic fluid.
This was confirmed by magnetic domain observation using the (Bitter) method.
そして、このような感磁部(2)に対し、その磁化困難
軸方向に外部磁界Hを強めていくと第5図A〜Cにその
磁化状態を軟磁性薄膜(10)に対しては実線矢印で、
軟磁性薄膜(9)に対しては破線矢印で模式的に示すよ
うに第5図Aに示す第3図に示した反平行の磁化状態か
ら外部磁界Hにより第5図Bに示すように回転磁化過程
により磁化が回転し、さらに強い外部磁界により第5図
Cに示すように両歌磁性薄膜(9)及び(10)が同方
向に磁化される。この場合両軟磁性薄膜(9)及び(1
0)において、その面内で磁化が回転するので磁壁は生
ずることがなくバルクハウゼンノイズの発生が回避され
る。つまり、両軟磁性薄膜(9)及び(10)の磁化困
難軸方向を磁束の伝播方向とすることによって磁壁移動
に起因するバルクハウゼンノイズが回避される。さらに
、このような感磁部(2)を有する磁気ヘッドの動作を
第6図〜第8図を参照して説明する。第6図〜第8図は
感磁部(2)の両軟磁性薄膜(9)及び(10)のみを
模式的に示したものでこれら軟磁性薄膜(9)及び(1
0)は、第6図中にe、a、で示す方向に初期状態で磁
化容易軸を有する。すなわち、端子L1及びL2間にセ
ンス電流iを通ずる場合、それと直交する方向に磁化容
易軸e、a、を有する。そして、これら軟磁性薄膜(9
)及び(10)にセンス電流iを通電することによって
非磁性中間層(図示せず)を挟んで対向する両軟磁性薄
膜(9)及び(10)には電流iと直交する互いに逆向
きの磁界が発生し、これによって軟磁性薄膜(9)及び
(10)は同図に実線及び破線矢印M1及びM2で示す
ように磁化される。一方、この感磁部(2)には電流i
に沿う方向に第7図に示すように外部からバイアス磁界
Haが与えられると、このバイアス磁界IIsによって
軟磁性薄膜(9)及び(10)の磁化の向きは同第7図
に矢印MB1及びMB2で示すように、所要の角度だけ
回転される。このバイアス磁界1(Hによって与えられ
る磁化の方向は電流iの方向に対してほぼ45°となる
ようにそのバイアス磁界)(sの大きさが選ばれるもの
である。このバイアス磁界1−I Bは、第1図及び第
2図に示すバイアス磁界発生用導体(5)によって得る
。このようにバイアス磁界HHによってセンス電流iに
対してほぼ45゛の磁化を与えるようにすることは、磁
界−抵抗特性曲線が高い感度と直線性を示す部分におい
て動作させるためになされるものであって、通常の旧型
磁気ヘッドにおいて行われていると同様である。この状
態で第8図に示すように信冒磁界H3がセンス電流iに
沿う方向すなわち磁化困難軸方向に与えられると磁化が
回転し、それぞれの磁化の方向が矢印Ms1及びM S
2に示すように反時計方向及び時計方向に角度θ1及び
−〇、回転する。これによって各軟磁性薄膜(9)及び
(10)が例えば゛共にMR磁性薄膜である場合は、そ
れぞれ抵抗変化が生じることになるが、このMR磁性薄
膜の抵抗の変化は角度の変化をθとするとき cos2
θに比例するので、令弟7図における両軟磁性薄膜(9
)及び(10)の磁化M8□及びMB2が互いに90°
ずれているとするとθ1及び−θ1の変化で、両軟磁性
薄膜(9)及び(10)に関して抵抗の変化の増減が一
致する。つまり、一方の軟磁性薄膜(9)の抵抗が増加
すれば他方の軟磁性薄膜(10)もその抵抗は増加する
方向に変化する。そして、これら軟磁性薄膜(9)及び
(10)の抵抗変化すなわち感磁部(2)の両端の端子
L1及び22間に抵抗変化を生じ、この抵抗変化を端子
t1及びL2間の電圧変化として検出することができる
ことになる。When the external magnetic field H is strengthened in the direction of the hard magnetization axis for such a magnetically sensitive part (2), the magnetization state is changed to the solid line for the soft magnetic thin film (10) as shown in Figures 5A to C. with an arrow
The soft magnetic thin film (9) is rotated from the antiparallel magnetization state shown in FIG. 5A shown in FIG. 3 as shown in FIG. The magnetization rotates due to the magnetization process, and both magnetic thin films (9) and (10) are magnetized in the same direction by a strong external magnetic field, as shown in FIG. 5C. In this case, both soft magnetic thin films (9) and (1
0), the magnetization rotates within that plane, so no domain wall is generated and Barkhausen noise is avoided. In other words, Barkhausen noise caused by domain wall movement is avoided by making the direction of the hard magnetization axes of both soft magnetic thin films (9) and (10) the propagation direction of magnetic flux. Furthermore, the operation of the magnetic head having such a magnetic sensing portion (2) will be explained with reference to FIGS. 6 to 8. Figures 6 to 8 schematically show only the soft magnetic thin films (9) and (10) of the magnetically sensitive part (2).
0) has an axis of easy magnetization in the directions shown by e and a in FIG. 6 in the initial state. That is, when the sense current i is passed between the terminals L1 and L2, the easy magnetization axes e and a are in the direction perpendicular to the sense current i. These soft magnetic thin films (9
) and (10), a sense current i is applied to the soft magnetic thin films (9) and (10) facing each other with a non-magnetic intermediate layer (not shown) in between, so that a sense current i is applied in opposite directions perpendicular to the current i. A magnetic field is generated, whereby the soft magnetic thin films (9) and (10) are magnetized as shown by solid and broken line arrows M1 and M2 in the figure. On the other hand, this magnetically sensitive part (2) has a current i
When a bias magnetic field Ha is applied from the outside in the direction along the direction shown in FIG. The image is rotated by the required angle as shown in . The magnitude of this bias magnetic field 1 (the bias magnetic field s is selected such that the direction of magnetization given by H is approximately 45° with respect to the direction of the current i. This bias magnetic field 1 - I B is obtained by the bias magnetic field generating conductor (5) shown in Figs. This is done to operate in a region where the resistance characteristic curve shows high sensitivity and linearity, and is similar to what is done in normal old magnetic heads.In this state, as shown in Figure 8, the reliability is When the magnetic field H3 is applied in the direction along the sense current i, that is, in the direction of the hard magnetization axis, the magnetization rotates, and the directions of the respective magnetizations are indicated by the arrows Ms1 and M S
2, rotate counterclockwise and clockwise by angles θ1 and −0. As a result, if the soft magnetic thin films (9) and (10) are both MR magnetic thin films, a change in resistance will occur, but the change in resistance of this MR magnetic thin film is caused by the change in angle θ. When cos2
Since it is proportional to θ, both soft magnetic thin films (9
) and (10) magnetization M8□ and MB2 are 90° to each other
If there is a deviation, the changes in resistance of both soft magnetic thin films (9) and (10) coincide with changes in θ1 and -θ1. In other words, if the resistance of one soft magnetic thin film (9) increases, the resistance of the other soft magnetic thin film (10) also changes in the direction of increasing. Then, a resistance change occurs between these soft magnetic thin films (9) and (10), that is, a resistance change occurs between terminals L1 and 22 at both ends of the magnetically sensitive part (2), and this resistance change is treated as a voltage change between terminals t1 and L2. This means that it can be detected.
本発明構成においては、磁気記録媒体との対接面(3)
とほぼ直交する方向に感磁部(2)が延在するようにし
、この延在方向にセンス電流iを通ずるようにして、上
述したようにこのセンス電流iに沿う方向に磁気記録媒
体からの記録磁化に基づく信号磁界Hsを与えるように
するものであるが、このような構成とする場合の作用上
の特徴はセンス電流iの方向を信号磁界IISの方向と
直交する方向を選定する場合と比較3゛ることによって
より明確となる。すなわち、令弟11図に示すように第
6図で説明したと同様に両軟磁性薄股(9)及び(10
)に軟磁性薄膜の異方性磁界I(Kを考慮した上での、
電流として大電流を通した状態では、これによって発生
ずる磁界によって両軟磁性薄膜(9)及び(10)は電
流iと直交する方向にそれぞれ実線及び破線矢印で示す
ように磁化される。この状態で、電流iと直交する方向
に信号磁界HSが与えられると、これは軟磁性薄膜(9
)及び(10)の電流iによる磁化に沿う方向となり、
この磁界Lj sが磁化容易軸方向に与えられたと同様
の挙動を示す。つまり磁壁の発生と移動が生じバルクハ
ウゼンノイズが発生する。ここで磁性薄膜の磁化容易軸
方1il Qこセンス電流iが流され、センス電’tA
rと同方向に信号磁界)Isが与えられる構成を考えた
場合、センス電流iが比較的小さい場合には磁性層の磁
化容易軸方向に磁化は向くことになり、信号磁界■−i
sは第11図に示すと同様に磁化容易軸方向に与えられ
る結果になり、バルクハウゼンノイズが発生し好ましく
ない。言い換えれば、本発明におけるように感磁部(2
)を磁気記録媒体との対接面(3)にほぼ直交する方向
に延在させ、その前方及び後方端に電極層(6)及び(
7)を設けて、この感磁部(2)の延在方向にしたがっ
て対接面(3)と直交する方向、言い換えれば磁気媒体
からの信号磁界と同方向にセンス電流iを通ずるように
するときは、よりバルクハウゼンノイズの改善が図られ
ることになる。In the configuration of the present invention, the contact surface (3) with the magnetic recording medium
The magnetic sensing part (2) is made to extend in a direction substantially perpendicular to , and a sense current i is passed in this extending direction, and as described above, the magnetic recording medium is The signal magnetic field Hs based on the recording magnetization is applied, but the operational feature of such a configuration is that the direction of the sense current i is selected to be orthogonal to the direction of the signal magnetic field IIS. It becomes clearer by comparing 3. That is, as shown in Figure 11, both soft magnetic thin legs (9) and (10
), considering the anisotropic magnetic field I (K) of the soft magnetic thin film,
When a large current is passed through, both soft magnetic thin films (9) and (10) are magnetized by the magnetic field generated thereby in a direction orthogonal to the current i, as shown by the solid line and the broken arrow, respectively. In this state, when a signal magnetic field HS is applied in a direction perpendicular to the current i, this soft magnetic thin film (9
) and (10) along the magnetization due to the current i,
The behavior is similar to that when this magnetic field Lj s is applied in the direction of the easy axis of magnetization. In other words, domain walls are generated and moved, resulting in Barkhausen noise. Here, a sense current i is passed along the axis of easy magnetization of the magnetic thin film 1ilQ, and a sense current 'tA
Considering a configuration in which a signal magnetic field (Is) is applied in the same direction as r, if the sense current i is relatively small, the magnetization will be oriented in the direction of the easy axis of magnetization of the magnetic layer, and the signal magnetic field ■-i
As shown in FIG. 11, s is given in the direction of the axis of easy magnetization, which is undesirable because Barkhausen noise occurs. In other words, as in the present invention, the magnetically sensitive part (2
) extends in a direction substantially perpendicular to the surface (3) in contact with the magnetic recording medium, and electrode layers (6) and (
7), so that the sense current i is passed in a direction perpendicular to the opposing surface (3) according to the extending direction of the magnetically sensitive part (2), in other words, in the same direction as the signal magnetic field from the magnetic medium. In this case, the Barkhausen noise will be further improved.
尚、上述した例においては信号磁界Hsに対してほぼ直
交する方向に磁化容易軸を有する磁性薄膜について述べ
たが、磁性薄膜の主面内に磁気異方性を有しない等方的
磁性層を用いても同様である。この場合には、比較的小
さなセンス電流を流せば磁化方向がセンス電流と直交し
、つまり信−℃磁界の方向と直交するためバルクハウゼ
ンノイズは発生しない。In the above example, a magnetic thin film having an axis of easy magnetization in a direction substantially orthogonal to the signal magnetic field Hs was described, but an isotropic magnetic layer having no magnetic anisotropy within the main surface of the magnetic thin film may be used. The same applies if you use In this case, if a relatively small sense current is caused to flow, the magnetization direction is perpendicular to the sense current, that is, perpendicular to the direction of the input −° C. magnetic field, so Barkhausen noise does not occur.
そして、さらに本発明においては、感磁部(2)のパタ
ーン形状を磁気媒体との対接面(3)に臨む前方端にお
いては所要の狭小幅とするが、これより後方の実質的動
作部においては幅広としたので、前述した第11図及び
第12図の対比によって明らがなようにヒステリシスの
改善、したがってバルクハウゼンノイズの改善がはから
れる。Furthermore, in the present invention, the pattern shape of the magnetically sensitive part (2) is made narrow as required at the front end facing the surface (3) in contact with the magnetic medium, but the substantial operating part behind this is made narrow. Since the width is made wider in , the hysteresis and therefore the Barkhausen noise can be improved, as is clear from the comparison of FIGS. 11 and 12 described above.
第1図及び第2図を参照して本発明によるシールド型M
R磁気ヘッドの一例を詳細に説明する。この場合基板(
11は、例えばNi−Zn系フェライト、Mn−Zn系
フェライト等の磁性基板より構成し得、必要に応じてこ
れの上にS i02等の絶縁層(4)を被着し、これの
上に少(とも一方がMR効果を有する軟磁性溝IIN(
9)及び(10)が非磁性中間層(11)を介して積層
された構成を有する感磁部(2)を、その前方端面が磁
気記録媒体との対接面(3)に臨むように、しかもこの
対接面(3)と直交する方向に延在させ後方に広がるパ
ターンをもって被着形成する。With reference to FIGS. 1 and 2, the shield type M according to the present invention
An example of the R magnetic head will be described in detail. In this case the substrate (
11 may be composed of a magnetic substrate such as Ni-Zn ferrite or Mn-Zn ferrite, and if necessary, an insulating layer (4) such as Si02 is deposited on this. Small (soft magnetic groove IIN, one of which has an MR effect)
9) and (10) are laminated with a non-magnetic intermediate layer (11) in between. , and is formed in a pattern that extends in a direction perpendicular to this contact surface (3) and spreads backward.
そして、この感磁部(2)の前方端部及び後方端部にそ
れぞれ良導電性の非磁性もしくは軟磁性を有する前方電
極層(6)及び後方電極層(7)を被着する。Then, a front electrode layer (6) and a rear electrode layer (7) having good electrical conductivity and having non-magnetism or soft magnetism are respectively deposited on the front end and the rear end of the magnetically sensitive part (2).
前方電極層(6)は前述したようにその一側端面すなわ
ち前方端面が対接面(3)に臨んでこれに沿うように延
在させる。As described above, the front electrode layer (6) is extended so that its one side end surface, that is, the front end surface faces the contact surface (3).
さらに、これら電極層(6)及び(7)ど感磁部(2)
上に絶縁層(12)を介して感磁部(2)の延在方向と
直交する方向にこの感磁部(2)上を横切ってバイアス
磁界発生用導体(5)を被着し、さらにこれの上に絶縁
1’5(12)を介してシールド用の磁性体(8)を被
着する。Furthermore, these electrode layers (6) and (7) and the magnetically sensitive part (2)
A conductor (5) for generating a bias magnetic field is deposited on the magnetically sensitive part (2) across the magnetically sensitive part (2) in a direction orthogonal to the extending direction of the magnetically sensitive part (2) via an insulating layer (12), and further On top of this, a magnetic material (8) for shielding is applied via an insulator 1'5 (12).
(13)及び(14)は前方電極層(6)及び後方電極
11引7)からそれぞれ導出した端子導出部で、(15
a)及び(15b)はバイアス磁界発生導体(5)の両
端から導出した端子導出部を示す。(13) and (14) are terminal lead-out portions led out from the front electrode layer (6) and the rear electrode 11 (7), respectively;
a) and (15b) show terminal lead-out portions led out from both ends of the bias magnetic field generating conductor (5).
尚、これら各感磁部(2)を構成する軟磁性薄膜(9)
。In addition, the soft magnetic thin film (9) constituting each of these magnetically sensitive parts (2)
.
(10) 、中間層(11) 、電極rfi (61、
(71、バイアス磁界発生用導体(5)、それぞれ全面
蒸着、スパッタリング等によって形成してフォトリソグ
ラフィによってパターン化することによって形成し得る
。(10), intermediate layer (11), electrode rfi (61,
(71, bias magnetic field generating conductor (5), each can be formed by full-surface vapor deposition, sputtering, etc., and patterned by photolithography.
また、第1図に示した例においては、感磁部(2)が1
つのトランク幅内に1本配置された構成とした場合であ
るが、第4図に示すように所要のトランク幅Tw内に複
数例えば2本の感磁g15 (2+を並置配列した構成
をとることもでき、この場合においてもその各感磁部(
2)は後方に向かって広がる形状となす。In addition, in the example shown in FIG. 1, the magnetic sensing part (2) is 1
However, as shown in Fig. 4, it is possible to arrange a plurality of magnetically sensitive g15 (2+) in parallel within a required trunk width Tw. In this case, each magnetically sensitive part (
2) has a shape that spreads toward the rear.
上述したように本発明によれば、シールド型のMR型磁
気ヘッド構成をとる場合において、特にその感磁部(2
)を後方に広がる幅広となしたことによって効果的にバ
ルクハウゼンノイズの改善が図られる。また、その感磁
部(2)を磁気記録媒体との対接面(3)とほぼ直交す
る方向に延在させ、その両端に電極層(6)及び(7)
を配置してセンス電流を対接面(3)と直交する方向、
したがってこのセンス電流の通電方向と一致する方向に
信号磁界を与えるようにしたこと、さらに感磁部(2)
を多層構造の感磁部 □としたこと等によってバル
クハウゼンノイズの発生が効果的に回避されたシールド
型のMR型磁気へラドを得ることができるものである。As described above, according to the present invention, when a shielded MR magnetic head is configured, the magnetic sensing portion (2
) is widened to the rear, effectively improving Barkhausen noise. In addition, the magnetically sensitive part (2) is extended in a direction substantially perpendicular to the surface (3) in contact with the magnetic recording medium, and electrode layers (6) and (7) are provided at both ends of the magnetically sensitive part (2).
to direct the sense current in the direction perpendicular to the opposing surface (3),
Therefore, the signal magnetic field is applied in the same direction as the sense current direction, and the magnetic sensing part (2)
By making the magnetic sensing part □ of a multilayer structure, it is possible to obtain a shielded MR type magnetic heald in which the generation of Barkhausen noise is effectively avoided.
第1図は本発明による磁気ヘッドの一例の路線的拡大平
面図、第2図は第1図のA−A線上の断面図、第3図は
その感磁部の説明図、第4図は本発明の他の例の磁気ヘ
ッドの要部のパターン図、第5図は感磁部の外部磁界に
よる磁化状態の説明図、第6図〜第8図は動作説明図、
第9図は単層磁性薄膜の磁区構造を示す図、第10図は
比較例の説明図、第11図及び第12図は感磁部幅を変
化させた場合の出力特性曲線図である。
(11は基板、(2)は感磁部、(3)は磁気記録媒体
との対接面、(4)は絶縁層、(5)はバイアス磁界発
生用導体、(6)は前方電極層、(7)は後方電極層、
(9)及び(10)は軟磁性薄膜、(11)は非磁性中
間層である。FIG. 1 is an enlarged plan view of an example of a magnetic head according to the present invention, FIG. 2 is a sectional view taken along line A-A in FIG. A pattern diagram of the main parts of a magnetic head according to another example of the present invention, FIG. 5 is an explanatory diagram of the magnetization state of the magnetic sensitive part due to an external magnetic field, and FIGS. 6 to 8 are explanatory diagrams of the operation.
FIG. 9 is a diagram showing the magnetic domain structure of a single-layer magnetic thin film, FIG. 10 is an explanatory diagram of a comparative example, and FIGS. 11 and 12 are output characteristic curve diagrams when the magnetically sensitive portion width is varied. (11 is the substrate, (2) is the magnetic sensing part, (3) is the surface facing the magnetic recording medium, (4) is the insulating layer, (5) is the bias magnetic field generating conductor, (6) is the front electrode layer , (7) is the rear electrode layer,
(9) and (10) are soft magnetic thin films, and (11) is a nonmagnetic intermediate layer.
Claims (1)
記対接面とほぼ直交して後方に延在しかつ上記対接面に
臨む前方端面ないしその近傍を所要の狭小幅とし後方に
向かって幅広としたパターン形状の感磁部と、該感磁部
を絶縁層を介して横切るように延在するバイアス磁界発
生用導体とが設けられ、 これら感磁部とバイアス磁界発生用導体の配置部上を覆
って磁性体が配置されてなり、 上記感部は少くとも一方が磁気抵抗効果を有する対の軟
磁性薄膜が非磁性中間層を介して積層されてなることを
特徴とする磁気抵抗効果型磁気ヘッド。[Scope of Claims] On the substrate, the front end face faces the facing surface with the magnetic recording medium, the front end face extends rearward substantially orthogonally to the facing surface, and the front end face facing the said facing surface or its vicinity is disposed on the substrate. A magnetically sensitive part having a pattern shape with a required narrow width and widening toward the rear, and a conductor for generating a bias magnetic field extending across the magnetically sensitive part via an insulating layer are provided, and these magnetically sensitive parts and a magnetic material is arranged to cover the area where the conductor for generating the bias magnetic field is arranged, and the sensing part is formed by laminating a pair of soft magnetic thin films, at least one of which has a magnetoresistive effect, with a non-magnetic intermediate layer interposed therebetween. A magnetoresistive magnetic head characterized by:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62017968A JP2508475B2 (en) | 1987-01-28 | 1987-01-28 | Magnetoresistive magnetic head |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62017968A JP2508475B2 (en) | 1987-01-28 | 1987-01-28 | Magnetoresistive magnetic head |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS63184906A true JPS63184906A (en) | 1988-07-30 |
JP2508475B2 JP2508475B2 (en) | 1996-06-19 |
Family
ID=11958531
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP62017968A Expired - Fee Related JP2508475B2 (en) | 1987-01-28 | 1987-01-28 | Magnetoresistive magnetic head |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2508475B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5084794A (en) * | 1990-03-29 | 1992-01-28 | Eastman Kodak Company | Shorted dual element magnetoresistive reproduce head exhibiting high density signal amplification |
US8599520B1 (en) * | 2011-12-20 | 2013-12-03 | Western Digital (Fremont), Llc | Method and system for providing a read transducer having an adaptive read sensor track width |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5971124A (en) * | 1982-10-14 | 1984-04-21 | Fujitsu Ltd | Magneto-resistance effect magnetic head |
JPS61134912A (en) * | 1984-12-05 | 1986-06-23 | Matsushita Electric Ind Co Ltd | Thin film type magnetic head |
-
1987
- 1987-01-28 JP JP62017968A patent/JP2508475B2/en not_active Expired - Fee Related
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5971124A (en) * | 1982-10-14 | 1984-04-21 | Fujitsu Ltd | Magneto-resistance effect magnetic head |
JPS61134912A (en) * | 1984-12-05 | 1986-06-23 | Matsushita Electric Ind Co Ltd | Thin film type magnetic head |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5084794A (en) * | 1990-03-29 | 1992-01-28 | Eastman Kodak Company | Shorted dual element magnetoresistive reproduce head exhibiting high density signal amplification |
US5193038A (en) * | 1990-03-29 | 1993-03-09 | Eastman Kodak Company | Shorted dual element magnetoresistive reproduce head exhibiting high density signal amplification |
US8599520B1 (en) * | 2011-12-20 | 2013-12-03 | Western Digital (Fremont), Llc | Method and system for providing a read transducer having an adaptive read sensor track width |
Also Published As
Publication number | Publication date |
---|---|
JP2508475B2 (en) | 1996-06-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4896235A (en) | Magnetic transducer head utilizing magnetoresistance effect | |
US5768066A (en) | Magnetoresistive head having an antiferromagnetic layer interposed between first and second magnetoresistive elements | |
JP3651619B2 (en) | Magnetoresistive transducer and magnetic recording apparatus | |
JP2001250208A (en) | Magneto-resistive element | |
JPH07192227A (en) | Magneto-resistance effect type magnetic head | |
KR100267411B1 (en) | Magnetoresistive head | |
KR19990045422A (en) | Magnetoresistance effect magnetic head | |
JPH0845030A (en) | Magneto-resistive magnetic head | |
JP2668925B2 (en) | Magnetoresistive magnetic head | |
JP2508475B2 (en) | Magnetoresistive magnetic head | |
JP2596010B2 (en) | Magnetoresistive magnetic head | |
JP2668897B2 (en) | Magnetoresistive magnetic head | |
JPH0473210B2 (en) | ||
JPS63181109A (en) | Magneto-resistance effect type magnetic head | |
JPS63181108A (en) | Magneto-resistance effect type magnetic head | |
JPH026490Y2 (en) | ||
JP2661068B2 (en) | Magnetoresistive magnetic head | |
JPS62159318A (en) | Magneto-resistance effect type magnetic sensor | |
JPH0836715A (en) | Magnetoresistance effect-type magnetic head | |
JP3233115B2 (en) | Magnetoresistive head and method of manufacturing the same | |
JP2605695B2 (en) | Magnetoresistive magnetic head | |
JP2642923B2 (en) | Magnetoresistive magnetic head | |
JPH04167214A (en) | Magnetoresistance effect type magnetic head | |
JPH02165408A (en) | Magneto-resistance effect type magnetic head | |
JPH07320231A (en) | Magnetoresistive head |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |